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Abstract: This work presents the numerical performances of the fractional kind of food supply (FKFS)
model. The fractional kinds of the derivatives have been used to acquire the accurate and realistic
solutions of the FKFS model. The FKFSM system contains three types, special kind of the predator
L(x), top-predator M(x) and prey populations N(x). The numerical solutions of three different cases
of the FKFS model are provided through the stochastic procedures of the scaled conjugate gradient
neural networks (SCGNNs). The data selection for the FKFS model is chosen as 82%, for training and
9% for both testing and authorization. The precision of the designed SCGNNs is provided through
the achieved and Adam solutions. To rationality, competence, constancy, and correctness is approved
by using the stochastic SCGNNs along with the simulations of the regression actions, mean square
error, correlation performances, error histograms values and state transition measures.

Keywords: fractional order; food supply model; scaled conjugate gradient; artificial neural networks;
numerical solutions; Adam method

1. Introduction

There are various mathematical models that designate the natural phenomena based
on the prey-predator investigations along with the collaborations of different species [1,2].
The functional response term in the prey-predator modelling has an important role to
present that most of the prey affects the predators with the use of time. There are nu-
merous functional responses species that have been reported in the literature, such as a
ratio-dependent [3–5], Beddington–DeAngelis [6–8] and the Holling phase I to III [9,10].
One of the important models is food supply (FS), which is applied in the association of
multiple prey or predators. The updated form of the FS system together with common
qualitative investigations and numerous communications is presented in [11–13]. The
mathematical modelling has an important role to present the dynamics of the nonlinear
differential systems, e.g., SITR based coronavirus [14], dengue virus [15] and nervous
stomach system [16].

In the FS chain, the role of the “Allee effects” is very important. The Allee effects
defined in 1930 after the name by the famous scientist Allee. These effects allocate the
progress to reduce the growing rate by using the small quantity of public. The Allee effects
appear in the fishery, vertebrates, invertebrates, and plants. The Allee effects occasionally
indicate the negative influences in the dispensation of population dynamics based on the
fishery. The “Allee effects” have been divided into multiplication and addition [17–20].
Initially, Singh et al. described the double shape of “Allee effects” with the improved
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Gower-Leslie system based on the prey predator, in which prey population shows the
various junction associated with the suitable parameters. Vinoth et al. [21] formulated a
mathematical model to investigate the dynamical FS system using the “Allee effect” based
on the addition [22].

The aim of this work is to provide the numerical performances of the fractional kind
of food supply (FKFS) model by using the stochastic procedures of the scaled conjugate
gradient neural networks (SCGNNs). The stochastic solvers have been used to exploit
the variety of applications in recent years. Few of them are the nonlinear dynamics of the
coronavirus models [23], functional form of the singular models [24], the infectious-based
HIV models [25], functional for of the delay differential system [26] and nonlinear model of
the smoking [27]. The idea to implement the fraction kinds of the derivatives is to perform
the accurate and realistic solutions. In fractional order models, the minute particulars based
on the superfast transition and super slow evolution are examined that provides more
detail of the dynamics of the system by using the fractional calculus, which is not easy to
interpret by using the integer order counterparts. Additionally, the system dynamics for
the index is performed by using the fractional calculus. The fractional order derivatives
show much better performance as compared to the integer order with the availability of
the situation. The fractional kind of the derivatives have been applied to authenticate the
performance of the system using the applications of the real-world applications [28,29].
Moreover, the fractional derivatives have been extensively investigated to solve the number
of applications based on the control networks, engineering, physical and mathematical
systems. The implementation of the fractional calculus is performed broadly over the last
30 years by using the substantial operators, such as Weyl-Riesz [30], Caputo [31], Riemann-
Liouville [32], Erdlyi-Kober [33], and Grnwald-Letnikov [34]. All these operators have their
own worth and significance. However, the most widely definition of the Caputo derivative
that works to solve homogeneous initial conditions as well as non-homogeneous initial
conditions. The Caputo derivatives are considered easy to implement as compared to the
other definitions. Bases on this fractional order applications, the authors are interested to
develop the FKFS model and provide the numerical performances through the SCGNNs.

The remaining structure of the paper is given as: The FKFS system is constructed in
the Section 2. The designed methodology based on the stochastic SCGNNs procedures is
provided in the Section 3. The simulations of the results are provided in the Section 4. The
concluding notes are given in the Section 5.

