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Abstract: Navier–Stokes (NS) equation, in fluid mechanics, is a partial differential equation that
describes the flow of incompressible fluids. We study the fractional derivative by using fractional
differential equation by using a mild solution. In this work, anomaly diffusion in fractal media
is simulated using the Navier–Stokes equations (NSEs) with time-fractional derivatives of order
β ∈ (0, 1). In Hγ,℘, we prove the existence and uniqueness of local and global mild solutions by using
fuzzy techniques. Meanwhile, we provide a local moderate solution in Banach space. We further
show that classical solutions to such equations exist and are regular in Banach space.
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solution; fuzzy fractional differential equation; regularity
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1. Introduction

The NSEs express the conservation of mass and momentum in incompressible Newto-
nian fluid dynamics ranging from large-scale atmospheric motions to ball-bearing lubrica-
tion. The equation is a generalization of the equation proposed by Swiss mathematician
Leonhard Euler in the 18th century to describe the flow of incompressible and frictionless
fluids. Later on in 1821 French engineer Claude-Louis Navier work on it. In the middle of
the 19th century, British physicist and mathematician Sir George Gabriel Stokes improved
on this work. They are sometimes accompanied by an equation of state relating to pressure,
temperature and density. They arise from applying Isaac Newton’s second law to fluid
motion, together with the assumption that the stress in the fluid is the sum of a diffusing
viscous term (proportional to the gradient of velocity) and a pressure term—hence describ-
ing viscous flow. The difference between them and the closely related Euler equations is
that NSEs take viscosity into account while the Euler equations model only inviscid flow.
As a result, the Navier–Stokes are a parabolic equation and therefore have better analytic
properties, at the expense of having less mathematical structure (e.g., they are never com-
pletely integrable). The NS equations are useful because they describe the physics of many
phenomena of scientific and engineering interest. They may be used to model the weather,
ocean currents, water flow in a pipe and air flow around a wing. The NSEs in their full
and simplified forms help with the design of aircraft and cars, the study of blood flow,
the design of power stations, the analysis of pollution, and many other things. Coupled
with Maxwell’s equations, they can be used to model and study magnetohydrodynamics.
The NSEs are also of great interest in a purely mathematical sense. Despite their wide range
of practical uses, it has not yet been proven whether smooth solutions always exist in three
dimensions—i.e., they are infinitely differentiable at all points in the domain. This is called
the NS existence and smoothness problem. More information can be found in Cannone’s [1]
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and Varnhorn’s [2] monographs (see, for example, Lemarie-Rieusset [3] and Von Wahl [4]);
there are so many phenomena for a system that explaining their existence, regularity,
and boundary conditions requires the complete strength of the mathematical theory.

It is worth noting that Leray first discovered that the boundary-value problem for time-
dependent NSEs has a unique smooth solution for specific time intervals if the data are suffi-
ciently smooth. Many authors have investigated the existence of mild, weak, and strong so-
lutions for NSEs since then; for example, Heck et al. [5], Chemin and Gallagher [6], Choe [7],
Giga [8], Raugel [9], Almeida and Ferreira [10], wabuchi and Takada [11], Koch et al. [12],
Masmoudi and Wong [13], Amrouche and Rejaiba [14], Chemin et al. [15], Danchin [16]
and Kozono [17].

Fractional calculus has grown in popularity in recent decades, owing to its demon-
strated applications in a variety of seemingly diverse and large-ranging fields of science and
engineering, such as fluid flow, rheology, dynamical processes, porous structures, diffusive
transport akin to diffusion, control theory of dynamical systems and viscoelasticity, etc.,
for example [18–22]. The models given by partial differential equations with fractional
derivatives are the most important. Not only physicists, but even pure mathematicians, are
interested in such models.

According to recent theoretical and experimental findings, the classical diffusion
equation fails to characterize diffusion phenomena in heterogeneous porous media with
fractal properties. What changes are made to the classical diffusion equation to make
it suitable for describing anomalous diffusion phenomena? For researchers, this is an
interesting challenge. Since it has been acknowledged as one of the greatest methods for
characterizing long memory processes, fractional calculus helps model anomalous diffusion
processes. As a result, presenting the generalized NSEs with a Caputo fractional derivative
operator, which can be used to model anomalous diffusion in fractal media, is logical and
significant. Its evolutions act in a far more complex manner than standard inter-order
evolutions, making study more difficult.

The most effort has been paid to attempts to acquire numerical and analytical solutions
to time-fractional NSEs [23–25]. We are only aware of a few conclusions about mild
solutions of existence and regularity for time-fractional NSEs. Carvalho-Neto [26] recently
discussed the existence-uniqueness of global and local mild solutions for time-fractional
NSEs. Niazi et al. [27], Iqbal et al. [28] and Shafqat et al. [29] investigated the existence-
uniqueness of the fuzzy fractional evolution equation.

Zhou and Peng [30] worked on time-fractional NSEs in an open set:

∂α
ωU − ν∆U + (U.O)U = −∇p + f , ω > 0,
∇.U = 0,
U|∂Ω = 0,
U(0,X) = a,

(1)

where ∂α
ω is Caputo fractional derivative of order α ∈ (0, 1), U = (U1(ω,X), U2(ω,X), . . . ,

Un(ω,X)) represents velocity field at point X ∈ Ω and time ω > 0, p = p(ω,X) is pressure,
v is viscosity, f = f (ω,X) is external force and a = a(X) is initial velocity.

In this paper, we investigate the below time-fractional NSEs in an open set
Ω ⊂ Rn(n ≥ 3), which is motivated by the above discussion:

∂
β
ωU − v∆U + (U.∇)U = −∇p + g, ω > 0,
∇.U = 0,
U|∂Ω = 0,
U(0, y) = by sin γ,

(2)

where ∂
β
ω is Caputo fractional derivative of order β ∈ (0, 1), U = (U1(ω,X), U2(ω, x), . . . ,

Un(ω,X)) represents velocity field at a point and time ω > 0, p = p(ω,X) is pressure, v is
viscosity, g = g(ω,X) is gravitational force and by sin γ = by(X) sin γ is initial velocity. We
will suppose that the boundary of Ω is smooth.
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To begin, the pressure term is removed by using the Helmholtz projector P to
Equation (2), which transforms Equation (2) into Equation (3) as:

∂
β
ωU − vP∆U + P(U.O)U = Pg, ω > 0,

O.U = 0,
U|∂Ω = 0,
U(0, y) = by sin γ.

The operator −vP∆ with Dirichlet boundary conditions is effectively the Stokes opera-
tor A in the divergence-free function space under consideration. Then, in the abstract form
illustrated below, we rewrite (2).

CDβ
ωU = −AU +G(U, U) + Pg, ω > 0,

U(0) = by sin γ,
(3)

where G(U, v) = −P(U.O)v. The solution to Equation (2) is also the solution to Equation (3)
if the Helmholtz projection P and the Stokes operator Amake sense.

The purpose of this research is to demonstrate that global and local mild solutions to
Equation (2) in Hβ,℘ exist and are unique. We further show that if Pg is Hölder continuous,
there exists a single classical solution U(ω) such that AU and CDγ

ωU(ω) are Hölder contin-
uous in S℘. The following is a breakdown of the structure of the paper. In Section 2, we
go through numerous notations, definitions, and background information. Before moving
on to the local mild solution in Hβ,℘, Section 3 looks at existence and uniqueness of global
mild solution in Hβ,℘ of issue (3). In Section 4, we use the iteration method to determine
the existence and regularity of a classical solution to the issue (2) in S℘. Finally, in Section 4,
a conclusion is provided.

2. Preliminaries

We establish notations, definitions and introductory facts in this section, which will be
used throughout the work.

Assume Ω = {(X1, . . . ,Xn) : Xn > 0} to be open subset of Rn, where n ≥ 3. Assume
1 < ℘ < ∞. Then there is bounded projection P called the Hodge projection on (L℘(Ω))n,
whose range is the closure of:

C∞
σ (Ω) := {u ∈ (C∞(Ω))n : ∇.u = 0, u has compact support in Ω},

and whose null space is the closure of:

{u ∈ (C∞(Ω))n : u = ∇v, v ∈ C∞(Ω)}.

