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1. Introduction

The Cauchy problem is one of the important problems in the theory of differential
equations and partial differential equations. There are some questions about Cauchy’s
problems:

(1) Is there a solution (though only locally)?
(2) If so, what is its domain of definition?
(3) If the solution is unique, is the problem well-posed? That is, does the solution

continuously depend on the initial data?

Recently, many authors have become interested in Cauchy problems that are ill-posed
because certain physical situations correspond to these problems. Ill-posed problems
occur also for example in astronomical observations, computer technology, synthesis of
automatic systems, management and planning, optimization of control, geophysics, etc.
Hadamard, in 1902, proposed the concept of a well-posed problem. Hadamard expressed
the opinion that boundary value problems whose solutions do not satisfy certain continuity
conditions are not physically meaningful, and he presented examples of such problems.
It was subsequently found that Hadamard’s opinion was erroneous. It turned out that many
problems of mathematical physics which are ill-posed in the sense of Hadamard and, in
particular, problems noted by Hadamard himself have real physical content. It also turned
out that ill-posed problems arise in many other areas of mathematics which are connected
with applications. The concept of conditional correctness first appeared in the work of
Tikhonov [1,2]. The study of uniqueness issues in a conditionally well-posed formulation
does not essentially differ from the study in a classically well-posed formulation, and the
stability of the solution from the data of the problem is required only from those variations
of the data that do not deduce solutions from the well-posedness set. After establishing the
uniqueness and stability theorems in the study of the conditional correctness of ill-posed
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problems, the question arises of constructing effective solution methods, i.e., construction of
regularizing operators. Such a mathematical analysis problem as the problem of differentiation
is ill-posed if it is connected with processing experimental data (see, for instance [3]).

The most actively developing modern area of scientific knowledge is the theory
of correctly and incorrectly posed problems, most of which have practical value and
require decision making in uncertain or contradictory conditions. The development and
justification of methods for solving such a complex type of problems as ill-posed ones is
an important current concern. The ill-posed problems theory is an apparatus of scientific
research for many scientific areas, such as differentiation of approximately given functions,
solving inverse boundary value problems, solving problems of linear programming and
control systems, solving systems of linear equations ill-conditioned or degenerate, etc.
Carleman-type formulas allow us to find a solution to an elliptic equation if the Cauchy
data are known only on a part of the domain boundary. In [4], Carleman obtained a
formula for Cauchy—Riemann equations in some domain. Using his idea, Goluzin and
Krylov [5] established a formula for determining the values of analytic functions from
data known only on a portion of the boundary, already for arbitrary domains. A formula
of the Carleman type, in which the Carleman function is used, has been established by
Lavrent’ev [6–8].

We are well aware that the Cauchy problem for elliptic equations, as well as sys-
tems of elliptic equations, is ill-posed. You can look extensively in the literature (see,
for example, [1–5,9–11]). The Carleman matrix or Carleman function for some elliptic
equations and systems was considered in the following studies [12–29].

Based on [6,7,12–14] we have constructed the Carleman matrix and based on it the
approximate solution of the Cauchy problem for the matrix factorization of the Helmholtz
equation. Boundary value problems, as well as numerical solutions of some problems, are
considered in [30–39]. When solving correct problems, sometimes, it is not possible to find
the value of the vector function on the entire boundary. Finding it on the whole border for
elliptical systems is an important issue (see, for example, [40]).

In the following, we present some notations used in the paper.
We consider k ∈ N, k ≥ 1, m = 2k, and the Euclidean space Rm. Let

x = (x1, . . . , xm) ∈ Rm, y = (y1, . . . , ym) ∈ Rm,

and
x′ = (x1, . . . , xm−1) ∈ Rm−1, y′ = (y1, . . . , ym−1) ∈ Rm−1.

We denote by:

r = |y− x|, α =
∣∣y′ − x′

∣∣, z = i
√

a2 + α2 + ym, a ≥ 0,

∂x = (∂x1 , . . . , ∂xm)
T , ∂x = ζT , ζT =

 ζ1
. . .
ζm

-transposed vector ζ,

V(x) = (V1(x), . . . , Vn(x))T , v0 = (1, . . . , 1) ∈ Rn, n = 2m, m ≥ 2,

E(u) =

∥∥∥∥∥∥∥∥∥
u1 0 · · · 0
0 u2 · · · 0

· · · · · · . . . · · ·
0 0 0 un

∥∥∥∥∥∥∥∥∥-diagonal matrix, u = (u1, . . . , un) ∈ Rn.

