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Abstract: The fuzzy order relation (<) and fuzzy inclusion relation (⊇) are two different relations
in fuzzy-interval calculus. Due to the importance of p-convexity, in this article we consider the
introduced class of nonconvex fuzzy-interval-valued mappings known as p-convex fuzzy-interval-
valued mappings (p-convex f-i-v-ms) through fuzzy order relation. With the support of a fuzzy
generalized fractional operator, we establish a relationship between p-convex f-i-v-ms and Hermite–
Hadamard (H–H) inequalities. Moreover, some relatedH–H inequalities are also derived by using
fuzzy generalized fractional operators. Furthermore, we show that our conclusions cover a broad
range of new and well-known inequalities for p-convex f-i-v-ms, as well as their variant forms
as special instances. The theory proposed in this research is shown, with practical examples that
demonstrate its usefulness. These findings and alternative methodologies may pave the way for
future research in fuzzy optimization, modeling, and interval-valued mappings (i-v-m).

Keywords: p-convex fuzzy-interval-valued mapping; fuzzy generalized fractional integral operator;
Hermite–Hadamard type inequality; Hermite–Hadamard–Fejér type inequality

1. Introduction

G.W. Leibniz first proposed the concept of fractional derivatives in 1695, and this
theory has motivated more and more scholars. The Riemann–Liouville calculus technique,
Caputo differential approach, and Grunwald–Letnikov differential approach are the most
extensively utilized fractional calculus approaches in engineering application research and
basic mathematics research, respectively [1]. Fractional calculus has played an important
part in the development of pure and applied mathematics over the last two decades. Be-
cause of its applicability in numerous domains such as image processing, signal processing,
physics, biology, control theory, computer networking, and fluid dynamics [2,3], it receives
considerable attention in continuing research. Recently, investigations have proceeded to
generalize current variants via imaginative concepts and innovative fractional calculus
approaches. Perhaps the most popular technique among analysts is the use of fractional
integral operators. Because of their ability to be studied for the existence and uniqueness
of solutions for various classes of differential fractional integral equations and fractional
integrals, including integral inequalities, they are highly significant [4]. In 1993, Samko et al.
introduced the representation of the extended derivative called the generalized deriva-
tive [5]. In 2006, Kilbas et al. proposed a new fractional integral operator that generalizes
the integral element of Riemann–Liouville and Hadamard into a single form. When a
parameter was specified at different values, it constructed the abovementioned integrals as
exceptional cases [6].

Convex sets and convex mappings have been introduced to remarkable varieties of
convexities over the years, including harmonic convexity [7], quasi convexity [8], Schur
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convexity [9,10], strong convexity [11,12], p-convexity [13], fuzzy convexity [14], fuzzy
preinvexity [15], generalized convexity [16], p-convexity [17], and so on. The definition
of convexity in integral problems is an interesting subject of research. As a result, a
large number of equalities and inequalities have been recognized as convex mapping
applications by various authors. The Gagliardo–Nirenberg-type inequality [18], Hardy-
type inequality [19], Ostrowski-type inequality [20], Olsen-type inequality [21], and the
H–H-inequality [22] are all examples of typical outcomes. Many authors have also focused
on fractional integral inequalities for single-valued and interval-valued mappings [23–28].

A great deal of research work on fuzzy sets and systems has been dedicated to the
development of different fields [29]. Recently, fuzzy interval analysis and fuzzy interval-
valued differential equations have been put forward to deal with the ambiguity originated
by insufficient data in some mathematical or computer models that apply to real-world
phenomena [30–36]. There are some integrals to deal with fuzzy-interval-valued mappings,
where the integrands are f-i-v-ms. For instance, Oseuna-Gómez et al. [37] and Costa
et al. [38] constructed Jensen’s integral inequality for f-i-v-ms through Kulisch–Miranker
order relation [39]. By using same approach, Costa and Flores also presented Minkowski
and Beckenbach’s inequalities, where the integrands are f-i-v-ms. This paper is motivated
by [37,38,40], and especially by Costa et al. [41], because they established a relation between
elements of fuzzy-interval space and interval space, and introduced level-wise fuzzy
order relation on fuzzy-interval space through Kulisch–Miranker order relation defined on
interval space. For more information, see [42–46] and the references therein.