For notational convenience, let S℘ := C∞
σ (Ω)

|.|℘ , which is a closed subspace of
(L℘(Ω))n. (Wm,℘(Ω))n be a Sobolev space with norm |.|m,℘.

A = −vP∆ represents a Stokes operator in S℘ whose domain is
D℘(A) = D℘(∆)

⋂
S℘; here,

D℘(∆) = {U ∈ (W2,℘(Ω))n : U|∂Ω = 0}.

It is well known that the closed linear operator −A forms the bounded analytic
semigroup {e−ωA} on S℘.

So as to state our results, we need to introduce the definitions of the fractional spaces
associated with −A. For γ > 0 and U ∈ S℘, define:

A−γU =
1

Γ(γ)

∫ ∞

0
ωγ−1e−ωAUdω.
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Then A−γ is a bounded, one-to-one operator on S℘. Let Aγ be the inverse of A−β.
For γ > 0, we denote the space Hγ,℘ by the range of A−γ with the norm:

|U|Hγ,℘ = |Aγu|℘.

It is easy to check that e−ωA extends (or restricts) to a bounded analytic semigroup on
Hγ,℘. For more details, we refer to Van Wahl [4].

Define D : E1 × E1 → R+ by equation

D(X, y) = sup
06γ61

max{[U]γ, [v]γ};

d is the Hausdorff metric for non-empty compact sets in Rn.
D is a metric in E1. By using the following results:

(i) (E1,D) is complete metric space;
(ii) D(X⊕ z, y⊕ z) = D(X, y) ∀ X, y, z ∈ E1;
(iii) D(kX, ky) = |k|D(X, y) ∀ X, y ∈ E1 and k ∈ Rn;
(iv) D(X⊕ y, z⊕ e) 6 D(X, z)⊕D(y, e) ∀ X, y, z,∈ 2E1.

Let χ be a Banach space and S be an interval of Rn. C(S, χ) denotes the set of all
continuous χ-valued functions. For 0 < ϑ < 1, Cϑ(S, χ) stands for the set of all functions
which are Holder continuous with the exponent ϑ.

Assume β ∈ (0, 1] and v : [0, ∞)→ χ. The fractional integral of order β with the lower
limit zero for the function v is defined as:

aD℘
ωg(ω) =

(
d

dω

)n+1 ∫ ω

a
(ω− τ)n−℘g(τ)dτ, (n ≤ ℘ ≤ n + 1),

provided the right hand-side is pointwise defined on [0, ∞), where gβ denotes the RL kernel:

gβ(ω) =
ωβ−1

Γ(β)
, ω > 0,

and Γ is the usual γ function. In case β = 0, we denote g0(ω) = δ(ω); the Dirac measure is
concentrated at the origin.

Further, for a function w : [0, ∞) → R, the Caputo derivative of order γ ∈ R+ is
defined by:

c
0Dγ

t w(t) = L
0 Dγ

t

(
w(t)−

n−1

∑
k=0

w(k)(0)
k!

tk
)

, t ≥ 0, n− 1 < γ < n.

We refer the reader to Kilbas et al. [31] for further information. Let us look at the
Mittag–Leffler special functions in general:

Eβ(−ωβA) =
∫ ∞

0
Mβ(s)e−sωβAds,

Eβ,β(−ωβA) =
∫ ∞

0
βsMβ(s)e−sωβAds.

Definition 1 ([32]). The Wright function ψβ is defined by:

ψα(θ) =
∞

∑
n=0

(−θ)n

n!Γ(−βn + 1− β)

=
1
π

∞

∑
n=1

(−θ)n

(n− 1)!
Γ(nβ) sin(nπβ),
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where θ ∈ C with 0 < β < 1.

Proposition 1.

(i) Eβ,β(−ωβA) =
1

2πi

∫
Γθ

Eβ,β(−µωβ)(µI +A)−1dµ;

(ii) AγEβ,β(−ωβA) =
1

2πi

∫
Γθ

µγEβ,β(−µωβ)(µI +A)−1dµ.

Proof. (i) In view of
∫ ∞

0 βsMβ(s)e−sωds = Eβ,β(−ω) and Fubini theorem, we get:

Eβ,β(−ωβA) =
∫ ∞

0
βsMβ(s)e−sωβAds

=
1

2πi

∫ ∞

0
βsMβ(s)

∫
Γθ

e−µsωβ
(µI +A)−1dµds

=
1

2πi

∫
Γθ

Eβ,β(−µωβ)(µI +A)−1dµ,

where Γθ is a suitable integral path;
(ii) A similar argument shows that:

AαEβ,β(−ωβA) =
∫ ∞

0
βsMβ(s)Aβe−sωβAds

=
1

2πi

∫ ∞

0
βsMβ(s)

∫
Γθ

µαe−µsωβ
(µI +A)−1dµds

=
1

2πi

∫
Γθ

µαEβ,β(−µωβ)(µI +A)−1dµ.

We also have the results below.

Lemma 1 ([33]). For ω > 0, Eβ(−ωβA) and Eβ,β(−ωβA) are continuous in the uniform
operator topology. Moreover, for every r > 0, the continuity is uniform on [r, ∞).

Lemma 2 ([33]). Let 0 < β < 1. Then,

(i) for all U ∈ χ, lim
t→0+

Eβ(−ωβA)U = U;

(ii) for all U ∈ D(A) and ω > 0,C Dβ
ωEβ(−ωβA)U = −AEβ(−ωβ A)U;

(iii) for all U ∈ χ, E′β(−ωβA)U = −ωβ−1AEβ,β(−ωβA)U;

(iv) for ω > 0, Eβ(−ωβA)U = I1−β
ω

(
ωβ−1Eβ,β(−ωβ A)u

)
.

Before presenting the definition of a mild solution of the problem (3), we give the fol-
lowing lemma for a given function h : [0, ∞)→ χ. For more details we refer to Zhou [32,34].

Lemma 3. If χ(t) is solution of Equation (3) for U(0) = by sin γ, then U(t) is given.

U(t) = tγ−1b sin γ +
1√
γ

∫ t

0
(t− s)γ−1[−AU +G(U, U) + Pg]ds (4)

holds, then:

U(t) = tγ−1Pγ(t)b sin γ +
∫ t

0
(t− s)γ−1Pγ(t− s)[G(U, U) + Pg]ds,
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where
Pγ(t) =

∫ ∞

0
q(θ)Mγ(θ)Q(tγθ)dθ.

We adopt the following definitions of the mild solution to the problem (3), which were
inspired by the previous section.

Definition 2. A function U : [0, ∞) → Hγ,℘ is called a global mild solution of problem (3) in
Hγ,℘, if U ∈ C([0, ∞), Hγ,℘) and for ω ∈ [0, ∞),

U(ω) =Eβ(−ωβA)b sin γ +
∫ ω

0
(ω− s)β−1Eβ,β(−(ω− s)βA)G(U(s), U(s))ds

+
∫ ω

0
(ω− s)β−1Eβ,β(−(ω− s)ωA)Pg(s))ds.

(5)

Definition 3. Assume 0 < = < ∞. A function U : [0,=]→ Hγ,℘ (or S℘) is called a local mild
solution of problem (3) in Hγ,℘ (or S℘), if U ∈ C([0,=], Hγ,℘) (or C([0,=], S℘)) and u satisfies (5)
for ω ∈ [0,=].

Two operators, φ and g, are defined as follows for convenience:

v(ω) =
∫ ω

0
(ω− s)β−1Eβ,β(−(ω− s)βA)Pg(s))ds

g(U, v)(ω) =
∫ ω

0
(ω− s)β−1Eβ,β(−(ω− s)βA)G(u(s), u(s))ds.

The following fixed point result is used in further proofs.

Lemma 4 ([1]). Assume that (χ, ||.||χ) is a Banach space, that G : χ × χ → χ is a bilinear
operator, and that L is a positive real number:

Dχ(G(U, v)) ≤ LDχ(U, v), ∀U, v ∈ χ.

Then for any U0 ∈ χ with ||U0||χ < 1
4L , the equation U = U0 + G(U, U) has unique

solution U ∈ χ.