We also consider a bounded simply-connected domain Ω ⊂ Rm, having a piecewise
smooth boundary ∂Ω = Σ

⋃
T, where Σ is a smooth surface lying in the half-space ym > 0

and T is the plane ym = 0.
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D(ζT) is an (n× n)-dimensional matrix satisfying:

D∗(ζT)D(ζT) = E((|ζ|2 + λ2)v0),

where D∗(ζT) is the Hermitian conjugate matrix of D(ζT), λ ∈ R, the elements of the matrix
D(ζT) consist of a set of linear functions with constant coefficients from the complex plane C.

Let us consider the following first-order systems of linear partial differential equations
with constant coefficients

D(∂x)V(x) = 0, (1)

in the domain Ω, where D(∂x) is the matrix differential operator of the first order.
In addition, consider the set

S(Ω) =
{

V : Ω −→ Rn | V is continuous on Ω = Ω ∪ ∂Ω and V satisfies the system (1)
}

.

2. Statement of the Cauchy Problem

The Cauchy problem for system (1) is formulated as follows:
Let f : Σ −→ Rn be a continuous given function on Σ.

Problem 1. Suppose V(y) ∈ S(Ω) and

V(y)|Σ = f (y), y ∈ Σ. (2)

Our purpose is to determine the function V(y) in the domain Ω when its values are known on Σ.

If V(y) ∈ S(Ω), then

V(x) =
∫

∂Ω

L(y, x; λ)V(y)dsy, x ∈ Ω, (3)

where
L(y, x; λ) =

(
E
(

ϕm(λr)v0
)

D∗(∂x)
)

D(tT),

t = (t1, . . . , tm)—is the unit exterior normal, at y ∈ ∂Ω, ϕm(λr)—is the fundamental
solution of the Helmholtz equation in Rm, (m = 2k, k ≥ 1), that is (see [41]):

ϕm(λr) = Pmλ(m−2)/2
H(1)
(m−2)/2(λr)

r(m−2)/2
,

Pm =
1

2i(2π)(m−2)/2
, m = 2k, k ≥ 1.

(4)

Let K(z) be an entire function taking real values for real z, (z = a + ib, a, b ∈ R) such that

K(a) 6= 0, sup
b≥1

∣∣∣bpK(p)(z)
∣∣∣ = B(a, p) < ∞,

−∞ < a < ∞, p = 0, m.

(5)

For y 6= x, we define the function

Ψ(y, x; λ) =
1

cmK(xm)

∂k−1

∂sk−1

∞∫
0

Im
[

K(z)
z− xm

]
a I0(λa)√

a2 + α2
da, m = 2k, k ≥ 1, (6)

where cm = (−1)k−1(k− 1)!(m− 2)ωm; I0(λa) = J0(iλa) is the Bessel function of the first
kind of zero order [9], ωm is the area of a unit sphere in Rm.
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Choosing
K(z) = exp(σz), K(xm) = exp(σxm), σ > 0, (7)

in (6), we get

Ψσ(y, x; λ) =
e−σxm

cm

∂k−1

∂sk−1

∞∫
0

Im
[

exp(σz)
z− xm

]
a I0(λa)√

a2 + α2
da. (8)

The integral representation (3) holds if we put

Ψσ(y, x; λ) = ϕm(λr) + gσ(y, x; λ), (9)

instead of ϕm(λr), where gσ(y, x) is the regular solution of the Helmholtz equation with
respect to the variable y, including the point y = x.

Hence, (3) can be written as:

V(x) =
∫

∂Ω

Lσ(y, x; λ)V(y)dsy, x ∈ Ω, (10)

Lσ(y, x; λ) =
(

E
(

Ψσ(y, x; λ)v0
)

D∗(∂x)
)

D(tT).

3. Regularized Solution of Problem (1) and (2)

Let K(λ, x) be a bouded function on compact subsets of Ω.

Theorem 1. Suppose V(y) ∈ S(Ω) satisfies the boundary condition

|V(y)| ≤ M, y ∈ T. (11)

If

Vσ(x) =
∫
Σ

Lσ(y, x; λ)V(y)dsy, x ∈ Ω, (12)

then
|V(x)−Vσ(x)| ≤ MK(λ, x)σke−σxm , σ > 1, x ∈ Ω. (13)

Proof. From (10) and (12), we have

V(x) =
∫
Σ

Lσ(y, x; λ)V(y)dsy +
∫
T

Lσ(y, x; λ)V(y)dsy

= Vσ(x) +
∫
T

Lσ(y, x; λ)V(y)dsy, x ∈ Ω.

