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Abstract: In this article, we consider approximate solutions by quadratic splines for a fractional
differential equation with two Caputo fractional derivatives, the orders of which satisfy 1 < α < 2
and 0 < β < 1. Numerical computing schemes of the two fractional derivatives based on quadratic
spline interpolation function are derived. Then, the recursion scheme for numerical solutions and the
quadratic spline approximate solution are generated. Two numerical examples are used to check the
proposed method. Additionally, comparisons with the L1–L2 numerical solutions are conducted. For
the considered fractional differential equation with the leading order α, the involved undetermined
parameters in the quadratic spline interpolation function can be exactly resolved.
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1. Introduction

In recent decades, fractional calculus, due to its ability for modeling memory and
hereditary properties of various materials and processes, has been applied to many fields
of science and engineering, including relaxation and oscillation, viscoelasticity, anomalous
diffusion, control problems, etc. [1–8]. At present, theories and applications of fractional
calculus have attracted much interest and have become a vibrant research area. Fractional
differential equations, including the existence, uniqueness and stability of solutions, were
studied by some scholars [2–4,6,9,10]. In particular, new analytical and numerical meth-
ods were proposed [3,4,6,7,11–13]. Lie symmetry analysis and conservation laws were
investigated for fractional evolution equations [14].

In [15], the difference method and its convergence for the space-time fractional
advection–diffusion equation were investigated. In [16], a matrix representation of dis-
crete analogues of fractional differentiation and integration was suggested and used to
the numerical solution of fractional integral and differential equations. In [17], a local
discontinuous Galerkin finite element method was suggested for Caputo-type fractional
partial differential equations. In [18], a numerical Laplace transform technique was used to
solve the irrational fractional-order systems. In [19–21], numerical methods based on spline
functions were presented for the fractional differential equations. In [22], an Adams-type
predictor–corrector method for the numerical solution of fractional differential equations
was proposed. In [23], a numerical differentiation formula for the Caputo fractional deriva-
tive was developed by means of the quadratic interpolation approximation on three nodes.
In [24], a survey and a MATLAB software tutorial for numerical methods were presented.
In [25], Wang et al. proposed an asymptotic approximation method for a class of linear
weakly singular Volterra integral equations based on the Laplace transform.
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We recall the basic concepts in the fractional calculus. Let f (t) be piecewise continuous
on (0,+∞) and integrable on any finite subinterval of (0,+∞). The Riemann–Liouville
fractional integral of f (t) has the definition

0 Iυ
t f (t) :=

∫ t

0

(t− τ)υ−1

Γ(υ)
f (τ)dτ, t > 0, (1)

where υ is a positive real constant, and Γ(·) is Euler’s gamma function.
If f (0+) exists and f ′(t) is integrable on any finite subinterval of (0,+∞), then apply-

ing the integration by parts in Equation (1), we have

0 Iυ
t f (t) = f (0+)

tυ

Γ(υ + 1)
+
∫ t

0

(t− τ)υ

Γ(υ + 1)
f ′(τ)dτ, t > 0.

It follows that 0 Iυ
t f (t)→ f (t) as υ→ 0+. So, we rationally define 0 I0

t f (t) = f (t) for
complementarity. The fractional integral satisfies the following equalities,

0 Iβ
t 0 Iµ

t f (t) = 0 Iβ+µ
t f (t), β ≥ 0, µ ≥ 0,

0 Iν
t tµ =

Γ(µ + 1)
Γ(µ + ν + 1)

tµ+ν, ν ≥ 0, µ > −1.

The Riemann–Liouville fractional derivative of f (t) of order λ is defined, when it
exists, as

0Dλ
t f (t) :=

dm

dtm

(
0 Im−λ

t f (t)
)

, t > 0, m− 1 < λ ≤ m, m ∈ N+,

while the Caputo fractional derivative of f (t) of order λ is

0Dλ
t f (t) := 0 Im−λ

t f (m)(t), t > 0, m− 1 < λ ≤ m, m ∈ N+.