3. Global and Local Existence in Hγ,℘

The major goal of this part is to demonstrate adequate requirements for the existence-
uniqueness of a mild solution to the problem (3) in Hγ,℘. To this purpose, we make the
following assumptions:

Pg is continuous for ω > 0 and D℘(Pg(ω)) = o(ω−β(1−γ)) as ω → 0 for 0 < γ < 1.

Lemma 5 ([35] (see also [36])). Let 1 < ℘ < ∞ and γ1 ≤ γ2. Then there exist C = C(γ1, γ2)
such that

DHγ2,℘(e−ωAv) ≤ Cω−(γ2−γ1)DHγ1,℘(v), ω > 0

for v ∈ Hγ1,℘. Furthermore, lim
ω→0
DHγ2,℘(e−ωAv) = 0.

Now, a necessary technical lemma that will help us prove the section’s final main
theorems.

Lemma 6. Assume 1 < ℘ < ∞ and γ1 ≤ γ2. Then for any = > 0, there exist a constant
C1 = C1(γ1, γ2) > 0, such that the following holds:

DHγ2,℘(Eβ,1(−ωβ A)v) ≤ C1ω−β(γ2−γ1)DHγ2,℘(v) and DHγ2,℘(Eβ,β(−ωβ A)v) ≤ C1ω−β(γ2−γ1)DHγ2,℘(v)

for all v ∈ Hγ1,℘ and ω ∈ (0,=]. Moreover,

lim
ω→0

ωβ(γ2−γ1)DHγ2,℘(Eβ(−ωβ Av)) = 0.
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Proof. Suppose v ∈ Hγ1,℘. By using Lemma 5,

DHγ2,q(Eβ,1(−ωβA)v) ≤
∫ ∞

0
Mβ(s)e−sωβADHγ2,℘(v)

≤
(
C
∫ ∞

0
Mβ(s)s−(γ2−γ1)ds

)
ω−β(γ2−γ1)DHγ2,℘(v)

≤ C1ω−β(γ2−γ1)DHγ2,℘(v).

Lebesgue’s dominated convergence theorem demonstrates that:

lim
ω→0

ωβ(γ2−γ1)DHγ2,℘(Eβ(−ωβA)v) ≤
∫ ∞

0
Mβ(s) lim

ω→0
ωβ(γ2−γ1)DHγ2,℘(e−sωβAv)ds = 0.

Similarly,

DHγ2,℘(Eβ,β(−ωβA)v) ≤
∫ ∞

0
βsMβ(s)e−sωβADHγ2,℘(v)ds

≤
(

βC
∫ ∞

0
βMβ(s)s1−(γ2−γ1)ds

)
ω−β(γ2−γ1)DHγ1,℘(v)

≤ C1ω−β(γ2−γ1)DHγ1,℘(v).

If C1 = C1(β, γ1, γ2) is a constant which is satisfying the following:

C1 ≥ Cmax
{

Γ(1− γ2 + γ1)

Γ(1 + β(γ1 − γ2))
,

βΓ(2− γ2 + γ1)

Γ(1 + β(1 + γ1 − γ2))

}
.

4. Global Existence in Hγ,℘

In this section, our aim is to find the global mild solution of the problem (3) in Hγ,℘.
For convenience, we denote:

M(ω) = sup
s∈(0,ω]

{sβ(1−γ)D℘(Pg(s))},

B1 = C1 max{B(β(1− γ), 1− β(1− γ)),B(β(1− α), 1− β(1− γ))},

L ≥ MC1 max
{
B(β(1− γ), 1− 2β(α− γ)),B(β(1− α), 1− 2β(α− γ))

}
,

whereM is given later.

Theorem 1. Assume 1 < ℘ < ∞, 0 < γ < 1 and (g) hold. For every β ∈ Hγ,℘, let that

C1DHγ,℘(a) + B1M∞ <
1

4L , (6)

whereM∞ := sup
s∈(0,∞)

{sβ(1−γ)Pg(s)}. If n
2q −

1
2 < γ, then there is a α > max{γ, 1

2} and unique

function U : [0, ∞)→ Hγ,℘ satisfying:

(i) U : [0, ∞)→ Hγ,℘ is a continuous and U(0) = a;
(ii) U : [0, ∞)→ Hα,℘ is a continuous and lim

ω→0
ωβ(α−γ)DHγ,℘(U(ω)) = 0;

(iii) U satisfies (5) for ω ∈ [0, ∞).

Proof. Let α = (1+γ)
2 . Define χ∞ = χ[∞] as the space of all curves U : (0, ∞) → Hγ,℘

such that:

(1) U : [0, ∞)→ Hγ,℘ is bounded and a continuous;
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(2) U : [0, ∞)→ Hα,℘ is bounded and a continuous, in addition, lim
ω→0

ωβ(α−γ)DHα,℘(U(ω)) = 0;

with its natural norm.

DX∞(U) = max
{

sup
ω≥0
DHγ,℘(U(ω)), sup

ω≥0
ωβ(α−γ)DHα,℘(U(ω))

}
.

It is obvious that χ∞ is a non-empty complete metric space.
We know that G : Hα,℘ × Hα,℘ → S℘ is bounded bilinear map because of Weissler [36],

so there existsM such that for u, v ∈ Hα,℘.

D℘(G(U, v)) ≤ MDHα,℘(U, v),

D℘(G(U, U)−G(v, v)) ≤ M(DHα,℘(U) +DHα,℘(v))DHα,℘(U − v). (7)

Step 1. Suppose U, v ∈ χ∞. We demonstrate that the operator g(U(ω), v(ω)) belongs
to C([0, ∞), Hγ,℘) as well as C((0, ∞), Hγ,℘). For arbitrary ω0 ≥ 0 fixed and ε > 0 enough
small, consider ω > ω0, we have:

DHγ,℘(g(U(ω), v(ω))− g(U(ω0), v(ω0)))

≤
∫ ω

0
(ω− s)β−1DHγ,℘(Eβ,β(−(ω− s)βA)G(U(s), v(s)))ds

+
∫ ω0

0
DHγ,℘(((ω− s)β−1 − (ω0 − s)β−1)Eβ,β(−(ω− s)βA)G(U(s), v(s)))ds

+
∫ ω0−ε

0
(ω0 − s)β−1DHγ,℘((Eβ,β(−(ω− s)βA)− Eβ,β(−(ω0 − s)βA))G(U(s), v(s)))ds

+
∫ ω0

ω0−ε
(ω0 − s)β−1DHγ,℘((Eβ,β(−(ω− s)βA)− Eβ,β(−(ω0 − s)βA))G(U(s), v(s)))ds

:= I + I11(ω) + I12(ω) + I13(ω) + I14(ω).

Each of the four terms is estimated separately. In view of Lemma 6, we derive I11(ω),

I11 ≤ C1

∫ ω

ω0

(ω− s)β(1−γ)−1D℘(G(U(s), v(s)))ds

≤ MC1

∫ ω

ω0

(ω− s)β(1−γ)−1DHα,℘(U(s))DHα,℘(v(s))ds

≤ MC1

∫ ω

ω0

(ω− s)β(1−γ)−1s−2β(α−γ)ds sup
s∈[0,ω]

{s2β(α−γ)|U(s)|Hα,℘ |v(s)|Hα,℘}

= MC1

∫ 1

ω0
ω

(ω− s)β(1−γ)−1s−2β(α−γ)ds sup
s∈[0,ω]

{s2β(α−γ)|U(s)|Hα,℘ |v(s)|Hα,℘}.

According to the characteristics of the β function, there exists a δ > 0 small enough
that for 0 < ω−ω0 < δ, ∫ 1

ω0
ω

(ω− s)β(1−γ)−1s−2β(α−γ)ds→ 0;

as a result, I11(ω) tends to zero as ω−ω0 → 0. For I12(ω), since:

I12(ω) ≤ C1

∫ ω0

0
((ω0 − s)β−1 − (ω− s)β−1)(ω− s)−βγD℘(G(U(s), v(s)))ds

≤ MC1

∫ ω0

0
((ω0 − s)β−1 − (ω− s)β−1)(ω− s)−βγs−2β(α−γ)ds sup

s∈[0,ω0]

{s2β(α−γ)|U(s)|Hγ,℘ |v(s)|Hγ,℘},
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noting that∫ ω0

0
D((ω0 − s)β−1 − (ω− s)β−1)(ω− s)−βγs−2β(α−γ)ds

≤
∫ ω0

0
(ω− s)β−1(ω− s)−βγs−2β(α−γ)ds +

∫ ω0

0
(ω0 − s)β−1(ω− s)−βγs−2β(α−γ)ds

≤ 2
∫ ω0

0
(ω0 − s)β(1−γ)−1s−2β(α−γ)ds

= 2B(β(1− γ), 1− 2β(α− γ)).