Our goal is to use the generalization of the fractional integral operator of Kilbas et al. [6]
(which is known as a fuzzy generalized fractional integral operator [47]) as an extension
of an n-fold integral that has many applications in variational calculus [48], numerical
analysis [49], Langevin equations and probability theory [50], and so on. When a parameter
was fixed at different values, it constructed the abovementioned integrals as exceptional
cases [6]. These integrals correspond to infinite memory effects and are reduced to the
Riemann–Liouville fractional integral operator, Hadamard fractional integral operator,
Weyl fractional integral operator, and Liouville fractional integral operator, respectively.

The current paper is motivated by the abovementioned studies, in particular the
findings developed in [27,40]. The fuzzy-interval-valued convexity is used to create certain
fractional integral fuzzy order relations that are bound up with the extraordinary Hermite–
Hadamard as well as Hermite-Hadamard-Fejér-type inequalities. We also use introduced
fuzzy-interval-valued generalized integrals to create Hermite–Hadamard-type inequalities
in fuzzy order relations to produce two fuzzy interval-valued p-convex mappings.

2. Preliminaries

Let XC be the space of all closed and bounded intervals of R, andQ ∈ XC be defined by

Q = [Q∗, Q∗] = {κ ∈ R| Q∗ ≤ κ ≤ Q∗}, (Q∗, Q∗ ∈ R).

If Q∗ = Q∗, then Q is said to be degenerate. In this article, all intervals will be non-
degenerate intervals. IfQ∗ ≥ 0, then [Q∗, Q∗] is called a positive interval. The set of all posi-
tive intervals is denoted byX+

C and defined asX+
C = {[Q∗, Q∗] : [Q∗, Q∗] ∈ XC and Q∗ ≥ 0}.

Let λ ∈ R and λ · Q be defined by

λ · Q =


[λQ∗, λQ∗] if λ > 0,
{0} if λ = 0,
[λQ∗, λQ∗] if λ < 0.

(1)

Then the Minkowski difference Z −Q, and Q + Z and Q× Z for Q,Z ∈ XC are
defined by

[Z∗, Z∗] + [Q∗, Q∗] = [Z∗ +Q∗, Z∗ +Q∗], (2)
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[Z∗, Z∗]× [Q∗, Q∗] =
[min{Z∗Q∗, Z∗Q∗, Z∗Q∗, Z∗Q∗}, max{Z∗Q∗, Z∗Q∗, Z∗Q∗, Z∗Q∗}].

(3)

[Z∗, Z∗]− [Q∗, Q∗] = [Z∗ −Q∗, Z∗ −Q∗], (4)

The inclusion “ ⊆ ” means that Z ⊆ Q, when, and only when, [Z∗, Z∗] ⊆ [Q∗, Q∗],
when, and only whenQ∗ ≤ Z∗, Z∗ ≤ Q∗.

Remark 1 ([39]). The relation “ ≤I ” defined on XC by
[Z∗, Z∗] ≤I [Q∗, Q∗], when, and only when, Z∗ ≤ Q∗, Z∗ ≤ Q∗,
For every [Z∗, Z∗], [Q∗, Q∗] ∈ XC, it is an order relation.
For [Z∗, Z∗], [Q∗, Q∗] ∈ XC, the Hausdorff–Pompeiu distance between intervals [Z∗, Z∗]

and [Q∗, Q∗] is defined by

dH([Z∗, Z∗], [Q∗, Q∗]) = max{|Z∗ −Q∗|, |Z∗ −Q∗|}. (5)

It is a well-known fact that (XC, dH) is a complete metric space [33,43,44].

Definition 1 ([28,33]). A fuzzy subset L of R is distinguished by a mapping of ψ̃ : R→ [0, 1] ,
called the membership function of L. That is, a fuzzy subset L of R is a mapping of ψ̃ : R→ [0, 1] .
Therefore, we have chosen this notation for further study. The family of all fuzzy subsets of R is
represented as E. We appoint E to denote the set of all fuzzy subsets of R.

Let ψ̃ ∈ E. Then, ψ̃ is known as a fuzzy number or fuzzy interval if the following properties
are satisfied by ψ̃:

(1) ψ̃ should be normal if κ ∈ R and ψ̃(κ) = 1;
(2) ψ̃ should be upper-semicontinuous on R if for given κ ∈ R, ε > 0 and δ > 0 such that

ψ̃(κ)− ψ̃(y) < ε for all y ∈ R with |κ − y| < δ;
(3) ψ̃ should be fuzzy-convex, that is ψ̃((1− ν)x + νy) ≥ min

(
ψ̃(x), ψ̃(y)

)
, for all x, y ∈ R

and ν ∈ [0, 1]
(4) ψ̃ should be compactly supported, that is cl

{
u ∈ R

∣∣ ψ̃(κ)
〉
0
}

is compact.