2. Mathematical FKFS System with Insights

In this section, the communication model is provided based on the two or more prey
and predators. A differential FKFS system using the analysis of mutual qualitative along
with the multiple relationships is given in [35,36]. Few researchers presented the multiple
trophic-level of food supply systems through the structure of logistic prey L(x), Holling
type or Lotka–Volterra predator M(x) and top-predator N(x) [37–43]. The mathematical
form of the three species based on the FS system is presented as [44]:

dL(x)
dx = a0L(x)− ρ0L(x)M(x)

L(x)+d0
− k1

k2+L(x) − b0L2(x), L0 = i1,
dM(x)

dx = ρ1L(x)M(x)
L(x)+d1

− a1M(x)− ρ2 M(x)N(x)
M(x)+d2

, M0 = i2,
dN(x)

dx = c3N2(x)− ρ3 N2(x)
M(x)+d3

, M0 = i3,

(1)

where prey L(x) and species M(x) indicate the Volterra scheme that presents the population
of the predator to decrease exponentially in the prey absence. The relationship of the species
N(x) and the prey M(x) is provided by using the Leslie–Gower approach that represents
the predator population reduces per capita accessibility [45,46]. a0 and c3 are the growth
rates of L(x) and N(x), the environmental protection factors for L(x) are d0 and d1, while the
reduction per capita of M(x) is υ2

2 described in d2, the term a1 shows the values of the M(x),
which reduces the nonappearance of L(x), b0 provides the competition strength for L(x), the
residual lessens for N(x) based on the food shortage M(x) is signified by d3, the maximum
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presentations through the lessening of per capita of L(x) is represented by ρ0, ρ1, ρ2 and ρ3,
the hyperbolic k1

k2+L(x) function shows the addictive form of the Allee effects, while k1 and
k2 are the constant values of the Allee effects. If k1 < k2, then it means a weak Allee effect;
otherwise k2 < k1, shows a strong Allee effect, the initial conditions are represented by i1, i2
and i3. The mathematical form of the FKFS system is given as:

dLυ(x)
dxυ = a0L(x)− ρ0L(x)M(x)

L(x)+d0
− k1

k2+L(x) − b0L2(x), L0 = i1,
dυ M(x)

dxυ = ρ1L(x)M(x)
L(x)+d1

− a1M(x)− ρ2 M(x)N(x)
M(x)+d2

, M0 = i2,
dυ N(x)

dxυ = c3N2(x)− ρ3 N2(x)
M(x)+d3

, M0 = i3.

(2)

where υ shows the fractional order Caputo derivative to solve the fractional FS model given
in Equation (2). The values of the fractional order derivative υ are taken between 0 and 1
to present the behavior of the fractional FS model. The fractional kinds of the derivative
in the FS system (2) are incoroprated to observe the minute particulars, i.e., superslow
evolution and superfast transients that is not easy to interpret by using the integer order
counterparts as shown in the system (1). In recent few years, the fractional calculus have
been implemented in various submission, such as anomalous heat transfer [47], pine
wilt disease model with convex rate [48], patterns of the spatiotemporal using the systems
based on the Belousov–Zhabotinskii reaction [49], quantitative approximation of soil animal
substance content using the visible/near infrared spectrometry [50], predator-prey model
with herd performance [51], Hepatitis B virus mathematical model [52] and biological
based population growing model using the carrying volume [53].

The novel features of the proposed SCGNNs for solving the mathematical FKFS system
are defined as:

• The construction of the FKFS system is presented to examine the realistic and accurate
performances of the model.

• The stochastic procedures have not been implemented before to solve the mathematical
FKFS system.

• The stochastic computing SCGNNs have been applied to perform the mathematical
simulations of the FKFS system using the fractional order derivatives derivative
between 0 and 1.

• The accurateness of the stochastic computing SCGNNs scheme is observed through
the comparison of the obtained and reference solutions.

• The performances of the absolute error (AE) in good measures indicate the accuracy
and competence of the stochastic computing SCGNNs for solving the mathematical
FKFS system.

• The performances based on the STs, EHs, correlation, MSE and regression approve
the dependability, consistency, and reliability of the stochastic computing SCGNNs
scheme for solving the FKFS system.

3. Designed SCGNNs Procedure

This section of the study provides the procedure of the stochastic computing SCGNNs
scheme for the mathematical form of the FKFS system as defined in the set of system (1).
The workflow diagram is provided in Figure 1 for the mathematical FKFS model using
the computing SCGNNs scheme based on the three blocks, the mathematical model,
designed methodology and results performances. The design performances are given
in two measures.

(i) The significant procedures based on the SCGNNs are provided.
(ii) The implementation process through the designed SCGNNs for the mathematical

FKFS model.
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Figure 1. Workflow of the SCGNNs construction to solve the FKFS model.
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The significant procedures regarding to the generalization have been provided by
using the Adam scheme, while the numerical procedures are implemented with the default
parameter setting to generate the model dataset. The hidden neurons have been selected
15 in this study along with the data selection for the FKFS model as 82%, for training and
9% for both testing and authorization. The artificial intelligence abilities based supervised
learning SCGNNs have been performed with best cooperation in the indices, including
complexity, premature convergence, overfitting and underfitting cases. Additionally, these
parameters of the networks are set after exhaustive simulation studies, experience, knowl-
edge and care and small variations in these setting results in degraded performance of
the networks.