Then, we get the dominated convergence theorem of Lebesgue:∫ ω0

0
((ω0 − s)β−1 − (ω− s)β−1)(ω− s)−βγs−2β(α−γ)ds→ 0, as ω → ω0;

one can deduce lim
ω→ω0

I12(ω) = 0. For I13(ω), since:

I13(ω) ≤
∫ ω0−ε

0
(ω0 − s)β−1DHγ,℘((Eβ,β(−(ω− s)βA) + Eβ,β(−(ω0 − s)βA))G(U(s), v(s)))ds

≤
∫ ω0−ε

0
(ω0 − s)β−1((ω− s)−βγ + (ω0 − s)−βγ)D℘(G(U(s), v(s)))ds

≤ 2MC1

∫ ω0−ε

0
(ω0 − s)β(1−γ)−1s−2β(α−γ)ds sup

s∈[0,ω0]

{s2β(α−γ)|U(s)|Hα,℘ |v(s)|Hα,℘}.

Using Lebesgue’s dominated convergence theorem once more, the fact that the opera-
tor Eβ,β(−ωβA) has uniform continuity owing to Lemma 1 indicates:

lim
ω→ω0

I13 =
∫ ω0−ε

0
(ω0 − s)β−1 lim

ω→ω0
DHγ,℘((Eβ,β(−(ω− s)βA)− Eβ,β(−(ω0 − s)βA))G(U(s), v(s)))ds

= 0.

For I14(ω), by immediate calculation, we estimate:

I14(ω) ≤
∫ ω0

ω0−ε
(ω0 − s)β−1((ω− s)−βγ + (ω0 − s)−βγ)D℘(G(U(s), v(s)))ds

≤ 2MC1

∫ ω0

ω0−ε
(ω0 − s)β(1−γ)−1s−2β(α−γ)ds sup

s∈[0,ω0]

{s2β(α−γ)|U(s)|Hα,℘ |v(s)|Hα,℘} → 0 as ε→ 0,

according to the β function’s properties. As a result, it follows:

|g(U(ω), v(ω))− g(U(ω0), v(ω0))|Hγ,℘ → 0, as ω → ω0.

The continuity of the operator g(U, v) evaluated in C((0, ∞), Hα,℘) follows by a similar
discussion to that above. So, we omit the details.

Step 2. We show that the operation g : χ∞ × χ∞ → χ∞ is continuous bilinear operator.
By Lemma 6, we have:

D(g(U(ω), v(ω)))Hγ,℘ ≤ DHγ,℘

( ∫ ω

0
(ω− s)β−1Eβ,β(−(ω− s)βA)G(U(s), v(s))ds

)
≤ C1

∫ ω

0
(ω− s)β(1−γ)−1D℘(G(U(s), v(s)))ds

≤ MC1

∫ ω

0
(ω− s)β(1−γ)−1s−2β(α−γ)ds sup

s∈[0,ω0]

{s2β(α−γ)|U(s)|Hα,℘ |v(s)|Hα,℘}

= MC1B(β(1− γ), 1− 2β(α− γ))||U||χ∞ ||v||χ∞ ;
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it follows that

sup
ω∈[0,∞)

ωβ(α−γ)|g(U(ω), v(ω))|Hα,℘ ≤MC1B(β(1− α), 1− 2β(α− γ))||U||χ∞ ||v||χ∞ .

More precisely,
lim
ω→0

ωβ(α−γ)DHα,℘(g(U(ω), v(ω))) = 0.

Hence, g(U, v) ∈ χ∞ and ||g(U(ω), v(ω))||χ∞ ≤ L||u||χ∞ ||v||χ∞ .
Step 3. We verify that (c) holds. Let 0 < ω0 < ω. Since:

DHγ,℘(v(ω)−v(ω0)) ≤
∫ ω

ω0

(ω− s)β−1DHγ,℘(Eβ,β(−(ω− s)βA)Pg(s))ds

+
∫ ω0

0
((ω0 − s)α−1 − (ω− s)α−1 − (ω− s)α−1)DHγ,℘(Eβ,β(−(ω− s)βA)Pg(s))ds

+
∫ ω0−ε

0
(ω0 − s)β−1DHγ,℘((Eβ,β(−(ω− s)βA)− Eβ,β(−(ω0 − s)βA))Pg(s))ds

+
∫ ω0

ω0−ε
(ω0 − s)β−1DHγ,℘((Eβ,β(−(ω− s)βA)− Eβ,β(−(ω0 − s)βA))Pg(s))ds

≤ C1M(ω)
∫ ω

ω0

(ω− s)β(1−γ)−1s−β(1−γ)ds + C1M(ω)
∫ ω0

0
((ω− s)β−1 − (ω0 − s)β−1)

s−β(1−γ)ds + C1M(ω)
∫ ω0−ε

0
(ω0 − s)β−1DHγ,℘((Eβ,β(−(ω0 − s)βA)−

Eβ,β(−(ω0 − s)βA))Pg(s))ds + 2C1M(ω)
∫ ω0

ω0−ε
(ω0 − s)β(1−γ)−1s−β(1−γ)ds.

The first two integrals and the last integral trend to 0 as ω → ω0 and ε→ 0 due to the
properties of the β function. In light of Lemma 1, the third integral also equals 0 as ω → ω0,
implying that:

DHγ,℘(v(ω)−v(ω0))→ 0 as ω → ω0.

The same argument applies to the evaluation of v(ω) in Hα,℘.
However, we have:

DHγ,℘(v(ω)) ≤ DHγ,q

( ∫ ω

0
(ω− s)β−1Eβ,β(−(ω− s)βA)Pg(s)ds

)
≤ C1

∫ ω

0
(ω− s)β(1−γ)−1D℘(Pg(s))ds

≤ C1M(ω)
∫ ω

0
(ω− s)β(1−γ)−1s−β(1−γ)ds

= C1M(ω)B(β(1− γ), 1− β(1− γ)), (8)

and

DHα,℘(v(ω)) ≤ DHα,℘

( ∫ ω

0
(ω− s)β−1Eβ,β(−(ω− s)βA)Pg(s)ds

)
≤ C1

∫ ω

0
(ω− s)β(1−α)−1D℘(Pg(s))ds

≤ C1M(ω)
∫ ω

0
(ω− s)β(1−α)−1s−β(1−γ)ds

= ω−β(α−γ)C1M(ω)B(β(1− α), 1− β(1− γ)).

More precisely,

ωβ(α−γ)DHα,℘(φ(ω)) ≤ C1M(ω)B(β(1− α), 1− β(1− γ))→ 0, as ω → 0.



Fractal Fract. 2022, 6, 330 11 of 23

M(ω) → 0 as ω → 0 owing to assumption (g). This implies that v(ω) ∈ χ∞ and
D∞(φ(ω)) ≤ B1M∞,

Eβ(−ωβA)by(ω) sin γ ∈ C([0, ∞), Hγ,℘) and Eβ(−ωβ A)b sin γ ∈ C([0, ∞), Hα,℘).
This, together with Lemma 6, implies that for all ω ∈ (0,=],

Eβ(−ωβA)b sin γ ∈ χ∞,

ωβ(α−γ)Eβ(−ωβA)b sin γ ∈ C([0, ∞), Hα,℘),

D∞(Eβ(−ωβA)b sin γ) ≤ C1DHγ,℘(by(ω) sin γ).

