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Abstract: This study investigates the problem of finite-time boundedness of a class of neural networks
of Caputo fractional order with time delay and uncertain terms. New sufficient conditions are
established by constructing suitable Lyapunov functionals to ensure that the addressed fractional-
order uncertain neural networks are finite-time stable. Criteria for finite-time boundedness of the
considered fractional-order uncertain models are also achieved. The obtained results are based on a
newly developed property of Caputo fractional derivatives, properties of Mittag-Leffler functions
and Laplace transforms. In addition, examples are developed to manifest the usefulness of our
theoretical results.

Keywords: neural networks; fractional order; time delay; uncertain parameters; finite-time stability;
finite-time boundedness

1. Introduction

Fractional calculus is a branch of mathematics that covers topics such as derivatives
and integrals of noninteger order [1-4]. The recent discoveries in fractional calculus applica-
tions shows that, fractional-order systems have an essential role in modelling of numerous
processes studies in diverse areas of science and engineering [5,6].

On the other hand, neural network models have the capability to solve significant is-
sues in emergency domains such as financial market forecasting, optimization, information
processing, parallel computing, associative memory, etc. [7-11].

Additionally, the study of the dynamic behavior of neural network models of fractional
order has quickly attracted enormous interest as a research area. Numerous qualitative
properties of such neural network models differ from the corresponding properties of
the classical integer-order models. Fractional-order derivatives can provide a magnificent
instrument for the description of memory and hereditary properties of various materials.
Thus, their use increases the degree of freedom in the modelled processes and make the
models more accurate than the integer-order ones [12-16]. These advantages constitute
the fractional calculus as leading tool in the design of adequate artificial neural networks
and it is also applied in biological neuronal networks. See, for example, some very recent
publications [17,18], and the references therein.

It is established in the existing literature that time delays are commonly experienced
in artificial and biological neural networks. It has been endowed that the presence of time
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delays often causes improper dynamical performances such as behavioral degradation,
developmental oscillation, or instability of the model. Hence, the stability analysis of neural
network models of integer order with time delays has received excess consideration and
crucial stability conditions have been established [19-21].

Correspondingly, there are also interesting stability results proposed for fractional-
order neural networks models [22-25]. In fact, such neural network systems are considered
as very adequate models in different fields, such as diffusion waves, viscoelastic systems,
electrical circuits, quantitative finance, mechanics, acoustics, electromagnetism, propa-
gation, signal processing, system identification, colored noises, etc. [26-30]. Thus, the
study of fractional-order neural networks is fundamental to both theory and applications
and that is why, the stability analysis of fractional-order linear and nonlinear dynamical
systems has attracted an expanding attention. For example, the fractional Lyapunov direct
method and the Mittag—Leffler stability of fractional-order nonautonomous systems have
been studied in [31]. In [32], Linear Matrix Inequalities (LMIs) stability conditions for
fractional-order systems have been discussed. In [33], the asymptotic stability of nonlinear
fractional differential system with Caputo derivative is studied. In [34], the problem of
generalized Mittag—Leffler stability of multi-variables fractional-order nonlinear systems
is investigated.

The definition of the finite-time stability was firstly proposed by Kamenkov in [35].
It is related to a fixed time-interval during which the state of a system starting within a
specified bound does not exceed. For finite-time stable systems, it was demonstrated that
they might have not only faster convergence, but also better robustness and disturbance
rejection properties [36]. It is also known that finite-time stability and asymptotic stability
are independent concepts, which neither imply nor exclude each other. Furthermore, the
classical Lyapunov stability notion is mainly concerned with the asymptotic behavior of the
states and rarely deals with the description of state bounds [37-42]. Moreover, in numerous
applied problems, it is necessary to conserve the states within some bounds during a
specific time interval (see, [43—47]). The finite-time stability is sometimes recommended
than traditional stability approaches because most real neural networks only operate
over finite-time intervals. Thus, some significant contributions have been given in finite-
time stability of fractional-order systems (see for instance, [48-51] and references therein).
Moreover, fractional-order finite-time stable neural networks have engaged a great level
of research interest in the past decade. In [52], the finite-time stability of fractional-order
Hopfield neural networks with time delays has been studied. Another paper, [53], explores
the finite-time stability of fractional-order complex valued neural networks with time
delay. In [54], finite-time stability criteria for fractional-order Cohen—-Grossberg BAM
neural networks with time delays are proposed. However, the topic of finite-time stability
of fractional neural networks is still not completely investigated. In all the above-cited
papers on finite-time stability behavior of delayed fractional neural network models, the
effect of uncertain parameters is not investigated. In addition, the finite-time boundedness
concept has not yet been introduced and finite-time boundedness criteria has not yet been
proposed for fractional-order neural networks. This is the first motivation for designing
the present research.

In practice, real systems typically give some uncertainties due to environmental noises,
uncertain or slowly varying parameters, etc. Hence, the investigation of finite-time stability
with parametric uncertainties for such systems is very important [55]. The systems with
uncertain values of their parameters are often called uncertain systems. Note that, uncertain
chaotic systems are studied in [56-59], including fractional-order models [60-62]. However,
to the best of our knowledge, the problem of finite-time boundedness of fractional-order
uncertain neural networks with time delay is not yet recognized in the existing literature.

Motivated by the above discussions, in this research we investigate the finite-time
boundedness for fractional-order neural networks with time delays and uncertain parame-
ters. The analysis of the proposed results is based on the fractional Lyapunov approach
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and fractional differentiation. The obtained criteria are in terms of LMIs which are very
appropriate for numerical simulations.
The main novelty of the paper is in the following five points:

(1) The finite-time boundedness and finite-time stability concepts are adopted to a
continuous model of neural networks of fractional order with time delays and
uncertain parameters;

(2) New finite-time boundedness and finite-time stability results are established;

(3) A new property of Caputo fractional derivatives, properties of Mittag—Leffler func-
tions and Laplace transforms are applied;

(4) By using the Lyapunov functional approach and inequality techniques the obtained
results are represented in terms of LMIs;

(5) Two examples are explored to expose the efficiency of the proposed finite-time stability
and finite-time boundedness results.