From the definitions, for the Caputo fractional derivative of polynomial functions, the
following equality holds

0Dα
t (a0tm−1 + a1tm−2 + · · ·+ am−1) = 0, m− 1 < α ≤ m,

and for the power function tµ, µ > 0, the Caputo fractional derivative is

0Dα
t tµ =

Γ(µ + 1)
Γ(µ− α + 1)

tµ−α, t > 0, α > 0 and dαe < µ + 1,

where dαe denotes the least integer greater than or equal to α. We use the Caputo fractional
derivative in this article in view of its convenience for formation of initial value condition.
We denote the operators 0 Iλ

t as Iλ
t and 0Dλ

t as Dλ
t for short.

In this article, we consider approximate solution by quadratic spline interpolation
function for the initial value problem of the fractional differential equation with two Caputo
fractional derivatives

Dα
t u(t) + c u′(t) + bDβ

t u(t) + ku(t) = f (t), 0 < t < T, (2)

u(0) = u0, u′(0) = m0, (3)

where 1 < α < 2, 0 < β < 1, c, b, k, u0, m0 are constants, and f (t) is a given continuous
function on the interval [0, T]. In next section, we derive the quadratic spline interpolation
function. In Section 3, the numerical schemes of the two fractional derivatives based on the
quadratic spline interpolation are devised. In Section 4, the recursion scheme of numerical
solutions for the fractional differential equation is generated. Two numerical examples are
used to check the proposed method. Additionally, comparisons with the L1–L2 numerical
solutions are conducted.
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2. Quadratic Spline Interpolation Function

Suppose u(ti), for i = 0, 1, . . . , N, are known, where ti = ih and tN = T. Addition-
ally, suppose m0 = u′(0) is known. Then, the quadratic spline interpolation function
S(t) with the nodes ti, i = 0, 1, . . . , N, satisfying S(ti) = u(ti) for i = 0, 1, . . . , N and
S′(0) = u′(0), exists uniquely [26,27]. This means on each subinterval, [ti, ti+1], S(t) is a
quadratic polynomial,

S(t) = Si(t), t ∈ [ti, ti+1], i = 0, 1, . . . , N − 1,

and S′(t) is continuous on the whole interval [0, T].
First, we introduce the notations mi = S′(ti) for i = 1, 2, . . . , N, which serve as the

interim parameters, to derive the quadratic spline interpolation function. Due to S′(t) being
a spline function of degree 1, interpolating the values (ti, mi), i = 0, 1, . . . , N, so S′(t) has
the form on the subinterval [ti, ti+1],

S′(t) = S′i(t) =
ti+1 − t

h
mi +

t− ti
h

mi+1, ti ≤ t ≤ ti+1, i = 0, 1, . . . , N − 1. (4)

Operating indefinite integration leads to

Si(t) = −
(ti+1 − t)2

2h
mi +

(t− ti)
2

2h
mi+1 + Ci, i = 0, 1, . . . , N − 1, (5)

where Ci are the integral constants. By setting

Si(ti) = u(ti), i = 0, 1, . . . , N − 1,

we obtain Ci = u(ti) +
h
2 mi, i = 0, 1, . . . , N − 1, and so Equation (5) becomes

Si(t) = u(ti) +
h
2

mi −
(ti+1 − t)2

2h
mi +

(t− ti)
2

2h
mi+1, i = 0, 1, . . . , N − 1. (6)

The parameters mi, i = 1, 2, . . . , N, may be determined by the continuity of the function
S(t) on the interval [0, T] as

Si(ti+1) = u(ti+1), i = 0, 1, . . . , N − 1.

Applying the condition to Equation (6), we have

mi+1 + mi =
2
h
(u(ti+1)− u(ti)), i = 0, 1, . . . , N − 1. (7)

By the iterations in Equation (7), we give expressions to each mi, i = 1, 2, . . . , N, in
terms of m0, u(t0), u(t1), . . . , u(ti) as

m1 =
2
h
(−u(t0) + u(t1))−m0,

m2 =
2
h
(u(t0)− 2u(t1) + u(t2)) + m0,

m3 =
2
h
(−u(t0) + 2u(t1)− 2u(t2) + u(t3))−m0,

. . . .