We appoint EC to denote the set of all fuzzy intervals or fuzzy numbers of R.

Definition 2 ([28,33]). Given ψ̃ ∈ EC, the level sets or cut sets are given by[
ψ̃
]θ

=
{
κ ∈ R

∣∣ ψ̃(κ) > θ
}

for all θ ∈ [0, 1] and by
[
ψ̃
]0

=
{
κ ∈ R

∣∣ ψ̃(κ) >0
}

. These
sets are known as θ-level sets or θ-cut sets of ψ̃.

Proposition 1 ([41]). Let ψ̃, ϕ̃ ∈ EC. Then relation “ 4 ” given on EC by ψ̃ 4 ϕ̃ when, and only
when, [ψ̃]θ ≤I [ϕ̃]

θ , for every θ ∈ [0, 1], it is a partial order relation.
Remember the approaching notions, which are offered in the literature. If ψ̃, ϕ̃ ∈ EC and

λ ∈ R, then, for every θ ∈ [0, 1], the arithmetic operations are defined by

[ψ̃+̃ϕ̃]
θ
= [ψ̃]

θ
+ [ϕ̃]θ , (6)

[ψ̃×̃ϕ̃]
θ
= [ψ̃]

θ × [ ϕ̃]θ , (7)

[λ.ψ̃]θ = λ.[ψ̃]θ . (8)

These operations follow directly from Equations (1), (2) and (3), respectively.

Theorem 1 ([33]). The space EC dealing with a supremum metric, i.e., for ψ̃, ϕ̃ ∈ EC

d∞
(
ψ̃, ϕ̃

)
= sup

0≤θ≤1
dH

([
ψ̃
]θ , [ϕ̃]θ

)
, (9)

is a complete metric space, where H denotes the well-known Hausdorff metric on the space of
intervals.
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2.1. Fractional Integral Operators of Interval- and Fuzzy-Interval-Valued Mappings

Now we will define and discuss some properties of fractional integral operators of
interval- and fuzzy-interval-valued mappings.

Theorem 2 ([33,42]). If Y : [ρ, ζ] ⊂ R→ XC is an interval-valued mapping (i-v-m) satisfying
that Y(κ) = [Y∗(κ), Y∗(κ)], then Y is Aumann integrable (IA-integrable) over [ρ, ζ] when, and
only when, Y∗(κ) and Y∗(κ) both are integrable over [ρ, ζ] such that

(IA)
∫ ζ

ρ
Y(κ)dκ =

∫ ζ

ρ
Y∗(κ)dκ,

∫ ζ

ρ
Y∗(κ)dκ

. (10)

Definition 3 ([38]). Let Y : I ⊂ R→ EC be called a fuzzy-interval-valued mapping (f-i-v-m).
Then, every θ ∈ [0, 1] as well as θ-levels define the family of i-v-ms Yθ : I ⊂ R→ XC , satisfying
that Yθ(κ) = [Y∗(κ, θ), Y∗(κ, θ)] for every κ ∈ I. Here, for every θ ∈ [0, 1] the end point real
valued mappings Y∗(·, θ), Y∗(·, θ) : I→ R are called lower and upper mappings of Y.

Definition 4 ([38]). Let Y : I ⊂ R→ EC be an f-i-v-m. Then Y(κ) is said to be continuous at
κ ∈ I, if for every θ ∈ [0, 1], Yθ(κ) is continuous when, and only when, both end point mappings
Y∗(κ, θ) and Y∗(κ, θ) are continuous at κ ∈ I.

From the above literature review, the following results can be concluded (see [1,4,5,19]):

Definition 5 ([42]). Let Y : [ρ, ζ] ⊂ R→ EC be an f-i-v-m. The fuzzy Aumann integral ((FA)-
integral) of Y over [ρ, ζ], denoted by (FA)

∫ ζ
ρ Y(κ)dκ, is defined level-wise by

[
(FA)

∫ ζ

ρ
Y(κ)dκ

]θ

= (IA)
∫ ζ

ρ
Yθ(κ)dκ =

{∫ ζ

ρ
Y(κ, θ)dκ : Y(κ, θ) ∈ S(Yθ)

}
, (11)

where S(Yθ) = {Y(., θ)→ R : Y(., θ) is integrable and Y(κ, θ) ∈ Yθ(κ)}, for every θ ∈ [0, 1].
Y is (FA)-integrable over [ρ, ζ] if (FA)

∫ ζ
ρ Y(κ)dκ ∈ EC.