The rest of the manuscript is organized according to the following plan. The fractional-
order neural network problem under consideration is formulated in Section 2, where some
preliminary results are also presented. The main finite-time boundedness and finite-time
stability results are established in Section 3. Section 4 is devoted to numerical examples
with which we demonstrate the proposed new results. The conclusion notes are stated in
Section 5.

Notation: Throughout this investigation, N will denote the set of all positive integer
numbers, R” stands for the n-dimensional Euclidean space, R"*" is the space of all n x m

. . . . A B
real matrices. For a matrix B and two symmetric matrices A and C, { « C } denotes

the symmetric matrix, where the symmetry term is denoted by *. The values Amax(Q)
and Amin(Q) will denote the maximum and minimum eigenvalue of a symmetric matrix
Q, respectively. The superscript T represents the transpose of a matrix (or vector). The
identity matrix of the compatible dimension will be denoted by I, diag{...} expresses the
block-diagonal matrix and || . || is the Euclidean norm in R".

2. Problem Formulation and Preliminary Results

We will investigate a class of fractional-order uncertain neural networks with time
varying delays of the type

D*x(t) = —Cx(t) + (A+ AA)F(x(t)) + (B + AB) f(x(t — 1)) + Haw(t) + Ju(t), (1)

where x(t) = [x1(t),x2(),...,x,(t)]T € R" is the state vector of the fractional-order
uncertain neural network system, f(x(t)) = [fi(x1(t)), fa(x2(t)), ..., fu(xn())]T € R"
denotes the neuron activation function, ¢ = diag{cy,ca,...,cn} is the self-connection
weight, A, B, H, J represent the interconnection weight matrices, 7, is a time delay which
is a positive constant, AA, AB are real-valued unknown matrices representing parameter
uncertainties and are supposed to be in the form

[AA AB] = DE(t) [0 &), @

where D, €,, &, are known constant real-valued matrices with adequate dimensions, F(t)
is an unknown time-varying matrix with bounded Lebegue measurable elements such that

FI(HF(f) < I 3)
We will consider the uncertain model (1) under the following initial condition:
x(t) = ¢(t), t € [—7,,0].

In the model (1) we consider the “uncertain” parameters AA, AB that may greatly
affect the qualitative behaviour of the system. In fact, a real system always involves uncer-
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tainties due to some disturbances in system, inaccuracy in model parameter measurements
or noises from external inputs. Hence, the analysis of models with uncertainties is essential
for theory and applications.

Among the commonly used definitions for the general fractional differentiation and in-
tegration, such as Riemann-Liouville, Griinwald-Letnikov, Caputo, and Antagana—Baleanu
derivatives, we will use the Caputo-type fractional derivative in our introduced model (1).
The reason for this is the fact that it has the superiority of dealing accordingly with ini-
tial conditions on initial value problems that are in a format consistent with that in the
integer-order cases which is observed in most physical processes [22].

The following assumption will be made on the activation function.

Assumption 1. The neuron activation functions f is bounded and Lipschitz continuous on R",
that is, there exists L = diag{ly, lp, ..., 1o} with [y > 0,k =1,...,n for which

[1f () = f(0)[| < [|IL(u —0)]] )

forany u,v € R™.

For the presentation of the main results we will need the next lemmas and definitions.
Without loss of generality, for the applied fractional integral and derivatives we will
consider that lower limits to be 0 throughout the paper.

Definition 1 ([56]). For any time constant T, two constants ¢; > 0, & > 0, and a symmetric
matrix R > 0, the fractional-order neural network model (1) with u(t) = 0 is said to be finite-time
bounded with respect to (¢1,¢», T, R), if

sup (xT(s)Rx(s)> <& =xT(HRx(t) <&, Vte(o,T].

s€[—1,0]

Definition 2 ([56]). For any time constant T, two constants ¢; > 0, & > 0, and a symmetric
matrix R > 0, the fractional-order neural network system (1) with w(t) = 0 and u(t) = 0 is said
to be finite-time stable with respect to (¢1,¢, T, R), if

sup (xT(s)Rx(s)) < = xT(H)Rx(t) <&, Vte[o,T.

se[—1,,0]

Definition 3 ([59]). For any time constant T, the fractional-order neural network (1) is robustly
finite-time stabilizable with a disturbance attenuation level B, if the corresponding fractional closed-
loop neural network system with a controller u(t) = Kx(t), t € (0, T}, is finite-time bounded.

Definition 4 ([1]). The fractional integral of a noninteger order « for an integrable function x(t),
x(t) € R", is defined as

oIx(t) = r(la) /Ot(t ) (1) d T,

where I'(+) is the Gamma function given by T = foe t=letdt.

Definition 5 ([1]). The fractional derivative of Caputo type of order w for a function x(t) is
defined as

1 t e
oDfx(t) = m/o (t — ) 10 (1) d1y,

wherek —1 < a <k, ke N.
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Throughout the paper the fractional integral (I} will be denoted by I* and the Caputo
fractional derivative gD} by D* for simplicity.

Lemma 1 ([63]). For a € (0,1) and continuous and differentiable on |0, 00| vector-function
x(t) € R", we have

1 ar,T T «
ED [x" (H)x(t)] < x' (£)D*x(t), t > 0. 5)
Lemma 2 ([64]). Fora € (0,1), continuous and differentiable on [0, oo] vector-function x(t) € R"
and P > 0, P € R"™*", we have inequality

%D"‘ KT () Px(1)] < xT(£)PD*x(t), t > O. ©)

Lemma 3 ([1]). Fork € Nand k —1 < a < k, the following relation is valid

I*(D*x(t)) = x(t) = }_

In the case when 0 < & < 1,
I*(D*x(t)) = x(t) — x(0).

Lemma 4 ([65]). Let x(t) and a(t) be non-negative and local integrable on [0, T| functions,
T < 4o0. Assume that & > 0, g(t) is a non-decreasing, nonnegative and continuous function
definedon 0 < t < T, g(t) < M (constant), satisfying

x(t) < a(t) + g(t) '/Ot(t —5)*x(s)ds, t€[0,T).
If a(t) is non-decreasing on [0, T|, then
x(1) < a(t)Ga(g (T ()%, 1 € [0,T],
where Gy is the Mittag—Leffler function.