The general form is

mi = (−1)i 2u(t0)

h
+

4
h

i−1

∑
j=1

(−1)i−ju(tj) +
2
h

u(ti) + (−1)im0, i = 1, 2, . . . , N, (8)

where the sum Σ vanishes if i = 1.
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Substituting Equation (8) into Equation (6), we obtain the quadratic spline interpola-
tion function S(t) on the subinterval [ti, ti+1] expressed through m0, u(t0), u(t1), . . . , u(ti+1),

Si(t) = u(ti) +

(
h
2
− (ti+1 − t)2

2h

)(
(−1)i 2u(t0)

h
+

4
h

i−1

∑
j=1

(−1)i−ju(tj) +
2
h

u(ti) + (−1)im0

)

+
(t− ti)

2

2h

(
(−1)i+1 2u(t0)

h
+

4
h

i

∑
j=1

(−1)i+1−ju(tj) +
2
h

u(ti+1) + (−1)i+1m0

)
, (9)

i = 0, 1, . . . , N − 1.

We indicate that due to mi, i = 0, 1, 2, . . . , N, are constants, Equations (4) and (6) will
be used in the numerical computing process of fractional derivatives, and the expression of
mi in Equation (8) will be substituted at the final procedure to avoid large expressions by
using Equation (9).

For estimation of interpolation remainder R(t) = u(t)− S(t), it was proved that if
u(t) ∈ C3[0, T] with u(3)(t) of bounded variation, then there exists M > 0 such that [26,27]

‖R(j)(t)‖ = sup
0≤t≤T

∣∣∣R(j)(t)
∣∣∣ ≤ Mh3−j, j = 0, 1, 2. (10)

Li and Huang [28] proved the result under the assumption u(t) ∈ C4[0, T].

3. Numerical Computation of Fractional Derivatives

We calculate numerically the fractional derivatives Dα
t u(t) (1 < α < 2) and Dβ

t u(t)
(0 < β < 1) at each nodes t = ti, i = 1, 2, . . . , N, using the quadratic spline interpolation
function S(t). First, the α-th order derivative is approximated as

[Dα
t u(t)]ti

≈ [Dα
t S(t)]ti

=
[

I2−α
t S′′(t)

]
ti
=
∫ ti

0

(ti − z)1−α

Γ(2− α)
S′′(z)dz. (11)

Form Equation (4), S′′(t) is piecewise constants on the interval [0, T], and has the form
on the interval (ti, ti+1) as

S′′i (t) =
mi+1 −mi

h
, ti < t < ti+1, i = 0, 1, . . . , N − 1. (12)

Integrating piecewise in Equation (11) and applying Equation (12) yield

[Dα
t S(t)]ti

=
i−1

∑
j=0

∫ tj+1

tj

(ti − z)1−α

Γ(2− α)
S′′j (z)dz

=
i−1

∑
j=0

(ti − tj+1)
2−α − (ti − tj)

2−α

hΓ(3− α)
(mj −mj+1). (13)

Substituting tj = jh leads to

[Dα
t S(t)]ti

=
h1−α

Γ(3− α)

i−1

∑
j=0

((i− j− 1)2−α − (i− j)2−α)(mj −mj+1).

Regrouping the right hand side leads to the following equation

[Dα
t S(t)]ti

=
h1−α

Γ(3− α)

i

∑
j=0

w〈α〉i,j mj, (14)
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where

w〈α〉i,0 = (i− 1)2−α − i2−α,

w〈α〉i,j = (i− j− 1)2−α − 2(i− j)2−α + (i− j + 1)2−α, 1 ≤ j ≤ i− 1,

w〈α〉i,i = 1.

(15)

Substituting the derivatives mj, j = 1, 2, . . . , i, in Equation (8) into Equation (14), we
obtain the fractional derivative of order α at t = ti in terms of m0, u(t0), u(t1), . . . , u(ti) as

[Dα
t u(t)]ti

≈ [Dα
t S(t)]ti

=
2h−α

Γ(3− α)

(
h
2

λ
〈α〉
i m0 + u(ti) +

i−1

∑
j=0

ρ
〈α〉
i,j u(tj)

)
, (16)

where
ρ
〈α〉
i,0 = ∑i

j=1(−1)jw〈α〉i,j ,

λ
〈α〉
i = w〈α〉i,0 + ρ

〈α〉
i,0 ,

ρ
〈α〉
i,j = w〈α〉i,j + 2 ∑i

l=j+1(−1)l−jw〈α〉i,l , j = 1, 2, . . . , i− 1.