Using (11), we obtain

|V(x)−Vσ(x)| ≤

∣∣∣∣∣∣
∫
T

Lσ(y, x; λ)V(y)dsy

∣∣∣∣∣∣
≤
∫
T

|Lσ(y, x; λ)||V(y)|dsy ≤
∫
T

|Lσ(y, x; λ)|dsy, x ∈ Ω.

(14)
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Next, the following integrals are estimated:
∫
T

|Ψσ(y, x; λ)|dsy,
∫
T

∣∣∣ ∂Ψσ(y,x;λ)
∂yj

∣∣∣dsy,

j = 1, m− 1 and
∫
T

∣∣∣∣∂Ψσ(y, x; λ)

∂ym

∣∣∣∣dsy.

We separate the imaginary part of (8), and we obtain

Ψσ(y, x; λ) =
eσ(ym−xm)

cm

 ∂k−1

∂sk−1

∞∫
0

cos σ
√

a2 + α2

a2 + r2 aI0(λa)da

− ∂k−1

∂sk−1

∞∫
0

(ym − xm) sin σ
√

a2 + α2

a2 + r2
aI0(λa)√

a2 + α2
da

, xm > 0.

(15)

Using equality (15), as well as inequality

I0(λa) ≤
√

2
λπa

, (16)

we obtain the following estimate:∫
T

|Ψσ(y, x; λ)|dsy ≤ K(λ, x)σke−σ xm , σ > 1, x ∈ Ω, (17)

next, we use the following equality to estimate the second integral

∂Ψσ(y, x; λ)

∂yj
=

∂Ψσ(y, x; λ)

∂s
∂s
∂yj

= 2(yj − xj)
∂Ψσ(y, x; λ)

∂s
,

s = α2, j = 1, m− 1.

(18)

Using this equality, as well as equality (15) and inequality (16), we have:

∫
T

∣∣∣∣∣∂Ψσ(y, x; λ)

∂yj

∣∣∣∣∣dsy ≤ K(λ, x)σke−σ xm , σ > 1, x ∈ Ω. (19)

Now, we estimate the integral
∫
T

∣∣∣∣∂Ψσ(y, x; λ)

∂ym

∣∣∣∣dsy.

Similarly, using equality (15) and inequality (16), we obtain the following estimate:∫
T

∣∣∣∣∂Ψσ(y, x; λ)

∂ym

∣∣∣∣dsy ≤ K(λ, x)σke−σ xm , σ > 1, x ∈ Ω, (20)

Using the obtained estimates (17), (19) and (20), the inequality (13) holds.

Corollary 1.
lim

σ→∞
Vσ(x) = V(x),

uniformly, on each compact set from the domain Ω.

Theorem 2. Suppose V(y) ∈ A(Ω) satisfies (11) and

|V(y)| ≤ δ, 0 < δ < e−σȳm , (21)

on a smooth surface Σ, where ȳm = max
y∈Σ

ym.
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Then
|V(x)| ≤ MK(λ, x)σkδ

xm
ȳm , σ > 1, x ∈ Ω. (22)

Proof. We will write the integral formula (10) in the following form:

V(x) =
∫
Σ

Lσ(y, x; λ)V(y)dsy +
∫
T

Lσ(y, x; λ)V(y)dsy, x ∈ Ω.

Hence

|V(x)| ≤

∣∣∣∣∣∣
∫
Σ

Lσ(y, x; λ)V(y)dsy

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫
T

Lσ(y, x; λ)V(y)dsy

∣∣∣∣∣∣, x ∈ Ω. (23)

Using inequality (21), we estimate the first term of inequality (23).∣∣∣∣∣∣
∫
Σ

Lσ(y, x; λ)V(y)dsy

∣∣∣∣∣∣ ≤
∫
Σ

|Lσ(y, x; λ)||V(y)|dsy

≤ δ
∫
Σ

|Lσ(y, x; λ)|dsy, x ∈ Ω.

(24)

Next, the following integrals
∫
Σ

|Ψσ(y, x; λ)|dsy,
∫
Σ

∣∣∣∣∣∂Ψσ(y, x; λ)

∂yj

∣∣∣∣∣dsy, j = 1, m− 1 and

∫
Σ

∣∣∣∣∂Ψσ(y, x; λ)

∂ym

∣∣∣∣dsy will be estimated.