Lemma 5 ([58]). Assume that U,V,W and X be real matrices of adequate dimensions and
X = XT. Then,
VIV <1, X+ uvw+uTviw’ <o,

if and only if there exists a scalar 6 > 0 such that X + sUUT + 6 'TWTW < 0.

Lemma 6 ([19]). (Schur complement). For any constant matrices X,Y, Z, with X = XT and
0<Y=YT, wehave X+ ZTY1Z < 0, ifand only if,

x 7T -Y Z
[* _Y}<Oor[ . X}<O.

3. Finite-Time Stability and Boundedness Results
3.1. Robust Finite-Time Stability

In this section we investigate the finite-time stability of uncertain fractional-order
neural networks with time delays of the type

D*x(t) = —Cx(t) + (A+ AA)f(x(t)) + (B+ AB) f(x(t — 1a)), (7)

where the system parameters are as in (1).
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Theorem 1. For given scalars 1,, €1, ¢, T and a symmetric matrix R > 0 the fractional-order
neural network model (7) is finite-time stable with respect to (¢1, ¢y, T, R) if there exist scalars &1,
02, 83, B and a matrix P > 0 satisfying:

[ ©® PD LTels, PD LTels
- x  —&1 0 0 0
0 = * * —o11 0 0 <0, 8)
* * * —2651 0
| * * * * —2651
R © PD LTelss
O,=| * —28I 0 <0, )
| * * —24831
Gu(BT*)cond(P) < FZ (10)
1

where

1 1
@ = —PC—CTPT 4+ PAL + LTATPT + 5PBL+ ELTﬁTPT — BP,
1

2
P = RY2pR'/2,

1
0, = EPﬂsL + - LTBTpT,

Proof. Consider the following Lyapunov functional:

V(t) = %xT(t)Px(t). (1)

For the fractional-order derivative of V(x(t)) along the system (7), by Lemma 2,
we have

1

— EDﬂ‘xT(t)Px(t) < xT(t)PD*x(t).

DV ()

Hence,

D*V(t) < xT(H)P[—Cx(t) + (A + DE(£) &) f(x(t)) + (B + DF(t)&) f(t — )],
xT(t)P[—€ 4+ AL + DF(t)&,L]x(t) + xT (t)P[BL + DF(t)&,L]x(t — Ta),

xT(t)P[—€ 4+ AL + DF(t)&,L + %m + %DF(t)EbL]x(t)

1 1
+xT(t—Ta)P[§BL+ S DE(D)ELIxX(t—T0), (12)
T(t)[-Pe — CTPT + PAL + LTATPT + PDF(t)e,L + LTI FT () DT PT

PBL + %LTBTPT + %PDF(t)&bL + %LTEbTFT(t)ﬂTPT]x(t)

=

<1
-2
+

N —

+xT(t - Tu)[%PBL + %LTBTPT + %PDF(t)é—IbL + %LTagFT(t)QTPT]x(t — 7).

Let the following inequalities be satisfied

©, = -PC—CTPT + PAL + LTATPT + PDF(t)&,L + LTETFT (t)DTPT 13)
+1PBL+ ILTBTPT + 1PDF(t)e, L+ LTETFT(1)DTPT < 0,
5. _ 1 Lororyr 1 LT et T T pT
©2 = 5 PBL+ 5 LTBTPT + S PDF(t)e,L + s LTEFFT ()DTPT <. (14)
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By employing Lemma 11, the above inequalities can be written as

. 1 1
@ =0+, 'PDDTPT 4 LTele,L + Eéglle)TPT + EazLTe,{ehL <0, (15

. 1 1
O, =0, + 55;1P@DTPT + 553LT838;,L < 0. (16)
By using Lemma 6, the inequalities (15) and (16) are equivalent, correspondingly, to
the following LMIs:
r® PD LTel pp  LTg,
x =6l 0 0 0
* * —6; 1 * * <0, (17)
* * * —24 *
| * * * * —26,5 1
©®, PD LTg,
% —265 0 <0. (18)
e * =264 !

After the pre- and post- multiplying of (17) by diag{I, I, 41,1, 0,} and pre- and post-
multiplying of (18) by diag{I, I, 63} we obtain (8) and (9), respectively. On other hand, it
is easy to check that inequalities (8), (9) imply the existence of a required constant 8 > 0,
such that

D*V(x(t)) < B sup V(x(s)), t€[0,T]. (19)
s€[—1,,0]

The inequality (19) implies the existence of a nonnegative function M(t) satisfying
DV (x(t)) + M(t) < BV (x(t)), t € [0, T]. (20)
We apply the Laplace transform to (20) to obtain
s"V(x(s)) = V(x(0))s* ™! + M(s) = BV (x(s)) (21)
or, equivalently
V(x(s)) = (5" = /) (V(x(0)s* " = M(5)). 22)

Applying the inverse Laplace transform of (22), we obtain

t
V(x(t)) = V(x(0))Ga(pt") —/0 M(ta)[(t = )" Gaa (Bt = T)")]dTa.  (23)
Since both (t — 7,)* ! and Gy (B(t — T2)*) are nonnegative functions, we obtain that,

V(x(t) < Gu(B)V(x(0)) < Ga(pt") sup V(x(s)), t € [0, T]. 4)

s€[—1,,0]

Inequality (24) is equivalent to xT (#) Px(t) < Gu(Bt%) SUPse[ 1, 0] (xT(s)Px(s)) noting
that P = R1/2PR'/2 which can be rewritten as

2T (H)RV2PRY2x(t) < Go(Bt*) sup (xT(s)Rl/ZPR1/2x(s)>. (25)
s€[—1,,0]
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The above implies,

Amin (P)xT () RX(£) < Amax(P) G (BY) up (xT(s)Rx(s)). (26)

After considering sup,.(_. (xT(s)Rx(s)) < & together with (10), we have that
xT(t)Rx(t) < & for t € [0, T], which completes the proof. [

Remark 1. Theorem 1 offers criteria for finite-time stability of a class of delayed fractional-order
neural networks under uncertainties. It contributes to the development of the finite-time stability
theory of fractional neural network models and extend the existing results on the topic [48—54] to
the uncertain case. Indeed, the presence of uncertain terms may lead to instability of a model even if
the uncertainties are very small. In Table 1, a comparison table with previously published results is
shown below.