(17)

For the β-th order fractional derivative Dβ
t u(t) at t = ti, in a similar manner, we have

[
Dβ

t u(t)
]

ti
≈
[

Dβ
t S(t)

]
ti
=
∫ ti

0

(ti − z)−β

Γ(1− β)
S′(z)dz =

i−1

∑
j=0

∫ tj+1

tj

(ti − z)−β

Γ(1− β)
S′j(z)dz. (18)

Instead, here S′j(z) is a linear function as in Equation (4). The sub-domain integration
is calculated as∫ tj+1

tj

(ti − z)−β

Γ(1− β)
S′j(z)dz =

∫ tj+1

tj

(ti − z)−β

Γ(1− β)

( tj+1 − z
h

mj +
z− tj

h
mj+1

)
dz

=
h1−β

Γ(3− β)

[
((i− j− 1)2−β − (i− j− 2 + β)(i− j)1−β)mj

+((i− j)2−β − (i− j + 1− β)(i− j− 1)1−β)mj+1

]
.

Substituting it into Equation (18) and regrouping according to mj lead to

[
Dβ

t S(t)
]

ti
=

h1−β

Γ(3− β)

i

∑
j=0

w〈β〉i,j mj, (19)

where

w〈β〉i,0 = (i− 1)2−β − (i− 2 + β)i1−β,

w〈β〉i,j = (i− j− 1)2−β − 2(i− j)2−β + (i− j + 1)2−β, 1 ≤ j ≤ i− 1,

w〈β〉i,i = 1.

(20)

Substituting the derivatives mj, j = 1, 2, . . . , i, in Equation (8) into Equation (19), we
obtain the fractional derivative of order β at t = ti in terms of m0, u(t0), u(t1), . . . , u(ti) as

[
Dβ

t u(t)
]

ti
≈
[

Dβ
t S(t)

]
ti
=

2h−β

Γ(3− β)

(
h
2

λ
〈β〉
i m0 + u(ti) +

i−1

∑
j=0

ρ
〈β〉
i,j u(tj)

)
, (21)
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where
ρ
〈β〉
i,0 = ∑i

j=1(−1)jw〈β〉i,j ,

λ
〈β〉
i = w〈β〉i,0 + ρ

〈β〉
i,0 ,

ρ
〈β〉
i,j = w〈β〉i,j + 2 ∑i

l=j+1(−1)l−jw〈β〉i,l , j = 1, 2, . . . , i− 1.

(22)

We remark for the two fractional derivatives that the integral in Equation (18) is a
little more tactical than that in Equation (13), and w〈β〉i,0 in Equation (20) has a different form

compared with w〈α〉i,0 in Equation (15). Nevertheless, except the expressions of w〈α〉i,0 and w〈β〉i,0 ,
the expressions in Equations (19)–(22) present the same layouts as in Equations (14)–(17).

For the error estimation, from Equation (10) we have

∣∣∣[Dα
t u(t)]ti

− [Dα
t S(t)]ti

∣∣∣ ≤ [I2−α
t
∣∣u′′(t)− S′′(t)

∣∣]
ti
≤

Mt2−α
i h

Γ(3− α)
, (23)

and ∣∣∣∣[Dβ
t u(t)

]
ti
−
[

Dβ
t S(t)

]
ti

∣∣∣∣ ≤ [I1−β
t

∣∣u′(t)− S′(t)
∣∣]

ti
≤

Mt1−β
i h2

Γ(2− β)
, (24)

for i = 1, 2, . . . , N.

4. Solution of Fractional Differential Equation

At t = ti, the fractional differential Equation (2) becomes

[Dα
t u(t)]ti

+ c u′(ti) + b
[

Dβ
t u(t)

]
ti
+ ku(ti) = fi, i = 1, 2, . . . , N,

where fi = f (ti), i = 1, 2, . . . , N, are known values. Approximating the two fractional
derivatives and the first order derivative by the counterparts of the quadratic spline inter-
polation function S(t) yields

[Dα
t S(t)]ti

+ c S′(ti) + b
[

Dβ
t S(t)

]
ti
+ ku(ti) + ER(u, ti) = fi, i = 1, 2, . . . , N, (25)

where the truncation error is estimated from Equations (10), (23) and (24) as

|ER(u, ti)| ≤
Mt2−α

i h
Γ(3− α)