According to (6), the inequality,

Dχ∞(Eβ(−ωβA)b sin γ + v(ω)) ≤ Dχ∞(Eβ(−ωβA)b sin γ) +DX∞(v(ω))

≤ 1
4L ,

holds, which yields that G has a unique fixed point.
Step 4. To demonstrate that u(ω)→ by(ω) sin γ in Hγ,℘ as ω → 0. We need to verify:

lim
ω→0

∫ ω

0
(ω− s)β−1Eβ,β(−(ω− s)βA)Pg(s)ds = 0,

lim
ω→0

∫ ω

0
(ω− s)β−1Eβ,β(−(ω− s)βA)G(U(s), U(s))ds = 0,

in Hγ,℘. It is obvious that lim
ω→0

v(ω) = 0( lim
ω→0
M(ω) = 0) owing to (8). In addition,

DHγ,℘

( ∫ ∞

0
(ω− s)β−1Eβ,β(−(ω− s)βA)G(U(s), U(s))ds

)
≤ C1

∫ ω

0
(ω− s)β(1−γ)−1D℘(G(U(s), U(s)))ds

≤ MC1

∫ ω

0
(ω− s)β(1−γ)−1D2

Hα,℘(U(s))ds

≤ MC1

∫ ω

0
(ω− s)β(1−γ)−1s−2β(α−γ)ds sup

s∈[0,ω]

{s2β(α−γ)D2
Hα,℘(U(s))}

= MC1B(β(1− γ), 1− 2β(α− γ)) sup
s∈[0,ω]

{s2β(α−γ)D2
Hα,℘(U(s))→ 0 as ω → 0.

Local Existence in Hγ,℘

In this section, the local mild solution of the problem (3) in Hγ,℘ is investigated.

Theorem 2. Assume 1 < ℘ < ∞, 0 < γ < 1 and g hold. Let

n
2q
− 1

2
< γ.

Then there is a α > max{γ, 1
2} such that for every β ∈ Hγ,℘ there exists T∗ > 0 and a unique

function U : [0,=∗]→ Hγ,℘ satisfying:

(i) U : [0,=∗)→ Hγ,℘ is a continuous and U(0) = by sin γ;
(ii) U : (0,=∗]→ Hα,℘ is a continuous and lim

ω→0
ωβ(α−γ)|U(ω)|Hα,℘ = 0;

(iii) U satisfies (5) for ω ∈ [0,=∗].
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Proof. Let α = (1+γ)
2 . Assume that χ = χ[=] is the space containing all curves U : (0,=]→

Hγ,℘, and that:

(1) U : [0, ∞)→ Hγ,℘ is a continuous;
(2) U : [0, ∞)→ Hα,℘ is a continuous and lim

ω→0
ωβ(α−γ)|u(ω)|Hα,℘ = 0;

with its natural norm:
||u||χ = sup

ω∈[0,=]
{ωβ(α−γ)|U(ω)|Hα,℘}.

It is simple to show that g : χ× χ → χ is a continuous linear map and φ(ω) ∈ χ,
similar to the proof of Theorem 1. It is clear from Lemma 1 that for all ω ∈ (0,=],

Eβ(−ωβA)by(ω) sin γ ∈ C([0,=], Hγ,℘),

Eβ(−ωβA)by(ω) sin γ ∈ C([0,=], Hα,℘).

It follows from Lemma 6 that:

Eβ(−ωβA)by(ω) sin γ ∈ χ,

ωβ(α−γ)Eβ(−ωβA)by(ω) sin γ ∈ C([0,=], Hα,=).

As a result, suppose =∗ > 0 is sufficiently small such that:

DX[=∗ ](Eβ(−ωβA)by(ω) sin γ + φ(ω)) ≤ DX[=∗ ](Eβ(−ωβA)by(ω) sin γ) +DX[=∗ ](φ(ω)) <
1

4L ,

which implies that, due to Lemma 4, G has a unique fixed point.

5. Local Existence in S℘

In this section, the iteration method is used to consider a local mild solution to the
problem (3) in S℘. Let α = (1+γ)

2 .

Theorem 3. Suppose 1 < ℘ < ∞, 0 < γ < 1 and ( f ) hold. Assume that: by sin γ ∈ Hγ,℘ with
n

2℘ −
1
2 < γ.

Then problem (3) has a unique mild solution u in S℘ for by sin γ ∈ Hγ,℘. Furthermore, u is a
continuous in [0,=],Aαu is continuous in (0,=] and ωβ(α−γ)Aαu(ω) is bounded as ω → 0.

Proof. Step 1. Set
K(ω) := sup

s∈(0,ω]

sβ(α−γ)|AαU(s)|℘

and

ψ(ω) := g(U, U)(ω) =
∫ ω

0
(ω− s)β−1Eβ,β(−(ω− s)β A)G(U(s), U(s))ds.

As an immediate consequence of step 2 in Theorem 1, ψ(ω) is continuous in [0,=],
Aαψ(ω) exists and is continuous in (0,=] with

D=(Aαψ(ω)) ≤MC1B(β(1− α), 1− 2β(α− γ))K2(ω)ω−β(α−γ). (9)

The integral φ(ω) is also considered. The inequality exists because (g) is true.

D(pg(s)) ≤M(ω)sβ(1−γ)

is satisfied with a continuous functionM(ω). From Step 3 in Theorem 1, we derive that
Aαv(ω) is continuous in (0,=] with:

D℘(Aαv(ω)) ≤ C1M(ω)B(β(1− α), 1− β(1− γ))ω−β(α−γ). (10)
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For D℘(Pg(ω)) = o(ω−β(1−γ)) as ω → 0, we have M(ω) = 0. Here (10) means
D℘(Aαv(ω)) = o(ω−β(α−γ)) as ω → 0. We show that v is continuous in S℘. In fact, take
0 ≤ ω0 < ω < =, we get that:

D℘(v(ω)−v(ω0)) ≤ C3

∫ ω

ω0

(ω− s)β−1D℘(Pg(s))ds + C3

∫ ω0

0
((ω0 − s)β−1 − (ω− s)β−1)D℘(Pg(s))ds

+C3

∫ ω0−ξ

0
(ω0 − s)β−1D(Eβ,β(−(ω− s)β A)− Eβ,β(−(ω0 − s)βA))D℘(Pg(s))ds

+2C3

∫ ω0

ω0−ξ
(ω0 − s)β−1D℘(Pg(s))ds

≤ C3M(ω)
∫ ω

ω0

(ω− s)β−1s−β(1−γ)ds + C3M(ω)
∫ ω0

0
((ω− s)β−1 − (ω0 − s)β−1)s−β(1−γ)ds

+C3M(ω)
∫ ω0−ξ

0
(ω0 − s)β−1s−β(1−γ)ds sup

s∈[0,ω−ξ]

D(Eβ,β(−(ω− s)β A)−

Eβ,β(−(ω0 − s)βA)) + 2C3M(ω)
∫ ω0

ω0−ξ
(ω0 − s)β−1s−β(1−γ)ds→ 0, as ω → ω0,

from previous discussions.
Moreover, we will look at the function Eβ(−ωβA)by(ω) sin γ. It is clear by

Lemma 6 that:

D℘(AαEβ(−ωβA)by(ω) sin γ|℘ ≤ C1ω−β(α−γ)Dq(Aγby(ω) sin γ)

= C1ω−β(α−γ)DHγ,℘(by(ω) sin γ),

lim
ω→0

ωβ(α−γ)D℘(AαEβ(−ωβA)by(ω) sin γ) = lim
ω→0

ωβ(α−γ)DHα,℘(Eβ(−ωβA)by(ω) sin γ)

= 0.

Step 2. We now establish the result using consecutive approximations:

u0(ω) = Eβ(−ωβA)by(ω) sin γ + v(ω),

Un+1(ω) = U0(ω) + g(Un, Un)(ω), n = 0, 1, 2, . . . . (11)

Using the results presented above, we can deduce that:

Kn(ω) := sup
s∈(0,=]

sβ(α−γ)|AαUn(s)|℘

are continuous and increasing functions on [0,=] with Kn(0) = 0. In addition, Kn(ω)
fulfills the following inequality as a result of (10) and (11),

Kn+1(ω) ≤ K0(ω) +MC1B(β(1− α), 2β(α− γ))K2
n(ω). (12)

We choose a T > 0 for K0(0) = 0 , therefore:

4MC1B(α(1− γ), 1− 2α(γ− β))K0(T) < 1. (13)

The sequence {Kn(=)} is then bounded, as a result of a fundamental consideration
of (12),

Kn(=) ≤ ρ(=), n = 0, 1, 2, . . . ,

where

ρ(ω) =
1−

√
1− 4MC1B(β(1− α), 1− 2β(α− γ))K0(ω)

2MC1B(β(1− α), 1− 2β(α− γ))
.
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Similarly, Kn(ω) ≤ ρ(ω) holds for any ω ∈ (0,=]. Similarly, we can see that
ρ ≤ 2K0(ω). Consider the equality

ωn+1(ω) =
∫ ω

0
(ω− s)β−1Eβ,β(−(ω− s)βA)[G(Un+1(s), Un+1(s))−G(Un(s), Un(s))]ds,

where ωn = Un+1 −Un, n = 0, 1, . . . , and ω ∈ (0,=]. Writing

Wn(ω) := sup
s∈(0,=]

sβ(α−γ)|Aαwn(s)|℘.