Table 1. Comparison with other works.

Neural Networks [14,16] [44-46] [48-54] Our Paper
Fractional order v X vV Vv
Uncertain terms X Vv X Vv

Finite time stability X N4 Vv Vv

Remark 2. One of the most investigated stability behavior of neural networks models is the
asymptotic stability and its special case of exponential stability [22,25,29,33]. For fractional-
order systems the concept of exponential stability has been generalized to that of Mittag—Leffler
stability [15,18,23,24,31]. Different from the existing results on asymptotic and Mittag—Leffler
stability strategies of fractional-order systems we investigated the finite-time stability behavior of a
delayed neural network system under uncertainties.

3.2. Finite-Time Boundedness

In this Section, we first provide a criterion for the finite-time boundedness of the
delayed fractional-order neural network model of the type:

D*x(t) = —Cx(t) + (A + AA)F(x(£)) + (B + AB) f(x(t — 1)) + Hw(t).  (27)

Theorem 2. For given scalars t,, ¢1, 3, d, T and a symmetric matrix R > 0 the fractional-order
neural network model with time delay (27) is finite-time bounded with respect to (¢1,¢3, T, R, d), if
there exist constants 61, 6, 63, B and a matrix P > 0 such that the following LMISs:

Yy PH PD LTels, PD o LTels,
x —BI 0 0 0 0
~ * —511 0 0 0
Y1 = * * —01 0 0 <0 (28)
* % —26,1 0
| * * —26,1
[©® PD LTelss
O, =| x =281 0 <0, (29)
| * * —24831

Gu(BT*) (% + AmaX(P)c‘l) < Amin(P)éy, (30)
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are satisfied, where

1 1
¥, = —PC— TPl + PAL+LTATPT + SPBL+ ELT%TPT — BP,
1 1
® = S PBL+ ELTfBTPT,

P = RY2pR'/2,
Proof. For the ath Caputo derivative of the Lyapunov functional (11), we get
DUV (x(t)) + BV (x(1) + pw’ (Hw(t) = & (HF1E(1). (31)

From (15) and (16) we obtain

Y1+ 0, 'PDDTPT +517ele, L+ 16, PDDTPT + 16,17l e, PH

¥ =) . o T, (32)
0, =0, + %(53_1PCDDTPT + %&L%EE;,L, (33)
where ¢T(t) = [xT(t) w’(t)]. By applying Schur complement Lemma 6, we can obtain
TY¥, PH PD LTel pp LTg,
« —BI 0 0 0 0
* * -0l 0 0 0
* * * =6t 0 0 <0 (34
* * * * —26; 0
| * * * * * —25{1
®, PD LTg,
=203 0 <0. (35)
| * —25;1
Then by multiplying of both sides of (34) by diag{I, I, I, 1, I, 6, } and multiplying of both
sides of (35) by diag{I, 1,03}, we get (28) and (29). This, together with w” (t)w(t) < d gives
D*V(x(t)) < BV (x(t))+pBd, te[0,T]. (36)
After an integration of order a of both sides of (36) from 0 to t < T and applying
Lemma 3, we obtain
Va) < sup V) + bt P [ m)an @)
S€[—14,0] r(‘x + 1) r(‘x) 0
Now we apply Lemma 4 to obtain
pat* 1x
Vix(t)) < sup V(x(s)) + =—=——— ) Ga(BT"). (38)
(x(1)) (Se[_gm (4(5)) + 1) G (BT
Noting that for P = R/2PR/2, the next relations are satisfied:
V(x(t)) = xT(£)Px(t) = xT(£)RY2PRV2x(t) > Apin(P)xT (£)Rx(t), (39)
sup V(x(s)) = sup (xT(s)Rl/ZPRl/zx(s)) < Amax(P) sup (xT(s)Rx(s)> < Amax(P)es. (40)

s€[—1,,0] s€[—1,,0] s€[—1,,0]
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From (38), it follows that

Amin(P)xT (HRx() < Go(BT®) {r(ﬁjﬁn + Amax (P21 . (41)
By combining (41) and (30) we obtain
xT(HRx(t) <&, te]0,T]. (42)

This completes the proof. [

Next, we consider the delayed fractional-order neural network system with uncertain
terms and the state feedback controller u(f) = Kx(t) as follows:

D*x(t) = —Cx(t) + (A+ AA)f(x(t)) + (B+ AB) f(x(t — 1)) + Hw(t) + Ju(t), (43)
u(t) = Kx(t), (44)

where K is a scalar gain matrix.

Theorem 3. For given scalars t,, €1, ¢y, d, T and a symmetric matrix R > 0 the delayed fractional-
order neural network model (43) is finite-time bounded with respect to (¢1,¢2, T, R, d), if there exist
scalars 61 > 0,6, > 0,83 > 0, B > 0and a matrix P > 0 which satisfy the following LMIs:

[® PH PD LTels, PD LTEls,
x —BI 0 0 0 0
~ | o= ! 0 0 0
=1, 51 0 0 <0 (45)
* * * —2(521 0
| * * * * —20,1
~ ©, PD LTels
O = | * =201 0 <0, (46)
L X * —2531
AT~ _ _
G,X(,BT'X) <r('80(+1) + )\max(P)C_l) < Amin(P)C_Z/ (47)

where
— 1 1
& = —CP+JL—PCT +LTgT + PAL+LTATPT + EPisL + ELTisTPT — BP,
P = RY2PR/?
and the gain matrix K = LP~1.