+ cMh2 + b
Mt1−β

i h2

Γ(2− β)
, (26)

where M is a constant related to u(t).
Inserting the results about the derivative mi = S′(ti) in Equation (8) and the fractional

derivatives in Equations (16) and (21) into Equation (25), we have

2h−α

Γ(3− α)

(
h
2

λ
〈α〉
i m0 + u(ti) +

i−1

∑
j=0

ρ
〈α〉
i,j u(tj)

)
+

2c
h

(
(−1)iu(t0) + 2

i−1

∑
j=1

(−1)i−ju(tj) + u(ti)

)

+(−1)icm0 +
2bh−β

Γ(3− β)

(
h
2

λ
〈β〉
i m0 + u(ti) +

i−1

∑
j=0

ρ
〈β〉
i,j u(tj)

)
+ ku(ti) + ER(u, ti) = fi.

Leaving out the error term ER(u, ti) and replacing u(ti) by their numerical approxima-
tions ui, we obtain the recursion scheme of the numerical approximations ui, i = 1, 2, . . . , N,
from m0, u0, u1, . . . , ui−1 as
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ui =

(
2h−α

Γ(3− α)
+

2c
h
+

2bh−β

Γ(3− β)
+ k
)−1[

fi −
(

h1−α

Γ(3− α)
λ
〈α〉
i + (−1)ic +

bh1−β

Γ(3− β)
λ
〈β〉
i

)
m0

−
(

2h−α

Γ(3− α)
ρ
〈α〉
i,0 +

(−1)i2c
h

+
2bh−β

Γ(3− β)
ρ
〈β〉
i,0

)
u0

−
i−1

∑
j=1

(
2h−α

Γ(3− α)
ρ
〈α〉
i,j +

(−1)i−j4c
h

+
2bh−β

Γ(3− β)
ρ
〈β〉
i,j

)
uj

]
, i = 1, 2, . . . , N. (27)

Thus the recursion scheme (27) gives the numerical solutions u0, u1, . . . , uN , derived
from quadratic splines, and Equation (9) gives the quadratic spline approximate solution
by replacing u(tj) by uj, j = 1, 2, . . . , N.

We will compare the present algorithm with the usual L1–L2 algorithm to approximate
the fractional derivatives Dα

t u(t) and Dβ
t u(t) [1,23]. We note that the L2 method utilizes

the quadratic interpolation polynomials on three nodes to approximate the function u(t),
while the L1 method approximate the function u(t) by using piecewise linear interpolation.
So for the present problem, Equations (2) and (3), the first two node values need to be given
as the iterative initial values in the L1–L2 numerical solutions.

On the interval [tj, tj+1], j = 1, 2, . . . , N − 1, approximate u(t) by the quadratic inter-
polation polynomials ∏j(t) on the nodes tj−1, tj, tj+1, while on the first interval [t0, t1], u(t)
is approximated by ∏1(t). Thus, the L2 method derives the following approximation for
the fractional derivative:

[Dα
t u(t)]ti

≈ u(t0)− 2u(t1) + u(t2)

hαΓ(3− α)

(
i2−α − (i− 1)2−α

)
+

i−1

∑
j=1

u(tj−1)− 2u(tj) + u(tj+1)

hαΓ(3− α)

(
(i− j)2−α − (i− j− 1)2−α

)
, i ≥ 2. (28)

The first-order derivative is also approximated by using the quadratic interpolation
polynomials as u′(ti) ≈ ∏′i−1(t) for i ≥ 2. For the fractional derivative of order β, using
the L1 method we have[

Dβ
t u(t)

]
ti
≈

i−1

∑
j=0

u(tj+1)− u(tj))

hβΓ(2− β)

(
(i− j)1−β − (i− j− 1)1−β

)
, i ≥ 1. (29)

Thus, by discretizing Equation (2) at ti, i ≥ 2, and using Equations (28) and (29), the
L1–L2 numerical solutions are obtained as

û0 = u(0), û1 = u(0) + hu′(0),

û2 =

(
22−α

hαΓ(3− α)
+

3c
2h

+ k +
b

hβΓ(2− β)

)−1(
f2 −

(û0 − 2û1)22−α

hαΓ(3− α)
− c(û0 − 4û1)