The second phase of the stochastic SCGNNs is expressed by using the generic percep-
tion based on the solo neuron model as presented in Figure 2. The Figure 2a shows the
single layered neural network structure, while the designed layer construction, a single
input layer vector having 15 hidden numbers of neurons in the hidden layer along with the
three outcomes in the outer layer as described in Figure 2b for solving the mathematical
FKFS model. The stochastic based SCGNNs are applied by using the ‘Matlab’ software
(nftool command) for the appropriate sections of hidden neurons, testing statistics, learn-
ing methods and verification statics. Whereas the implementation performances of the
SCGNNs scheme to solve the mathematical FKFS model along with the parameter setting
is provided in Table 1. The networks training is performed using the proposed stochastic
SCGNNs scheme, where the backpropagation is oppressed to improve the Jacobian ‘JB’ for
the performance, i.e., MSE, to adjust the weight vectors along with the bias variables of
B. The variation or modification of the decision variables with the use of scale conjugate
gradient is given as:

J J = JB × JB,
Je = JB × e,

dB = −(J J+I×mu)
Je ,

where e indicates the error, and I is the identity vector. The SCGNNs scheme’s parameter
setting is provided in Table 1 along with the slight disparity/change/modification may
result in poor performance, i.e., premature convergence. Therefore, these settings will
be unified with extensive attention, after directing thorough the numerical investigation
and understanding.

Table 1. Parameter setting to execute the SCGNNs procedure.

Index Settings

Hidden neurons 15

Fitness goal (MSE) 0

Maximum performances of mu 1010

Decreeing performances of mu 0.1

Increasing performances of mu 10

Adaptive parameter, i.e., mu 5 × 10−3

Authentication fail amount 6

Maximum Learning Epochs 600

Minimum gradient values 10−6

Training data 80%

Validation data 9%

Testing data 9%

Selection of samples Randomly
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Table 1. Cont.

Index Settings

Hidden, output and layers Single

Dataset generation solver Adam scheme

Execution of Adam solver and stoppage criteria Default
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4. Results of the FKFS Model

Three fractional order cases of the model have been presented by using the designed
SCGNNs operator. The mathematical descriptions of these operators are given as:

Case 1: The updated form of Equation (2) based on the FKFS model by taking υ = 0.5,
a0 = 1.5, a1 = 1, b0 = 0.06, ρ0 = 1, ρ1 = 2, ρ2 = 0.405, ρ3 = 1, c3 = 1.5, k1 = k2 = 0.1,
d0 = 10, d1 = 10, d2 = 10, d3 = 20 and i1 = i2 = i3 = 1.2 is shown as:

d0.5L(x)
dx0.5 = 1.5L(x)− L(x)M(x)

L(x)+10 − 0.1
0.1+L(x) − 0.06L2(x), L0 = 1.2,

d0.5 M(x)
dx0.5 = 2L(x)M(x)

L(x)+10 − M(x)− 0.405M(x)N(x)
M(x)+10 , M0 = 1.2,

d0.5 N(x)
dx0.5 = 1.5N2(x)− N2(x)

M(x)+20 , N0 = 1.2.

(3)
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Case 2: The updated form of Equation (2) based on the FKFS model by taking υ = 0.7,
a0 = 1.5, a1 = 1, b0 = 0.06, ρ0 = 1, ρ1 = 2, ρ2 = 0.405, ρ3 = 1, c3 = 1.5, k1 = k2 = 0.1,
d0 = 10, d1 = 10, d2 = 10, d3 = 20 and i1 = i2 = i3 = 1.2 is shown as:

d0.7L(x)
dx0.7 = 1.5L(x)− L(x)M(x)

L(x)+10 − 0.1
0.1+L(x) − 0.06L2(x), L0 = 1.2,

d0.7 M(x)
dx0.7 = 2L(x)M(x)

L(x)+10 − M(x)− 0.405M(x)N(x)
M(x)+10 , M0 = 1.2,

d0.7 N(x)
dx0.7 = 1.5N2(x)− N2(x)

M(x)+20 , N0 = 1.2.

(4)

Case 3: The updated form of Equation (2) based on the FKFS model by taking υ = 0.9,
a0 = 1.5, a1 = 1, b0 = 0.06, ρ0 = 1, ρ1 = 2, ρ2 = 0.405, ρ3 = 1, c3 = 1.5, k1 = k2 = 0.1,
d0 = 10, d1 = 10, d2 = 10, d3 = 20 and i1 = i2 = i3 = 1.2 is shown as:

d0.9L(x)
dx0.9 = 1.5L(x)− L(x)M(x)

L(x)+10 − 0.1
0.1+L(x) − 0.06L2(x), L0 = 1.2,

d0.9 M(x)
dx0.9 = 2L(x)M(x)

L(x)+10 − M(x)− 0.405M(x)N(x)
M(x)+10 , M0 = 1.2,

d0.9 N(x)
dx0.9 = 1.5N2(x)− N2(x)

M(x)+20 , N0 = 1.2.