Proof. By replacing C in the LMI (28) with € 4 LP~! from the Theorem 1 we can obtain

(@&, PH PD LTels, PD o LTELS,
x —BI 0 0 0 0
* —51 0 0 0
. 510 0 <0 (48)
* * * —2651 0
|k % * * —2(521
® PD LTelss
x  —2031 0 <0, (49)
| * * —2031
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where
&, = —(€P —JLP~ 1) — P(€ — JLP )T 4+ PAL + LTATPT + %PBL + %LTBTPT — BP,

1 1
©, = PBL+ ;LTBTPT.
2 2
Hence, we have that the neural network system (43), which is considered as a closed-
loop system, with the controller (44) is finite-time bounded with respect to (¢1, ¢, T, R, d).
The proof is completed. O

Remark 3. Theorems 2 and 3 provide sufficient conditions for finite-time boundedness of fractional
delayed neural network models. To the best of the authors” knowledge such results are not offered for
fractional-order models. With there results we extend the existing results on finite-time boundedness
of integer-order systems [43,44,47] to the fractional-order models. In addition, uncertain terms are
considered in the proposed fractional model.

Remark 4. Theorem 3 also implies that system (43) is robustly finite-time stabilizable with respect
to (¢1,¢2, T, R, d) according to Definition 1.

4. Numerical Examples

In this Section, numerical examples are addressed to demonstrate the usefulness of
the proposed method.

Example 1. Let us consider the fractional-order neural network system with a disturbance and
uncertain terms defined by

D*x(t) = —Cx(t) + (A + AA)F(x(£)) + (B + AB) f(x(t — 1)) + Hw(t),  (50)

with the following parameters:

[1 0 0 2 =12 -05 —-04 0.6 0.002
=102 0|, A=| 18 171 115 |, B=| -04 -038 —-03 |,
L0 0 3 475 05 1.1 0.6 0.1 —0.4

[—02 05 12

=] 103 —061 —18 |, &, =diag{0.1, 0.1, 0.1}, & = diag{0.1, 0.1, 0.1},

| 04 003 —021

L=diag{1,1,1}, a =05, 7, =01, d=1, =005 & =2, & =16, R=1, T = 20.

By solving (28)—(30) we obtain the achievable solutions as follows:

0.0186 0.0032 0.0059
P = | 0.0032 0.0029 0.0011 |, &; = 0.0874, 6, = 0.2178, 53 = 0.7989.
0.0059 0.0011 0.0258

Furthermore, Figure 1 represents the state responses of the fractional-order neural network model
(50) with initial data at [—3,3]". It can be observed that the state trajectories of the fractional-order
neural network system (50) with a disturbance and uncertain terms in Example 1 are bounded and
thus the system is finite-time bounded with respect to (€1,¢», T, R, d) under the proposed conditions.

Remark 5. In Example 1, a fractional-order neural network system with a disturbance and uncer-
tain terms is considered and investigated using Theorem 2. The feasible solutions are obtained and it
is demonstrated that they are finite-time bounded with respect to (¢1,82, T, R,d). This shows that
the proposed conditions of Theorem 2 are efficient and can be easily applied to check the finite-time
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boundedness behavior of the solutions of the fractional order neural networks. In addition, it can
be seen by Figure 1 that the state trajectories converge in a finite time; hence, the system is also
finite-time stable.

3

_3 Il Il Il
0 5 10 15 20
t/sec

Figure 1. The state trajectories of the fractional-order neural network model (50) in Example 1.

Example 2. Consider the following fractional-order uncertain neural network

D*x(t) = —Cx(t) + (A+ AA) f(x(t)) + (B+ AB) f(x(t — 1)) + Hw(t) + Ju(t), (51)
with

20 -4 3 -2 05 —-02 01 -03 0.5
e = 7 ‘A‘ - 4 ‘B - 4 j_(: - 7 3 - 4
0 3 9 -5 05 -2 0 02 05 02

&, =diag{0.2, 0.2}, &, = diag{0.2, 0.2}, L =diag{1, 1}, d =12, p=0.3, R =2I.

The system parameters are specified as follows: w(t) = sin(t),¢; = 5,6, = 7,7, = 0.5. By
solving the LMIs (45)—(47) in Theorem 3, we obtain the feasible solutions as

P—{ 0.6650 —0.0205

00005 0.6894 ] 61 = 2.0330, 5, = 1.1690, &5 = 1.1836,

and

K— 3.0102 0.0896
~ | 0.0896 29038 |

The state trajectories of system (51) are illustrated in Figure 2. It shows the state trajectories
of the fractional order neural network model (51) are bounded in a very short time T = 5 s under
the feedback control K; thus, the system is finite-time bounded with respect to (¢1,¢,, T, R, d) the
proposed conditions. According to Definition 1, the model (51) is robustly finite-time stabilizable
with respect to (¢1,¢, T, R, d).
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Figure 2. State trajectories of the fractional order neural network model (51) in Example 2.

Remark 6. The efficiency of the conditions of Theorem 3 are demonstrated in Example 2. The
feasible solutions and feedback control gain matrix K of a fractional-order neural network system
with a disturbance and uncertain terms are obtained. The finite-time boundedness is demonstrated
by solving the LMIs type conditions. In addition, the considered fractional order neural network
model is robustly finite-time stabilizable with respect to (¢1,¢2, T, R, d).

5. Conclusions

In this study, we considered the problem of finite-time boundedness of a class of
fractional-order neural networks with time delays and uncertain terms. Based on the frac-
tional differentiation and Lyapunov functional theory, we derived conditions that ensure
the finite-time boundedness and finite-time stability under uncertainties. The presented
criteria are in terms of LMIs, which are very suitable for numerical simulations. Finally,
numerical examples are elaborated to manifest the efficacy and usefulness of our theoretical
results. Our results contribute to the development of the finite-time stability theory of
fractional-order neural network models. The presented finite-time boundedness results
mark the beginning of their investigations for the proposed models. Since fractional-order
neural networks have significant applications in diverse areas of science and engineering
the derived criteria can be of interest to numerous pure and applied researchers. Moreover,
the proposed finite-time boundedness results offer an important mechanism that is of
importance in the study of periodic neural network models. It is possible to extend the
results to the synchronization problem of complex-valued neural networks of fractional
order with both leakage and discrete delays and stability of stochastic fractional-order
neural networks. The future research scope of our investigations is also related to the
effects continuous and impulsive controllers on the finite-time stability and finite-time
boundedness behavior of the introduced model. In this cases, the presented finite-time
stability criteria can be applied in the study of the finite-time robustness controllability of
uncertain systems. The sensitivity analysis is another direction for the future research on
the topic.