2h

− b
hβΓ(2− β)

(
û1(21−β − 2)− û0(21−β − 1)

))
,
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ûi =

(
1

hαΓ(3− α)
+

3c
2h

+ k +
b

hβΓ(2− β)

)−1(
fi −

û0 − 2û1 + û2

hαΓ(3− α)
(i2−α − (i− 1)2−α)

− ûi−2 − 2ûi−1

hαΓ(3− α)
−

i−2

∑
j=1

(ûj−1 − 2ûj + ûj+1)

hαΓ(3− α)

(
(i− j)2−α − (i− j− 1)2−α

)
− c(ûi−2 − 4ûi−1)

2h
+

bûi−1

hβΓ(2− β)
− b

i−2

∑
j=0

(ûj+1 − ûj)

hβΓ(2− β)

(
(i− j)1−β − (i− j− 1)1−β

))
, i ≥ 3.

Here, we use ui, i = 0, 1, . . . , N and ûi, i = 0, 1, . . . , N, to denote the quadratic spline
numerical solutions derived from the quadratic spline interpolation and the L1–L2 numeri-
cal solutions derived from the L1 and L2 methods, respectively.

Next, we consider two numerical examples, one has a monotonically increasing
excitation and another has a sinusoidal excitation.

Example 1. Consider the initial value problem for the fractional differential equation

Dα
t u(t) + 2u(t) = t0.2, t > 0, 1 < α < 2,

u(0) = u0, u′(0) = m0.

The exact solution can be expressed in terms of the generalized Mittag–Leffler func-
tions [3,4].

u(t) = u0Eα,1(−2tα) + m0 tEα,2(−2tα) +
(

tα−1Eα,α(−2tα)
)
∗ t0.2, (30)

where the generalized Mittag–Leffler function is defined as Eµ,ν(z) = ∑∞
m=0

zm

Γ(µm+ν)
, µ >

0, ν > 0. Calculating the convolution in Equation (30) yields the exact solution in the
following form

u(t) = u0Eα,1(−2tα) + m0 tEα,2(−2tα) + Γ(1.2)tα+0.2Eα,α+1.2(−2tα). (31)

We take α = 1.7, u0 = −1, m0 = 1 to compute the quadratic spline numerical solutions
ui on the interval [0, 30] from Equation (27) and compare them with the exact solution
in Equation (31) and the L1–L2 numerical solutions ûi. In Figure 1a, the black dash line
is depicted from the exact solution in Equation (31), while the blue circles denote the
numerical solutions ui and the red crosses denote the numerical solutions ûi by using
h = 0.1. In Figure 1b–d, the errors u(ti)− ui of the numerical solutions ui are plotted for
the different step-sizes h = 0.1, 0.05 and 0.025, respectively.

We examined the numerical solutions ûi derived from the L1–L2 methods with the
same step-sizes and found that the errors also decrease oscillatorily as t increases, but the
maximal error is about five times of that of the numerical solutions ui. For example, in
Figure 2, we depict the plot of the errors u(ti)− ûi of the numerical solutions ûi derived
from the L1–L2 methods with the step-size h = 0.05 on the interval 0 ≤ t ≤ 30. Compared
with the errors of the numerical solutions ui with the identical step-size in Figure 1c, the
maximal errors of the numerical solutions ûi increases to about five times.
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Figure 1. The exact solution u(t), numerical solutions ui and ûi, and the errors of ui in Example 1.
(a) The exact solution u(t) (dash line), the quadratic spline numerical solutions ui (circles) and the
L1–L2 numerical solutions ûi (crosses) with h = 0.1; (b) the errors of ui (h = 0.1); (c) the errors of ui

(h = 0.05); (d) the errors of ui (h = 0.025).

5 10 15 20 25 30
t

-0.10

-0.05

0.05

0.10

0.15

0.20
Errors of u i

Figure 2. The errors of the L1–L2 numerical solutions ûi (h = 0.05).

Example 2. Consider the initial value problem for the fractional differential equation

D1.7
t u(t) + u′(t) + D0.5

t u(t) + 5u(t) = sin(t),

u(0) = 1, u′(0) = −1.