(5)

Figures 3–7 illustrate the stochastic SCGNNs procedures for the FKFS mathematical
system. Figure 3 shows the values of the STs along with the best performances of the
FKFS mathematical system. The STs and MSE results based on the authentication, train-
ing and best curve measures have been demonstrated in Figure 3 using the stochastic
SCGNNs procedures for the FKFS mathematical system. The obtained best measures of
the FKFS model have been illustrated at iterations 81, 27 and 17 that have been performed
as 7.58035 × 10−10, 1.72965 × 10 −9 and 4.49765 × 10−11. The second half of the Figure 3
shows the gradient values using the SCGNNs scheme for the FKFS mathematical system.
The performances of the gradient are found as 9.35 × 10−8, 9.61 × 10−8 and 6.57 × 10−8.
These depictions indicate the correctness and the convergence of the SCGNNs scheme
for the FKFS mathematical system. The result assessments based on the training targets,
training outputs, validations targets, validation outputs, test targets, test outputs, errors
and fitness curves are illustrated in the 1st half of the Figure 4. While the EHs based on
the training, validation, test and zero error have been drawn in the 2nd half of the Figure 4
for the FKFS mathematical system. The EHs performances are provided as 1.68 × 10−5,
5.79 × 10−6 and 1.05 × 10−7 for the FKFS mathematical system. Figure 5 represents the
correlation performances based on the training, validation and testing in the mathematical
form of the FKFS system. It is seen that the correlation measures are authenticated as 1 in
the mathematical form of the FKFS system. These measures indicate the correctness of the
stochastic SCGNNs procedure for the mathematical form of the FKFS model. The MSE
convergence measures indicate the complexity values, training performances, validation
measures, iterations, testing, and backpropagation are authenticated in Table 2 based on
the mathematical form of the FKFS model.

Table 2. SCGNNs procedures for the mathematical form of the FKFS model.

Case
MSE

Epoch Performance Gradient Mu Time
Test Train Validation

1 3.56 × 10−10 2.42 × 10−9 7.58 × 10−10 81 2.42 × 10−9 9.35 × 10−8 1 × 10−10 02
2 2.57 × 10−9 1.20 × 10−9 1.72 × 10−9 27 1.20 × 10−9 9.61 × 10−8 1 × 10−10 01
3 3.28 × 10−11 1.11 × 10−11 4.49 × 10−11 17 1.11 × 10−11 6.57 × 10−8 1 × 10−12 01
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and 3rd case of the mathematical FKFS system. The AE performances of the Holling type or
Lotka–Volterra predator M(x) lie as 10−4 to 10−6, 10−4 to 10−5 and 10−5 to 10−8 for 1st, 2nd
and 3rd case of the nonlinear FKFS system. The values of the AE for top-predator N(x) are
calculated as 10−4 to 10−6, 10−5 to 10−6 and 10−5 to 10−8 for 1st, 2nd and 3rd case of the
nonlinear FKFS system. These illustrations based on the AE authenticate the correctness of
the stochastic SCGNNs LMB-NNs to solve the nonlinear FKFS system.
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5. Conclusions

The motive of this work is to perform the solutions of the fractional food supply model.
The fractional derivatives have been used to provide the realistic and accurate solutions
of the food supply mathematical model. The fractional food supply mathematical system
contains three categories, special kind of the predator L(x), top-predator M(x) and prey
populations N(x). The efficient numerical performances of three different variations of the
fractional food supply mathematical system have been provided by using the stochastic
procedures based on the scaled conjugate gradient neural network scheme. The selection of
the data for fractional food supply mathematical system is selected as 82%, for training and
9% for both testing and authorization along with the 15 numbers of neurons. The precision
and accuracy of the designed SCGNNs have been provided through the achievements and
reference solutions. The AE values have been calculated as 10−6 to 10−8, which shows the
exactness of the scaled conjugate gradient neural network scheme for solving the fraction
food supply system. The rationality, competence, constancy, and correctness has been
approved by using the stochastic SCGNNs along with the simulations of the regression
actions, mean square error, correlation performances, error histograms values and state
transition measures. It is also observed that by taking the fractional order values close to 1,
the solutions are performed better as compared to other values. These observations have
been provided in the AE graphs to solve the model.
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In upcoming studies, the proposed SCGNNs scheme have been implemented to
present the solutions of the lonngren-wave systems, fluid dynamical models and fractional
kinds of systems.
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