Fractal Fract. 2022, 6, 368 14 of 16

Author Contributions: Conceptualization, B.P., GK.T.,, M.S.A,, G.S,, LS. and PK.S.; methodology,
B.P, GK.T, MS.A,, GS,, LS. and PK.S,; formal analysis, B.P., GK.T., M.S.A,, GS,, LS. and PK.S.;
investigation, B.P., GK.T., M.S.A,, G.S,, LS. and PK.S.; writing—original draft preparation, M.S.A.
and LS. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kilbas, A,; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations, 1st ed.; Elsevier: New York, NY,
USA, 2006; ISBN 9780444518323.

2. Oldham, K;; Spainer, L. The Fractional Calculus, 1st ed.; Academic Press: New York, NY, USA, 1974; ISBN 9780080956206.

3. Petras, I. Fractional-Order Nonlinear Systems, 1st ed.; Springer: Berlin/Heidelberg, Germany; Dordrecht, The Netherlands; London,
UK; New York, NY, USA, 2011; ISBN 978-3-642-18101-6.

4. Podlubny, I. Fractional Differential Equations, 1st ed.; Academic Press: San Diego, CA, USA, 1999.

5. Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus: Models and Numerical Methods, 1st ed.; World Scientific:
Singapore, 2012; ISBN 978-981-4355-20-9.

6.  Baleanu, D.; Tenreiro Machado, J.A.; Luo, A.C.J. Fractional Dynamics and Control, 1st ed.; Springer: New York, NY, USA, 2011;
ISBN 978-1-4614-0456-9.

7. Arbib, M. Brains, Machines, and Mathematics; Springer: New York, NY, USA, 1987; ISBN 978-0387965390.

8. Haykin, S. Neural Networks: A Comprehensive Foundation; Prentice-Hall: Englewood Cliffs, NJ, USA, 1999.

9.  Mehmood, A.; Zameer, A.; Ling, S.H.; Raja, M.A.Z. Integrated computational intelligent paradigm for nonlinear electric circuit
models using neural networks, genetic algorithms and sequential quadratic programming. Neural Comput. Appl. 2020, 32,
10337-10357. [CrossRef]

10. Raja, M.A.Z; Shah, EH.; Tariq, M.; Ahmad, I. Design of artificial neural network models optimized with sequential quadratic
programming to study the dynamics of nonlinear Troesch’s problem arising in plasma physics. Neural Comput. Appl. 2018, 29,
83-109. [CrossRef]

11. Sabir, Z.; Raja, M.A.Z.; Umar, M.; Shoaib, M. Design of neuro-swarming-based heuristics to solve the third-order nonlinear
multi-singular Emden-Fowler equation. Eur. Phys. ]. Plus 2020, 135, 410. [CrossRef]

12.  Bukhari, A.H.; Raja, M.A.Z.; Sulaiman, M.; Islam, S.; Shoaib, M.; Kumam, P. Fractional neuro-sequential ARFIMA-LSTM for
financial market forecasting. IEEE Access 2020, 8, 71326-71338. [CrossRef]

13.  Lundstrom, B.N.; Higgs, M.H.; Spain, W.]J.; Fairhall, A.L. Fractional differentiation by neocortical pyramidal neurons. Nat.
Neurosci. 2008, 11, 1335-1342. [CrossRef]

14. Rakkiyappan, R.; Cao, J.; Velmurugan, G. Existence and uniform stability analysis of fractional-order complex valued neural
networks with time delays. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 84-97. [CrossRef]

15. Stamova, LM.; Stamov, G.T. Functional and Impulsive Differential Equations of Fractional Order: Qualitative Analysis and Applications,
1st ed.; CRC Press: Boca Raton, FL, USA; Taylor and Francis Group: Oxfordshire, UK, 2017; ISBN 9781498764834

16. Wang, H.; Yu, Y.; Wen, G.; Zhang, S.; Yu, ]. Global stability analysis of fractional-order Hopfield neural networks with time delay.
Neurocomputing 2015, 154, 15-23. [CrossRef]

17.  Kandasamy, U.; Li, X.; Rakkiyappan, R. Quasi-synchronization and bifurcation results on fractional-order quaternion-valued
neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 4063-4072. [CrossRef]

18. Stamov, T.; Stamova, I. Design of impulsive controllers and impulsive control strategy for the Mittag—Leffler stability behavior of
fractional gene regulatory networks. Neurocomputing 2021, 424, 54-62. [CrossRef]

19. Gu, K; Kharitonov, V.L.; Chen, J. Stability of Time Delay Systems, 2nd ed.; Birkhuser: Boston, MA, USA, 2003; ISBN 978-1-4612-0039-0.

20. Syed Ali, M.; Balasubramaniam, P. Global asymptotic stability of stochastic fuzzy cellular neural networks with multiple discrete
and distributed time-varying delays. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 2907-2916. [CrossRef]

21. Syed Ali, M. Stability of Markovian jumping recurrent neural networks with discrete and distributed time-varying delays.
Neurocomputing 2015, 149, 1280-1285. [CrossRef]

22. Delavari, H.; Baleanu, D.; Sadati, J. Stability analysis of Caputo fractional-order nonlinear systems revisited. Nonlinear Dyn. 2012,
67,2433-2439. [CrossRef]

23. Stamova, I. Global Mittag-Leffler stability and synchronization of impulsive fractional-order neural networks with time-varying
delays. Nonlinear Dynam. 2014, 77, 1251-1260. [CrossRef]

24. Stamova, I.; Stamov, G. Mittag—Leffler synchronization of fractional neural networks with time-varying delays and reaction-

diffusion terms using impulsive and linear controllers. Neural Netw. 2017, 96, 22-32. [CrossRef] [PubMed]


http://doi.org/10.1007/s00521-019-04573-3
http://dx.doi.org/10.1007/s00521-016-2530-2
http://dx.doi.org/10.1140/epjp/s13360-020-00424-6
http://dx.doi.org/10.1109/ACCESS.2020.2985763
http://dx.doi.org/10.1038/nn.2212
http://dx.doi.org/10.1109/TNNLS.2014.2311099
http://dx.doi.org/10.1016/j.neucom.2014.12.031
http://dx.doi.org/10.1109/TNNLS.2019.2951846
http://dx.doi.org/10.1016/j.neucom.2020.10.112
http://dx.doi.org/10.1016/j.cnsns.2010.10.011
http://dx.doi.org/10.1016/j.neucom.2014.09.001
http://dx.doi.org/10.1007/s11071-011-0157-5
http://dx.doi.org/10.1007/s11071-014-1375-4
http://dx.doi.org/10.1016/j.neunet.2017.08.009
http://www.ncbi.nlm.nih.gov/pubmed/28950105

Fractal Fract. 2022, 6, 368 15 of 16

25.