Using (15) and (16), we obtain:∫
Σ

|Ψσ(y, x; λ)|dsy ≤ K(λ, x)σkeσ(ym−xm), σ > 1, x ∈ Ω. (25)

Further, using (15) and (18), as well as (16), we have:

∫
Σ

∣∣∣∣∣∂Ψσ(y, x; λ)

∂yj

∣∣∣∣∣dsy ≤ K(λ, x)σkeσ(ym−xm), σ > 1, x ∈ Ω, (26)

Finally, to estimate the integral
∫
T

∣∣∣∣∂Ψσ(y, x; λ)

∂ym

∣∣∣∣dsy, we similarly use (15) and (16), and

we obtain: ∫
Σ

∣∣∣∣∂Ψσ(y, x; λ)

∂ym

∣∣∣∣dsy ≤ K(λ, x)σkeσ(ym−xm), σ > 1, x ∈ Ω. (27)

From (25)–(27) follows∣∣∣∣∣∣
∫
Σ

Lσ(y, x; λ)V(y)dsy

∣∣∣∣∣∣ ≤ K(λ, x)σkδ eσ(ym−xm), σ > 1, x ∈ Ω. (28)

For the second integral of the inequality (23), we know:∣∣∣∣∣∣
∫
T

Lσ(y, x; λ)V(y)dsy

∣∣∣∣∣∣ ≤ MK(λ, x)σke−σxm , σ > 1, x ∈ Ω. (29)
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From (23), (28), and (29), we finally obtain:

|V(x)| ≤ K(λ, x)σk

2
(δ eσȳm + M)e−σxm , σ > 1, x ∈ Ω. (30)

Considering

σ =
1

ȳm
ln

M
δ

, (31)

(22) holds.

Suppose V(y) ∈ S(Ω) is defined on Σ and fδ(y) is its approximation with an error
0 < δ < e−σȳm . Then

max
Σ
|V(y)− fδ(y)| ≤ δ. (32)

We put

Vσ(δ)(x) =
∫
Σ

Lσ(y, x; λ) fδ(y)dsy, x ∈ Ω. (33)

We now establish the following theorem.

Theorem 3. If V(y) ∈ S(Ω) satisfy (11) on the plane ym = 0 , then∣∣∣V(x)−Vσ(δ)(x)
∣∣∣ ≤ MK(λ, x)σkδ

xm
ȳm , σ > 1, x ∈ Ω. (34)

Proof. Using integral representations (10) and (33), we obtain the following equality

V(x)−Vσ(δ)(x) =
∫

∂Ω

Lσ(y, x; λ)V(y)dsy −
∫
Σ

Lσ(y, x; λ) fδ(y)dsy

=
∫
Σ

Lσ(y, x; λ)V(y)dsy +
∫
T

Lσ(y, x; λ)V(y)dsy −
∫
Σ

Lσ(y, x; λ) fδ(y)dsy

=
∫
Σ

Lσ(y, x; λ){V(y)− fδ(y)}dsy +
∫
T

Lσ(y, x; λ)V(y)dsy.

Using (11) and (32), we get

∣∣∣V(x)−Vσ(δ)(x)
∣∣∣ =

∣∣∣∣∣∣
∫
Σ

Lσ(y, x; λ){V(y)− fδ(y)}dsy

∣∣∣∣∣∣+∣∣∣∣∣∣
∫
T

Lσ(y, x; λ)V(y)dsy

∣∣∣∣∣∣ ≤
∫
Σ

|Lσ(y, x; λ)||{V(y)− fδ(y)}|dsy+

∫
T

|Lσ(y, x; λ)||V(y)|dsy ≤ δ
∫
Σ

|Lσ(y, x; λ)|dsy +
∫
T

|Lσ(y, x; λ)|dsy.

Here, we similarly repeat the proof of Theorems 1 and 2, and we obtain the following
estimate: ∣∣∣V(x)−Vσ(δ)(x)

∣∣∣ ≤ K(λ, x)σk

2
(δ eσȳm + 1)e−σ xm .

Similarly, choosing σ in the form (31), we prove the validity of (34).
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Corollary 2.
lim
δ→0

Vσ(δ)(x) = V(x),

uniformly, on every compact set from the domain Ω.

The following example illustrates the possibility of incorrect formulation of the classi-
cal Cauchy problem for system (1).

Example 1. Prove that the Cauchy problem for the following systems of linear partial differential
equations is ill-posed. 

∂x1 u1 − ∂x2 u2 = 0,

∂x2 u1 + ∂x1 u2 = 0,

−∂x1 u3 + ∂x2 u4 = 0,

∂x2 u3 + ∂x1 u4 = 0.

Solutions to this system will be sought in the form

u1 = V1ei(λx1+µx2), u2 = V2ei(λx1+µx2),

u3 = V3ei(λx1+µx2), u4 = V4ei(λx1+µx2).

Substituting these notations into the system, we obtain

λ2 + µ2 = 0, V1 =
λ

µ
V2,

λ2 + µ2 = 0, V3 =
λ

µ
V4.