Theorem 3 ([41]). Let Y : [ρ, ζ] ⊂ R→ EC be an f-i-v-m as well as the θ-levels define the
family of i-v-ms Yθ : [ρ, ζ] ⊂ R→ XC , satisfying that Yθ(κ) = [Y∗(κ, θ), Y∗(κ, θ)] for every
κ ∈ [ρ, ζ] and for every θ ∈ [0, 1]. Then Y is (FA)-integrable over [ρ, ζ] when, and only when,
Y∗(κ, θ) and Y∗(κ, θ) both are integrable over [ρ, ζ]. Moreover, if Y is (FA)-integrable over [ρ, ζ],
then[

(FA)
∫ ζ

ρ
Y(κ)dκ

]θ

=

[∫ ζ

ρ
Y∗(κ, θ)dκ,

∫ ζ

ρ
Y∗(κ, θ)dκ

]
= (IA)

∫ ζ

ρ
Yθ(κ)dκ, (12)

for every θ ∈ [0, 1].

Definition 6 ([5,6]). Let g : [ρ, ζ]→ R be an increasing and positive function on [ρ, ζ], having a
continuous derivative g′(κ) on (ρ, ζ). The left-sided and right-sided fractional integrals of complex-
valued Lebesgue measurable mapping Y with respect to the function g(κ) on [ρ, ζ] of order β > 0
are defined respectively by

I g,β
ρ+

Y(κ) = 1
Γ(β)

∫ κ

ρ

g′(ν)

(g(κ)− g(ν))β−1 Y(ν)dν(κ > ρ), (13)
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and

I g,β
ζ− Y(κ) = 1

Γ(β)

∫ ζ

κ

g′(ν)

(g(ν)− g(κ))β−1 Y(ν)dν (κ < ζ), (14)

where Γ(κ) =
∫ ∞

0 νκ−1e−νdν is the Euler gamma mapping.
If one takes g(κ) = 1

pκ
p, p > 0, then from Definition 6, one acquires the following left-sided

and right-sided generalized fractional integrals:
The left and right generalized fractional integrals of order β > 0 and p > 0 of Y are defined by

I p,β
ρ+

Y(κ) = p1−β

Γ(β)

∫ κ

ρ
(κp − νp)β−1νp−1Y(ν)dν (κ > ρ), (15)

and

I p,β
ζ− Y(κ) = p1−β

Γ(β)

∫ ζ

κ
(νp −κp)β−1νp−1Y(ν)dν (κ < ζ) (16)

respectively.

Definition 7 ([47]). Let p, β > 0 and L([ρ, ζ],E) be the collection of all Lebesgue measurable
f-i-v-ms on [ρ, ζ]. Then the fuzzy interval left and right generalized fractional integrals of Y ∈
L([ρ, ζ],E) with order β > 0 are defined by

I p,β
ρ+

Y(κ) = p1−β

Γ(β)

∫ κ

ρ
(κp − νp)β−1νp−1Y(ν)dν, (κ > ρ), (17)

and

I p,β
ζ− Y(κ) = p1−β

Γ(β)

∫ ζ

κ
(νp −κp)β−1νp−1Y(ν)dν, (κ < ζ), (18)

respectively. The fuzzy interval left- and right-generalized fractional integral based on end point
mappings can be defined, that is[

I p,β
ρ+

Y(κ)
]θ

= p1−β

Γ(β)

∫ κ
ρ (κp − νp)β−1νp−1Yθ(ν)dν

= p1−β

Γ(β)

∫ κ
ρ (κp − νp)β−1νp−1[Y∗(ν, θ), Y∗(ν, θ)]dν, (κ > ρ),

where

I p,β
ρ+

Y∗(κ, θ) =
p1−β

Γ(β)

∫ κ

ρ
(κp − νp)β−1νp−1Y∗(ν, θ)dν, (κ > ρ),

and

I p,β
ρ+

Y∗(κ, θ) =
p1−β

Γ(β)

∫ κ

ρ
(κp − νp)β−1νp−1Y∗(ν, θ)dν, (κ > ρ).