26.

27.

28.
29.

30.

31.

32.

33.

34.

35.
36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Wang, E; Yang, Y.; Hu, M. Asymptotic stability of delayed fractional-order neural networks with impulsive effects. Neurocomputing
2015, 154, 239-244. [CrossRef]

Kaslik, E.; Sivasundaram, S. Nonlinear dynamics and chaos in fractional-order neural networks. Neural Netw. 2012, 32, 245-256.
[CrossRef] [PubMed]

Rakkiyappan, R.; Velmurugan, G.; Cao, J. Stability analysis of fractional-order complex-valued neural networks with time delays.
Chaos Solit. Fractals 2015, 78, 297-316. [CrossRef]

Song, C.; Cao, J. Dynamics in fractional-order neural networks. Neurocomputing 2014, 142, 494-498. [CrossRef]

Wang, H.; Yu, Y.; Wen, G.; Zhang, S. Stability analysis of fractional order neural networks with time delay. Neural Process. Lett.
2015, 42, 479-500. [CrossRef]

Zhang, S.; Yu, Y.; Wang, Q. Stability analysis of fractional-order Hopfield neural networks with discontinuous activation functions.
Neurocomputing 2016, 171, 1075-1084. [CrossRef]

Li, Y.;; Chen, Y.Q.; Podlubny, I. Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 2009, 45,
1965-1969. [CrossRef]

Sabatier, J.; Moze, M.; Farges, C. LMI stability conditions for fractional order systems. Comput. Math. Appl. 2010, 59, 1594-1609.
[CrossRef]

Zhang, ER.; Li, C.P,; Chen, Y.Q. Asymptotical stability of nonlinear fractional differential system with Caputo derivative. Int. .
Differ. Equ. 2011, 2011, 635165. [CrossRef]

Yu, ]J.M.; Hu, H.; Zhou, S.B.; Lin, X.R. Generalized Mittag-Leffler stability of multi-variables fractional order nonlinear systems.
Automatica 2013, 49, 1798-1803. [CrossRef]

Kamenkov, G. On stability of motion over a finite interval of time. Akad. Nauk SSSR. Prikl. Mat. Meh. 1953, 17, 529-540.

Bhat, S.P; Bernstein, D.S. Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans.
Autom. Control 1998, 43, 678-682. [CrossRef]

Li, X.; O'Regan, D.; Akca, H. Global exponential stabilization of impulsive neural networks with unbounded continuously
distributed delays. IMA J. Appl. Math. 2015, 80, 85-99. [CrossRef]

Li, X.; Caraballo, T.; Rakkiyappan, R.; Han, X. On the stability of impulsive functional differential equations with infinite delays.
Math. Methods Appl. Sci. 2015, 38, 3130-3140. [CrossRef]

Nagamani, G.; Radhika, T.; Balasubramaniam, P. A delay decomposition approach for robust dissipativity and passivity analysis
of neutral-type neural networks with leakage time-varying delay. Complexity 2016, 21, 248-264. [CrossRef]

Phat, V.N.; Ratchagit, G. Stability and stabilization of switched linear discrete-time systems with interval time-varying delay.
Nonlinear Anal. Hybrid Syst. 2011, 5, 605-612. [CrossRef]

Wei, T.; Li, X.; Stojanovic, V. Input-to-state stability of impulsive reaction-diffusion neural networks with infinite distributed
delays. Nonlinear Dyn. 2021, 103, 1733-1755. [CrossRef]

Xu, Z.; Li, X; Stojanovic, V. Exponential stability of nonlinear state-dependent delayed impulsive systems with applications.
Nonlinear Anal. Hybrid Syst. 2021, 42, 101088. [CrossRef]

Cheng, J.; Zhong, S.; Zhong, Q.; Zhu, H.; Du, Y. Finite-time boundedness of state estimation for neural networks with time-varying
delays. Neurocomputing 2014, 129, 257-264. [CrossRef]

He, S.; Liu, F. Finite-time boundedness of uncertain time-delayed neural network with Markovian jumping parameters. Neuro-
computing 2013, 103, 87-92. [CrossRef]

Syed Ali, M.; Saravanan, S. Robust finite-time Ho, control for a class of uncertain switched neural networks of neutral-type with
distributed time varying delays. Neurocomputing 2016, 177, 454-468.

Yao, D.; Lu, Q.; Wu, C.; Chen, Z. Robust finite-time state estimation of uncertain neural networks with Markovian jump
parameters. Neurocomputing 2015, 159, 257-262. [CrossRef]

Zhang, Y.; Shi, P; Nguang, S.K.; Zhang, J.; Karimi, H.R. Finite-time boundedness for uncertain discrete neural networks with
time-delays and Markovian jumps. Neurocomputing 2014, 140, 1-7. [CrossRef]

Chen, L,; Liu, C.; Wu, R.; He, Y.; Chai, Y. Finite-time stability criteria for a class of fractional-order neural networks with delay.
Neural Comput. Appl. 2016, 27, 549-556. [CrossRef]

Ding, X.; Cao, ].; Zhao, X.; Alsaadi, F.E. Finite-time stability of fractional-order complex-valued neural networks with time delays.
Neural Process. Lett. 2017, 46, 561-580. [CrossRef]

Rakkiyappan, R.; Velmurugan, G.; Cao, J. Finite-time stability analysis of fractional-order complex-valued memristor based
neural networks with time delays. Nonlinear Dyn. 2014, 78, 2823-2836. [CrossRef]

Yang, X.; Song, Q.; Liu, Y.; Zhao, Z. Finite-time stability analysis of fractional-order neural networks with delay. Neurocomputing
2015, 152, 19-26. [CrossRef]

Du, F; Lu, ].G. New criteria on finite-time stability of fractional-order Hopfield neural networks with time delays. IEEE Trans.
Neural Netw. Learn. Syst. 2021, 32, 3858-3866. [CrossRef] [PubMed]

Hu, T,; He, Z.; Zhang, X.; Zhong, S. Houming, Finite-time stability for fractional-order complex-valued neural networks with
time delay. Appl. Math. Comput. 2020, 365, 124715.