According to (6), we have:

D℘(G(U + 1(s), Un+1(s))−G(Un(s), Un(s))) ≤M(Kn+1(s) +Kn(ω))Wn(s)s−2β(α−γ),

which follows from Step 2 in Theorem 1 that:

ωβ(α−γ)D℘(Aαωn+1(ω)) ≤ 2MC1B(β(1− α), 1− β(1− γ))ρ(ω)Wn(ω).

This inequality results in

Wn+1(=) ≤ 2MC1B(β(1− α), 1− 2β(α− γ)ρ(=)Wn(=)
≤ 4MC1B(β(1− α), 1− 2β(1− α), 1− 2β(α− γ))K0(=)Wn(=). (14)

According to (13) and (14), it is easy to see that:

lim
n→0

Wn+1(=)
Wn(=)

< 4MC1B(β(1− α), 1− 2β(α− γ)) < 1.

As a result, the series ∑∞
n=0 Wn(T) converges. It shows that the series ∑∞

n=0 ωβ(α−γ)AγΩn(ω)

converges uniformly for ω ∈ (0,=]; therefore, the sequence {ωβ(α−γ)AαUn(ω)} converges
uniformly in (0,=]. This shows that:

lim
n→∞

Un(ω) = U(ω) ∈ D(Aα)

and
lim

n→∞
ωβ(α−γ)AαUn(ω) = ωβ(α−γ)AαU(ω)

uniformly,
sinceA−α is bounded andAα is closed. As a result, the functionK(ω) = sup

s∈(0,ω]

sβ(α−γ)|Aαu(s)|℘

also satisfies
K(ω) ≤ ρ(ω) ≤ 2K0(ω), ω ∈ (0, ω], (15)

and

ζn := sup
s∈(0,=]

s2β(α−γ)|G(Un(s), Un(s))−G(U(s), U(s))|℘

≤ M(Kn(=) +K(=)) sup
s∈(0,=]

sβ(α−γ)|Aα(Un(s)−U(s))|℘ → 0, as n→ ∞.

Finally, u must be verified as a mild solution of the problem (3) in [0,=]. Since

D℘(g(Un, Un)(ω)− g(U, U)(ω)) ≤
∫ ω

0
(ω− s)β−1ζns−2β(α−γ)ds = ωβγζn → 0, (n→ ∞),

we have g(Un, Un)(ω)→ g(U, U)(ω). By taking the limits on both sides of (10), we get

U(ω) = U0(ω) + g(U, U)(ω). (16)
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Assuming that U(0) = by sin γ, (16) holds for ω ∈ [0,=] and U ∈ C([0,=], S℘). Fur-
thermore, uniform convergence of ωβ(α−γ)AαUn(ω) to ωβ(α−γ)AαU(ω) results inAαU(ω)
continuity on (0,=). We can see that D℘(AγUn(ω)) = o(ω−β(α−γ)) is clear from (15) and
K0(0) = 0.

Step 3: We demonstrate that the mild solution is one-of-a-kind. Assume that U and v
are mild solutions to the (3) problem. We consider the equality if Ω = U − v.

Ω(ω) =
∫ ω

0
(ω− s)β−1Eβ,β(−(ω− s)β−1A)[G(U(s), U(s))−G(v(s), v(s))]ds.

Defining the functions:

K̃(ω) := max{ sup
s∈(0,=]

sβ(α−γ)|Aαu(s)|℘, sup
s∈(0,=]

sβ(α−γ)|Aαv(s)|℘}.

By (6) and Lemma 6, we have:

D℘(AαΩ(ω)) ≤MC1K̃(ω)
∫ ω

0
(ω− s)β(1−α)−1s−β(α−γ)D℘(AαΩ(s))ds.

Gronwall inequality shows that AαΩ(ω) = 0 for ω ∈ (0,=]. This implies that
Ω(ω) = u(ω)− v(ω) ≡ 0 for ω ∈ [0,=]. As a result, there is a unique mild solution.

6. Regularity

In this section, the regularity of solution u that fulfils the problem (3) is examined. We
will assume the following throughout this section:

(g1) Pg(ω) is Höilder continuous with an exponent ϑ ∈ (0, β(1− α)), which means:

D℘(Pg(ω)− Pg(s)) ≤ LDϑ(ω− s), ∀ 0 < ω, s ≤ =.

Definition 4. A function U : [0,=]→ S℘, if u ∈ C([0,=], S℘) with CDβ
ωu(ω) ∈ C((0,=], S℘),

which takes values in D(A) and satisfies (3) for all ω ∈ (0,=] is termed a classical solution of
problem (3).

Lemma 7. Let ( f1) be satisfied. If

v1(ω) :=
∫ ω

0
(ω− s)β−1Eβ,β(−(ω− s)βA)(pg(s)− pg(ω))ds, f or ω ∈ (0,=],

then v1(ω) ∈ D(A) and Av1(ω) ∈ Cϑ([0,=], S℘).

Proof. From Lemma 6 and ( f1), we have for fixed ω ∈ (0,=]:

(ω− s)β−1D℘(AEβ,β(−(ω− s)βA)(Pg(ω)− Pg(ω)) ≤ (ω− s)−1D℘(Pg(s)− Pg(ω))

≤ C1L(ω− s)ϑ−1 ∈ L1([0,=], S℘), (17)

then

D℘(Av1(ω)) ≤
∫ ω

0
(ω− s)β−1D℘(AEβ,β(−(ω− s)βA)(Pg(s)− Pg(ω)))ds

≤ C1L
∫ ω

0
(ω− s)ϑ−1ds

≤ C1K
ϑ

ωϑ

< ∞.
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We get v1(ω) ∈ D(A) by the closeness of A. It is necessary to demonstrate that
Av1(ω) is Hölder continuous. Since:

d
dω

(ωβ−1Eβ,β(−µωβ)) = ωβ−2Eβ,β−1(−µωβ),

then

d
dω

(ωβ−1Eβ,β(−ωωA)) =
1

2πι

∫
Γθ

ωβ−2Eβ,β−1(−µωβ)A(µI +A)−1dµ

=
1

2πι

∫
Γθ

ωβ−2Eβ,β−1(−µωβ)dµ− 1
2πι

∫
Γθ

ωβ−2µEβ,β−1(−µωβ)(µI +A)−1dµ

=
1

2πι

∫
Γθ

−ωβ−2Eβ,β−1(ξ)
1

ωβ
dξ − 1

2πι

∫
Γ′θ

ωβ−2Eβ,β−1(ξ)
ξ

ωβ

(
− ξ

ωβ
I +A

)−1 1
ωβ

dξ.

Given that D((µI +A)− 1) ≤ C
|µ| , we can deduce that:

D
(

d
dω

(ωβ−1AEβ,β(−ωβA))
)
≤ Cβω−2, 0 < ω ≤ =.

According to mean value theorem, we have, for every 0 < s < ω ≤ =,

D(ωβ−1AEβ,β(−ωβA)− sβ−1AEβ,β(−sβA)) = D
( ∫ ω

s

d
dω

(τβ−1AEβ,β(−τβA))dτ

)
≤

∫ ω

s
D
(

d
dω

(τβ−1AEβ,β(−τβA))
)

dτ

≤ Cβ

∫ ω

s
τ−2dτ

= Cβ(s−1 −ω−1). (18)

Assume that h > 0, 0 < ω < ω + h ≤ =, then

Av1(ω + h)−Av1(ω) =
∫ ω

0
((ω + h− s)β−1AEβ,β(−(ω + h− s)βA)

−(ω− s)γ−1AEβ,β(−(ω− s)βA))(Pg(s)− Pg(ω)ds

+
∫ ω

0
(ω + h− s)β−1AEβ,β(−(ω + h− s)βA)(Pg(ω)− Pg(ω + h))ds

+
∫ ω+h

ω
(ω + h− s)β−1AEβ,β(−(ω + h− s)βA)(Pg(s)− Pg(ω + h))ds

= h + h1(ω) + h2(ω) + h3(ω). (19)

Each of the three terms is evaluated individually. From (18) and ( f1), we have h1(ω).