We choose the following µ = n, λ = −in. Then

u1n = V1nenx1−inx2 , u2n = −iV1nenx1−inx2 ,

u3n = V3nei(λx1+µx2), u4n = −iV3nenx1−inx2 .
.

Separating the real part, we find solutions

u1n = V1nenx1 cos nx2, u2n = V1nenx1 sin nx2,

u3n = V3nenx1 cos nx2, u4n = V3nenx1 sin nx2.

The constants V1n and V3n are given by the formula V1n = V3n = e−
√

n.
Solution sequence example

u1n = e−
√

nenx1 cos nx2, u2n = e−
√

nenx1 sin nx2,

u3n = e−
√

nenx1 cos nx2, u4n = e−
√

nenx1 sin nx2.

The point is that the solution (u1n, u2n), (u3n, u4n) satisfies at x1 = 0 the following initial data:

u1n(0, x2) = ϕ1n(x) = e−
√

n cos nx2, u2n(0, x2) = ϕ2n(x) = e−
√

n sin nx2,

u3n(0, x2) = ϕ3n(x) = e−
√

n cos nx2, u4n(0, x2) = ϕ4n(x) = e−
√

n sin nx2.
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At n → ∞, these initial data tend to zero. Moreover, their derivatives ϕ
(k)
1n (x), ϕ

(k)
2n (x),

ϕ
(k)
3n (x), ϕ

(k)
4n (x) of orders of k = 1, 2, ..., p tend to zero as n→ ∞. (Here, p− is an arbitrary fixed

natural number.) Indeed,

ϕ1n(x) = ±nke−
√

n cos nx2

ϕ2n(x) = ±nke−
√

n sin nx2

}
, if k− is even,

ϕ1n(x) = ±nke−
√

n sin nx2

ϕ2n(x) = ±nke−
√

n cos nx2

}
, if k− is odd,

ϕ3n(x) = ±nke−
√

n cos nx2

ϕ4n(x) = ±nke−
√

n sin nx2

}
, if k− is even,

ϕ3n(x) = ±nke−
√

n sin nx2

ϕ4n(x) = ±nke−
√

n cos nx2

}
, if k− is odd.

On the other hand, u1n(x1, x2), u2n(x1, x2), u3n(x1, x2), u4n(x1, x2) is unbounded for any x1.
We see that no matter what norm we choose to estimate the value of the initial data, we will not

be able to assert that the smallness of this norm implies the smallness of the solution (the solution is
estimated here by the maximum of its modulus). As admissible norms for the initial data, we here
admit the following norms:

‖ϕ1(x)‖p = max
0≤k≤p

sup
x2

∣∣∣ϕ(k)
1 (x)

∣∣∣,
‖ϕ2(x)‖p = max

0≤k≤p
sup

x2

∣∣∣ϕ(k)
2 (x)

∣∣∣,
‖ϕ3(x)‖p = max

0≤k≤p
sup

x2

∣∣∣ϕ(k)
3 (x)

∣∣∣,
‖ϕ4(x)‖p = max

0≤k≤p
sup

x2

∣∣∣ϕ(k)
4 (x)

∣∣∣.
That is, there is no continuous dependence on the initial data and, therefore, the problem is

set incorrectly. Thus, this problem does not have stability properties and, therefore, is ill-posed. We have
seen that the solution of the Cauchy problem for this system is unstable. If we narrow the class of
solutions under consideration to a compact set, then the problem becomes conditionally well-posed.
To estimate the conditional stability, we can apply the results of the above theorems.

4. Conclusions

We have determined, in this paper, a regularized solution to the ill-posed Cauchy
problem for matrix factorizations of the Helmholtz equation in Rm. We supposed that
there exists a continuously differentiable solution in a closed domain. We have obtained
a formula for the continuation of the solution, and we have determined a regularization
formula for the case when, instead of the Cauchy data, their continuous approximations
are given, with a given error.

Based on the constructed Carleman matrix, we find an explicit form of approximate
solution of this problem and prove the stability of the solutions. To obtain the approximate
solution, it is necessary to build a family of fundamental solutions of the Helmholtz operator,
which are parameterized by some entire function K(z), depending on the dimension of the
space. It is necessary to choose the function K(z) in such a way as to ensure convergence.
Based on the results from [24,26–29,40], we obtain better results due to the special choice
of the function K(z). Hence, we have established a family Vσ(δ)(x) = V(x, fδ) of vector
functions, named a regularized solution, such that for certain σ = σ(δ), δ→ 0, conveniently
chosen, it converges to a solution V(x) at x ∈ Ω.
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