Rajivganthi, C.; Rihan, F.A.; Lakshmanan, S.; Muthukumar, P. Finite-time stability analysis for fractional-order Cohen-Grossberg
BAM neural networks with time delays. Neural Comput. Appl. 2018, 29, 1309-1320. [CrossRef]


http://dx.doi.org/10.1016/j.neucom.2014.11.068
http://dx.doi.org/10.1016/j.neunet.2012.02.030
http://www.ncbi.nlm.nih.gov/pubmed/22386788
http://dx.doi.org/10.1016/j.chaos.2015.08.003
http://dx.doi.org/10.1016/j.neucom.2014.03.047
http://dx.doi.org/10.1007/s11063-014-9368-3
http://dx.doi.org/10.1016/j.neucom.2015.07.077
http://dx.doi.org/10.1016/j.automatica.2009.04.003
http://dx.doi.org/10.1016/j.camwa.2009.08.003
http://dx.doi.org/10.1155/2011/635165
http://dx.doi.org/10.1016/j.automatica.2013.02.041
http://dx.doi.org/10.1109/9.668834
http://dx.doi.org/10.1093/imamat/hxt027
http://dx.doi.org/10.1002/mma.3303
http://dx.doi.org/10.1002/cplx.21652
http://dx.doi.org/10.1016/j.nahs.2011.05.006
http://dx.doi.org/10.1007/s11071-021-06208-6
http://dx.doi.org/10.1016/j.nahs.2021.101088
http://dx.doi.org/10.1016/j.neucom.2013.09.034
http://dx.doi.org/10.1016/j.neucom.2012.09.005
http://dx.doi.org/10.1016/j.neucom.2015.01.052
http://dx.doi.org/10.1016/j.neucom.2013.12.054
http://dx.doi.org/10.1007/s00521-015-1876-1
http://dx.doi.org/10.1007/s11063-017-9604-8
http://dx.doi.org/10.1007/s11071-014-1628-2
http://dx.doi.org/10.1016/j.neucom.2014.11.023
http://dx.doi.org/10.1109/TNNLS.2020.3016038
http://www.ncbi.nlm.nih.gov/pubmed/32822312
http://dx.doi.org/10.1007/s00521-016-2641-9

Fractal Fract. 2022, 6, 368 16 of 16

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Martynyuk, A.A.; Martynyuk-Chernienko, Y.A. Uncertain Dynamical Systems. Stability and Motion Control, 1st ed.; CRC Press: Boca
Raton, FL, USA, 2019; ISBN 978-0367382070.

Amato, F; Ariola, M.; Dorato, P.P. Finite-time control of linear systems subject to parametric uncertainties and disturbances.
Automatica 2001, 37, 1459-1463. [CrossRef]

Gunasekaran, N.; Thoiyab, N.M.; Muruganantham, P.; Rajchakit, G.; Unyong, B.A. Novel results on global robust stability analysis
for dynamical delayed neural networks under parameter uncertainties. [EEE Access 2000, 8, 178108-178116. [CrossRef]

Song, Q.; Wang, Z. New results on passivity analysis of uncertain neural networks with time-varying delays. Int. ]. Comput.
Math. 2010, 87, 668-678. [CrossRef]

Xiang, Z.; Sun, Y.N.; Mahmoud, M.S. Robust finite-time He, control for a class of uncertain switched neutral systems. Commun.
Nonlinear Sci. Numer. Simul. 2012, 17, 1766-1778. [CrossRef]

Lu, Z.; Zhu, Y. Nonlinear impulsive problems for uncertain fractional differential equations. Chaos Solit. Fractals 2022, 157, 111958.
[CrossRef]

Stamov, G.; Stamova, I. Uncertain impulsive differential systems of fractional order: Almost periodic solutions. Int. J. Syst. Sci.
2018, 49, 631-638. [CrossRef]

Vu, H.; Hoa, N.V. Uncertain fractional differential equations on a time scale under Granular differentiability concept. Comp. Appl.
Math. 2019, 38, 38-110. [CrossRef]

Camacho, N.A.; Mermoud, M.A.D.; Gallegos, ].A. Lyapunov functions for fractional order systems. Commun. Nonlinear Sci.
Numer. Simul. 2014, 19, 2951-2957. [CrossRef]

Ma, Y.; Wu, B.; Wang, Y. Finite-time stability and finite-time boundedness of fractional order linear systems. Neurocomputing 2016,
173, 2076-2082. [CrossRef]

Ye, H.; Gao, J.; Ding, Y. A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal.
Appl. 2007, 328, 1075-1081. [CrossRef]


http://dx.doi.org/10.1016/S0005-1098(01)00087-5
http://dx.doi.org/10.1109/ACCESS.2020.3016743
http://dx.doi.org/10.1080/00207160802166507
http://dx.doi.org/10.1016/j.cnsns.2011.09.022
http://dx.doi.org/10.1016/j.chaos.2022.111958
http://dx.doi.org/10.1080/00207721.2017.1416428
http://dx.doi.org/10.1007/s40314-019-0873-x
http://dx.doi.org/10.1016/j.cnsns.2014.01.022
http://dx.doi.org/10.1016/j.neucom.2015.09.080
http://dx.doi.org/10.1016/j.jmaa.2006.05.061

	Introduction
	Problem Formulation and Preliminary Results
	Finite-Time Stability and Boundedness Results
	Robust Finite-Time Stability
	Finite-Time Boundedness

	Numerical Examples
	Conclusions
	References