For this example, we use the high-precision numerical inverse of the Laplace transform
proposed by Wang et al. [29] as a reference to the exact solution. The Laplace transform of
the solution u(t) is

U(s) =
s0.7 − s−0.3 + 1 + s−0.5

s1.7 + s + s0.5 + 5
+

1
(s1.7 + s + s0.5 + 5)(s2 + 1)

.

The numerical solutions obtained by the high-precision numerical Laplace inverse
transform are denoted by ũi.

In Figure 3a, the three numerical solutions on the interval [0, 20] with the step-size
h = 0.1 obtained from the high-precision numerical Laplace inverse transform, the present
quadratic spline interpolation and the L1–L2 methods are displayed. In the initial stage,
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we can readily see that the quadratic spline numerical solutions ui are closer to ũi than the
L1–L2 numerical solutions.
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Figure 3. The numerical solutions and comparisons in Example 2. (a) The numerical solutions with
h = 0.1 by the inverse Laplace transform, ũi (dots), the quadratic spline interpolation ui (circles) and
the L1–L2 methods ûi (crosses); (b) the differences of the two numerical solutions ũi and ui (h = 0.1);
(c) the differences of the two numerical solutions ũi and ui (h = 0.05); (d) the differences of the two
numerical solutions ũi and ui (h = 0.025).

The differences of the two numerical solutions ũi and ui are shown in Figure 3b–d for
h = 0.1, 0.05 and 0.025, respectively. We also examined the differences of the numerical
solutions ũi and ûi and found that for a same step-size, the maximum value of |ũi − ûi| is
about three times of that of |ũi − ui|. In Figure 4, the differences ũi − ûi of the numerical
solutions from the high-precision inverse Laplace transform and the L1–L2 methods with
the step-size h = 0.05 are shown. Compared with Figure 3c, the maximum value in Figure 4
enlarges to about three times.

5 10 15 20
t

-0.10

-0.08

-0.06

-0.04

-0.02

u

i-u


i

Figure 4. The difference ũi − ûi between the high-precision inverse Laplace transform numerical
solutions and the L1–L2 numerical solutions (h = 0.05).

The considered equation belongs to the forced fractional oscillation equation. In
Example 1, the transient oscillation evolves into steady-state increasing, while in Example 2,
the transient oscillation grows into steady-state oscillation. Two examples show that the
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decreasing of the step-size h can effectively enhance the accuracy of the numerical solutions,
and the present quadratic spline numerical solutions have higher precision than the L1–L2
numerical solutions. It is worth noting that for the considered problem, in the initial stage
the numerical solutions emerge slightly large errors, but with the process evolution errors
can fall off in an oscillatory manner. In Example 1, the second-order derivative of the exact
solution u(t) does not exist at t = 0. This responds the unusual errors in the initial stage.

We note that if a differentiable nonlinearity g(u(t)) is added in the left hand side of
Equation (2), then we can approximate the nonlinearity at t = ti, i ≥ 1, as g(u(ti)) ≈
g(u(ti−1)) + g′(u(ti−1))u′(ti−1)h to derive an explicit scheme of numerical solutions in
the nonlinear case. Inasmuch as we focus on the numerical schemes for the fractional
derivatives by using the quadratic splines, examples in the nonlinear case are not involved.

5. Conclusions

We considered numerical solutions of a fractional differential equation with two
Caputo fractional derivative terms, Dα

t u(t), 1 < α < 2, and Dβ
t u(t), 0 < β < 1. The

proposed numerical algorithm is based on the method of quadratic spline interpolation.
First, we derived discrete expressions of the two fractional derivatives at nodes based on the
quadratic spline interpolation function. Then, the recursion scheme for numerical solutions
was generated and the approximate solution in the form of quadratic spline function was
obtained. Additionally, error estimations were considered. Two numerical examples were
used to check the proposed method. For the considered fractional differential equation
with the leading order α between 1 and 2, the involved undetermined parameters in the
quadratic spline interpolation function can be exactly resolved.

Compared with the L1–L2 numerical solutions, where the first two node values need
to be given, the iterative scheme of the present quadratic spline numerical solutions only
needs to know the value of the first node u0, i.e., the iterative scheme starts from u1. An
improved accuracy is shown in the two examples. The results give the discrete numerical
solutions, and the continuous solution with continuous derivative composed of piecewise
quadratic polynomials.
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