D℘(h1(ω)) ≤
∫ ω

0
D((ω + h− s)β−1AEβ,β(−(ω + h− s)βA)− (ω− s)β−1AEβ,β(−(ω− s)βA))

Dq(Pg(s)− Pg(ω))ds

≤ CβLh
∫ ω

0
(ω + h− s)−1(ω− s)ϑ−1ds

≤ CβLh
∫ ω

0
(s + h)−1(ω− s)ϑ−1ds

≤ CβL
∫ h

0

h
s + h

sϑ−1ds + CβLh
∫ ∞

h

s
s + h

sϑ−1ds

≤ CβLhϑ. (20)
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We apply Lemma 6 and ( f1) for h2(ω).

D℘(h2(ω)) ≤
∫ ω

0
(ω + h− s)ω−1AEω,ω(−(ω + h− s)ωA)D℘(Pg(ω)− Pg(ω + h))ds

≤ C1

∫ ω

0
(ω + h− s)−1D℘(Pg(ω)− Pg(ω + h))ds

≤ C1Lhϑ
∫ ω

0
(ω + h− s)−1ds

≤ C1L[lnh− ln(ω + h)]hϑ. (21)

Moreover, for h3(ω), by Lemma 1 and (g1), we now have:

D℘(h3(ω)) ≤
∫ ω+h

ω
(ω + h− s)β−1AEβ,β(−(ω + h− s)βA)D℘((Pg(s)− Pg(ω + h))ds

≤ C1

∫ ω+h

ω
(ω + h− s)−1D℘(Pg(s)− Pg(ω + h))ds

≤ C1L
∫ ω+h

ω
(ω + h− s)ϑ−1ds

≤ C1L
hϑ

ϑ
. (22)

Combining (20), (21) with (22), we conclude that Aφ1(ω) is Hölder continuous.

Theorem 4. Assume that assumptions of Theorem 3 are fulfilled. If ( f1) holds, then the mild
solution of (3) is a classical one for every a ∈ D(A).

Proof. In the case of a ∈ D(A). Then, Lemma 2(ii) ensures that u(ω) = Eβ(−ωβA)a(ω) >
0 is a classical solution to the below problem:

CDβ
ωU = −AU, ω > 0,

U(0) = by sin γ.

Step 1. We prove that:

v(ω) =
∫ ω

0
(ω− s)β−1Eβ,β(−(ω− s)βA)Pg(s)ds

is a classical solution to the problem:

CDβ
ωu = −AU + Ph(ω), ω > 0,

U(0) = by sin γ.

Theorem 3 states that v ∈ C([0,=], S℘). We rewrite v(ω) = v1(ω) + v2(ω), where

v1(ω) =
∫ ω

0
(ω− s)β−1Eβ,β(−(ω− s)βA)(Pg(s)− Pg(ω))ds

v2(ω) =
∫ ω

0
(ω− s)β−1Eβ,β(−(ω− s)βA)Pg(s)ds.

Lemma 7 states that v1(ω) ∈ D(A). To show that v2(ω) has the same conclusion. We
may see from Lemma 2(ii) that:

Av2(ω) = Pg(ω)− Eβ(−ωβA)Pg(ω).
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Given that ( f1) is true, it follows that:

D℘(Av2(ω)) ≤ (1 + C1)D℘(Pg(ω)),

thus
v2(ω) ∈ D(A) f or ω ∈ (0,=] and Av2(ω) ∈ Cv((0,=], S℘). (23)

After that, we verify CDβ
ωv ∈ C((0,=], S℘). We have v(0) = 0 because of Lemma 2(iv)

and v(0) = 0.

CDβ
ωv(ω) =

d
dω

(I1−β
ω v(ω))

=
d

dω
(Eβ(−ωβA) ∗ Pg).

It is still necessary to demonstrate that Eβ(ω
βA) ∗ Pg is continuous differentiable in

S℘. When 0 < h ≤ T −ω is used, the following results are obtained:

1
h
(Eβ(−(ω + h)βA) ∗ Pg− Eβ(−ωβA) ∗ Pg

=
∫ ω

0

1
h
(Eβ(−(ω + h− s)βA)Pg(s)− Eβ(−(ω− s)βA)Pg(s)ds +

1
h

∫ ωh

ω
Eβ(−(ω + h− s)βA)Pg(s)ds.

Notice that:

1
h
(Eβ(−(ω + h)βA) ∗ Pg− Eβ(−ωβA) ∗ Pg)

=
∫ ω

0

1
h
D℘

(
Eβ(−(ω + h− s)βA)Pg(s)− Eβ(−(ω− s)βA)Pg(s)

)
ds +

1
h

∫ ω+h

ω
Eβ(−(ω + h− s)βA)Pg(s)ds.

Notice that:∫ ω

0

1
h
D℘

(
Eβ(−(ω + h− s)βA)Pg(s)− Eβ(−(ω− s)βA)Pg(s)

)
ds

≤ C1
1
h

∫ ω

0
D℘

(
Eβ(−(ω + h− s)βA)Pg(s)

)
ds + C1

1
h

∫ ω

0
D℘

(
Eβ(−(ω− s)βA)Pg(s)

)
ds

≤ C1M(ω)
1
h

∫ ω

0
(ω + h− s)−βs−β(1−γ)ds + C1M(ω)

1
h

∫ ω

0
(ω− s)−βs−β(1−γ)ds

≤ C1M(ω)
1
h
((ω + h)1−β + ω1−β)B(1− β, 1− β(1− γ)).

The dominated convergence theorem is then used to obtain:

lim
h→0

∫ ω

0

1
h
(Eβ(−(ω + h− s)βA)Pg(s)− Eβ(−(ω− s)βA)Pg(s))ds

=
∫ ω

0
(ω− s)β−1AEβ,β(−(ω− s)βA)Pg(s)ds

= Av(ω).

On the other hand,
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1
h

∫ ω+h

ω
Eβ(−(ω + h− s)βA)Pg(s)ds =

1
h

∫ h

0
Eβ(−sβA)Pg(ω + h− s)ds

=
1
h

∫ h

0
Eβ(−sβA)(Pg(ω + h− s)− Pg(ω− s))ds

+
1
h

∫ h

0
Eβ(−sβA)(Pg(ω− s)− Pg(ω))ds

+
1
h

∫ h

0
Eβ(−sβA)Pg(ω)ds.

From Lemmas 1 and 6 and (g1),

D℘

(
1
h

∫ h

0
Eβ(−sβA)(Pg(ω + h− s)− Pg(ω− s))ds

)
≤ C1Lhϑ,

D℘

(
1
h

∫ h

0
Eβ(−sβA)(Pg(ω− s)− Pg(ω))ds

)
≤ C1L

hϑ

ϑ + 1
.

Additionally, Lemma 2(i) gives that lim
h→0

1
h

∫ h
0 Eβ(sβA)Pg(ω)ds = Pg(ω). Hence,

lim
h→0

1
h

∫ ω+h

ω
Eβ((ω + h− s)βA)Pg(s)ds = Pg(ω).

We deduce that Eβ(ω
βA) ∗ Pg is differentiable at ω+ and d

dω (Eβ(ω
βA) ∗ Pg)+ =

Aφ(ω) + Pg(ω). Similarly, Eβ(ω
βA) ∗ Pg is differentiable at ω− and d

dω (Eβ(ω
βA) ∗

Pg)− = Aφ(ω) + Pg(ω).
We demonstrate that Av = Av1 +Av2 ∈ C((0,=], S℘). In fact, it is obvious that

v2(ω) = Pg(ω)− Eβ(ω
βA)Pg(ω) due to Lemma 2(iii), which is continuous in view of

Lemma 1. Moreover, according to Lemma 7 we know that Av1(ω) is also continuous.
Consequently, CDβ

ωφ ∈ C((0,=], S℘).
Step 2. Assume u be a mild solution of (3). To demonstrate that G(u, u) ∈ Cϑ((0,=], S℘),

in view of (6), we prove that Aγu is Hölder continuous in S℘. Take h > 0 such that
0 < ω < ω + h.