Similarly, we can define right-generalized fractional integral Y of κ based on end point
mappings.

2.2. Fuzzy-Interval-Valued Convexities

Definition 8 ([17]). A mapping of Y : [ρ, ζ]→ R+ is said to be P-mapping if

Y(νκ + (1− ν)y) ≤ Y(κ) + Y(y), (19)

for every κ, y ∈ [ρ, ζ] together with ν ∈ [0, 1]. If (19) is reversed, then Y is called P-concave.

Definition 9 ([14]). Let I be a convex set. Then f-i-v-m Y : I→ EC is said to be convex on I if

Y(νκ + (1− ν)y ) 4 νY(κ)+̃(1− ν)Y(y), (20)
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for every κ, y ∈ I together with ν ∈ [0, 1], where Y(κ) < 0̃, for every κ ∈ I.

Definition 10 ([13]). Let p ∈ R with p 6= 0. Then the interval I. is said to be p-convex if

[νκp + (1− ν)yp]
1
p ∈ I, (21)

for every κ, y ∈ I together with ν ∈ [0, 1], where p = 2n + 1. and n ∈ N.

Definition 11 ([13]). Let p ∈ R with p 6= 0 and I = [ρ, ζ] ⊂ R+. Then, the mapping
Y : [ρ, ζ]→ R+ is said to be p-convex mapping if

Y
(
[νκp + (1− ν)yp]

1
p

)
≤ νY(κ) + (1− ν)Y(y), (22)

for every κ, y ∈ [ρ, ζ] together with ν ∈ [0, 1]. If the inequality (22) is reversed, then Y is called
p-concave mapping.

Definition 12 ([47]). Let p ∈ R\{0}. A mapping of C : [ρ, ζ] ⊂ (0, ∞)→ R is said to be p-

symmetric with respect to
[

ρp+ζ p

2

] 1
p , if C(κ) = C

(
[ρp + ζ p −κp]

1
p

)
holds for every κ ∈ [ρ, ζ].

Remark 2. In Definition 12, one can see the following:
If one takes p = 1, one has definitions for a mapping defined on (0, ∞) (becomes symmetric

with respect to ρ+ζ
2 ).

Example 1. Let p ∈ R\{0}. Assume that C1, C2 : [ρ, ζ] ⊂ (0, ∞)→ R , C1(κ) = c for c ∈ R,

C2(κ) =
(
κp − ρp+ζ p

2

)2
, then C1, C2 are p-symmetric with respect to

[
ρp+ζ p

2

] 1
p .

Definition 13 ([27]). Let I be a p-convex set. Then f-i-v-m Y : I→ EC is said to be:

• p-convex on I if

Y
(
[νκp + (1− ν)yp]

1
p

)
4 νY(κ)+̃(1− ν)Y(y), (23)

for every κ, y ∈ I, ν ∈ [0, 1], where Y(κ) < 0̃.

• p-concave onI if inequality (23) is reversed.

We now discuss some new and known special cases of p-convex f-i-v-ms:

Remark 3. If one takes p = 1, then p-convex f-i-v-m reduces to convex f-i-v-m, see [14].
If one takes p = −1 then we obtain the class of harmonically convex mappings, which is new.

Theorem 4 ([27]). Let I be a convex set, and let Y : I→ EC be an f-i-v-m, as well as θ-levels define
the family of i-v-ms Yθ : I ⊂ R→ X+

C ⊂ XC , satisfying that

Yθ(κ) = [Y∗(κ, θ), Y∗(κ, θ)], ∀ κ ∈ I, (24)

for every κ ∈ I and for every θ ∈ [0, 1]. Then Y is p-convex on I, when, and only when, for every
θ ∈ [0, 1], Y∗(κ, θ) and Y∗(κ, θ) both are p-convex mappings.

Remark 4. If T∗(κ, θ) = T ∗(κ, θ) with θ = 1, then the p-convex f-i-v-m reduces to the classical
p-convex mapping, see [13].