Denote v(ω) := Eβ(−ωβA)by sin γ, by Lemmas 2(iv) and 7, then:

D℘(Aα ϕ(ω + h)−Aα ϕ(ω)) = D℘

( ∫ ω+h

ω
−sβ−1AαEβ,β(−sβA)by(ω) sin γds

)
≤

∫ ω+h

ω
sβ−1D℘(Aα−γEβ,β(−sβA)Aγby(ω) sin γ)ds

≤ C1

∫ ω+h

ω
sβ(1+γ−α)−1dsD℘(Aγby(ω) sin γ)

=
C1|by(ω) sin γ|Hγ,℘

β(1 + γ− α)
((ω + h)β(1+γ−α) −ωβ(1+γ−α))

≤ C1|by(ω) sin γ|Hγ,℘

β(1 + γ− α)
hβ(1+γ−α).

Thus, Aα ϕ ∈ Cϑ((0,=], S℘).
Take h for every small ε > 0, such that ε ≤ ω < ω + h ≤ =, so:
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D℘(Aαv(ω + h)−Aαv(ω))

≤ D℘

( ∫ ω+h

ω
(ω + h− s)β−1AαEβ,β(−(ω + h− s)βA)Pg(s)ds

)
+D℘

( ∫ ω

0
Aα((ω + h− s)β−1Eβ,β(−(ω + h− s)βA)− (ω− s)β−1Eβ,β(−(ω− s)βA))Pg(s)ds

)
= v1(ω) + v2(ω).

Using Lemma 6 and (g), we have:

v1(ω) ≤ C1

∫ ω+h

ω
(ω + h− s)β(1−α)−1|Pg(s)|℘ds

≤ C1M(ω)
∫ ω+h

ω
(ω + h− s)β(1−α)−1s−β(1−γ)ds

≤ M(ω)
C1

β(1− α)
hβ(1−α)ω−β(1−γ)

≤ M(ω)
C1

β(1− α)
hβ(1−α)ε−β(1−γ).

We use the inequality to estimate v2.

d
dω

(ωβ−1Eβ,β(−ωβ)) =
1

2πι

∫
Γ

µαωβ−2Eβ,β−1(−µωβ)(µI +A)−1dµ

=
1

2πι

∫
Γ
−
(
− ξ

ωβ

)
ωβ−2Eβ,β−1(ξ)

(
− ξ

ωβ
I +A

)−1 1
ωβ

dξ

this yields that

D
(

d
dω

(ωβ−1AαEβ,β(−ωβA))
)
≤

∫ ω

s

∣∣∣∣∣∣∣∣ d
dω

(τβ−1AαEβ,β(−τβA))
∣∣∣∣∣∣∣∣dτ

≤ Cβ

∫ ω

s
τβ(1−α)−2dτ

= Cβ(sβ(1−α)−1 −ωβ(1−α)−1),

thus

v2(ω) ≤
∫ ω

0
D℘(Aα((ω + h− s)β−1Eβ,β(−(ω + h− s)βA)− (ω− s)β−1Eβ,β(−(ω− s)βA))Pg(s))ds

≤
∫ ω

0
D℘(((ω− s)β(1−α)−1 − (ω + h− s)β(1−α)−1)Pg(s))ds

≤ CβM(ω)

( ∫ ω

0
(ω− s)β(1−α)−1s−β(1−γ)ds−

∫ ω+h

0
(ω− s + h)β(1−α)−1s−β(1−γ)ds

)
+CβM(ω)

∫ ω+h

ω
(ω− s + h)β(1−α)−1s−β(1−γ)ds

≤ CβM(ω)(ωβ(γ−α) − (ω + h)β(γ−α)B(β(1− α), 1− β(1− γ)) + CβM(ω)hβ(1−α)ω−β(1−γ)

≤ CβM(ω)hβ(α−α)[ε(ε + h)]β(γ−α) + CβM(ω)hβ(1−α)ε−β(1−γ),

which ensures that Aαφ ∈ Cϑ([ε,=], S℘). Therefore, Aαφ ∈ Cϑ((0,=], S℘) due to arbi-
trary ε.
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Recall that:

ψ(ω) =
∫ ω

0
(ω− s)β−1Eβ,β(−(ω− s)β)G(U(s), U(s))ds.

Since D℘(G(U(s), U(s)) ≤MK2(ω)s−2β(α−γ), where K(ω) := sup
s∈[0,=]

sβ(α−γ)|U(s)|Hα,℘

is continuous and bounded in (0,=]. We can get the Hölder continuity ofAαψ in Cϑ((0,=], S℘)

using a similar argument. Therefore, we have Aαu(ω) = Aα ϕ(ω) +Aβv(ω) +Aαψ(ω) ∈
Cϑ((0,=], S℘).

Since G(U, U) ∈ Cϑ((0,=], S℘) is proved, according to Step 2, this yields that CDβ
ωψ ∈

C((0,=], S℘) and CDβ
ωψ = −Aψ + G(U, U). As a result, we are able to achieve that

CDβ
ωu ∈ C((0,=], S℘) and CDβ

ωU = −AU +G(U, U) + Pg. We reach the conclusion that
U is a classical solution.

Theorem 5. Suppose that ( f1) holds. If U is a classical solution of (3), then AU ∈ Cv((0,=], S℘)

and (C)Dβ
ωU ∈ Cv((0,=], S℘).

Proof. If U is a classical solution of (3), then U(ω) = φ(ω) + ψ(ω). It is still necessary to
demonstrate thatAϕ ∈ Cβ(1−γ)((0,=, S℘); it suffices to show thatAϕ ∈ Cβ(1−γ)([ξ,=], S℘)
for every ξ > 0. In fact, take h that is ξ ≤ ω < ω + h ≤ =, by Lemma 2(iii):

D℘(Aϕ(ω + h)−Aϕ(ω)) = D℘

( ∫ ω+h

ω
−sβ−1A2Eβ,β(−sβA)ads

)
≤ C1

∫ ω+h

ω
s−β(1−γ)−1ds|by(ω) sin γ|Hγ,℘

=
C1|by(ω) sin γ|Hγ,℘

β
(ω−β(1−γ) − (ω + h)−β(1−γ))

≤ C1|by(ω) sin γ|Hγ,℘

β

hβ(1−γ)

[ξ(ξ + h)]β(1−γ)
.

We write φ(ω) in the same way as Lemma 7,

v(ω) = v(ω) + v(ω)

=
∫ ω

0
(ω− s)β−1Eβ,β(−(ω− s)βA)(Pg(s)− Pg(ω)) +

∫ ω

0
(ω− s)β−1Eβ,β(−(ω− s)βA)(Pg(ω)ds,

for ω ∈ (0,℘]. From Lemma 7 and Equation (23), it follows that Av1(ω) ∈ Cv([0,=], S℘)
Av2(ω) ∈ Cϑ((0,=], S℘), respectively.

Since G(U, U) ∈ Cϑ((0,=], S℘), the result for function v(ω) is also proven by a
similar argument, implying that Av ∈ Cv((0,=], S℘). As a result, AU ∈ Cv(0,=], S℘) and
CDβ

ωU = AU +G(U, U) + Pg ∈ Cv((0,=], S℘). The proof is completed.

7. Conclusions

The aim of this paper is to prove the existence-uniqueness of local and global mild so-
lutions by using fuzzy techniques. Meanwhile, in S℘, we provide a local moderate solution.
Anomaly diffusion in fractal media is simulated using the Navier–Stokes equations (NSEs)
with time-fractional derivatives of order β ∈ (0, 1). We further show that classical solutions
to such equations exist and are regular in S℘. Future work could include extending this
concept by incorporating MHD effects, expanding on the concept proposed in this mission,
including observability and generalizing other activities. This is an interesting area with a
lot of study going on that could lead to a lot of different applications and theories. This is a
path in which we want to invest considerable resources.
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