If T∗(κ, θ) = T ∗(κ, θ) with θ = 1 and p = 1, then the p-convex f-i-v-m reduces to the
classical convex mapping.
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Example 2. Let p be an odd number and the f-i-v-m Y : [ρ, ζ] = [1, 3]→ EC, defined by

Y(κ)(σ) =


σ

4−κ
p
2

σ ∈
[
0, 4−κ

p
2

]
,

2
(

4−κ
p
2

)
−σ

4−κ
p
2

σ ∈
(

4−κ
p
2 , 2

(
4−κ

p
2

)]
,

0 otherwise,

(25)

Then, for every θ ∈ [0, 1], we have Yθ(κ) =
[
θ
(

4−κ
p
2

)
, (2− θ)

(
4−κ

p
2

)]
. Since

end point mappings Y∗(κ, θ) = θ
(

4−κ
p
2

)
and Y∗(κ, θ) = (2− θ)

(
4−κ

p
2

)
are 3-convex

mappings for every θ ∈ [0, 1], then Y(κ) is a 3-convex f-i-v-m.

For the rest of the next study, we will discuss all results for positive fuzzy intervals.

3. Fuzzy Fractional-Interval-Valued Hermite–Hadamard Inequalities

Our first key finding about theH–H- andH–H–Fejér-type inequalities is given below,
and these are dependent on interval-valued fractional integrals.

Theorem 5. Let Y : [ρ, ζ]→ EC be a p-convex f-i-v-m on [ρ, ζ], as well as θ-levels define the
family of i-v-ms Yθ : [ρ, ζ] ⊂ R→ X+

C , satisfying that Yθ(κ) = [Y∗(κ, θ), Y∗(κ, θ)] for every
κ ∈ [ρ, ζ] and for every θ ∈ [0, 1]. If Y ∈ L([ρ, ζ],EC), then

Y

([
ρp + ζ p

2

] 1
p
)
4

pβΓ(β + 1)

2(ζ p − ρp)β

[
I p,β

ρ+
Y(ζ)+̃I p,β

ζ− Y(ρ)
]
4

Y(ρ)+̃Y(ζ)
2

. (26)

If Y(κ) is a p-concave f-i-v-m, then

Y

([
ρp + ζ p

2

] 1
p
)
<

pβΓ(β + 1)

2(ζ p − ρp)β

[
I p,β

ρ+
Y(ζ)+̃I p,β

ζ− Y(ρ)
]
<

Y(ρ)+̃Y(ζ)
2

. (27)

Proof. Let Y : [ρ, ζ]→ EC be a p-convex f-i-v-m. Then, for a, b ∈ [ρ, ζ] , we have

Y
(
[νap + (1− ν)bp]

1
p

)
4 νY(a)+̃(1− ν)Y(b).

If ν = 1
2 , then we have

2Y

([
ap + bp

2

] 1
p
)
4 Y(a)+̃Y(b).

Let ap = νρp + (1− ν)ζ p and bp = (1− ν)ρp + νζ p. Then, in the above inequality we
have

2Y

([
ρp + ζ p

2

] 1
p
)
4 Y

(
[νρp + (1− ν)ζ p]

1
p

)
+̃Y
(
[(1− ν)ρp + νζ p]

1
p

)
.

Therefore, for every θ ∈ [0, 1] , we have

2Y∗

([
ρp + ζ p

2

] 1
p
, θ

)
≤ Y∗

(
[νρp + (1− ν)ζ p]

1
p , θ

)
+ Y∗

(
[(1− ν)ρp + νζ p]

1
p , θ

)
,

2Y∗
([

ρp + ζ p

2

] 1
p
, θ

)
≤ Y∗

(
[νρp + (1− ν)ζ p]

1
p , θ

)
+ Y∗

(
[(1− ν)ρp + νζ p]

1
p , θ

)
.
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Multiplying both sides by νβ−1 and integrating the obtained result with respect to ν
over (0, 1) , we have

2
∫ 1

0 νβ−1 Y∗

([
ρp+ζ p

2

] 1
p , θ

)
dν

≤
∫ 1

0 νβ−1Y∗

(
[νρp + (1− ν)ζ p]

1
p , θ

)
dν +

∫ 1
0 νβ−1Y∗

(
[(1− ν)ρp + νζ p]

1
p , θ

)
dν,

2
∫ 1

0 νβ−1 Y∗
([

ρp+ζ p

2

] 1
p , θ

)
dν

≤
∫ 1

0 νβ−1Y∗
(
[νρp + (1− ν)ζ p]

1
p , θ

)
dν +

∫ 1
0 νβ−1Y∗

(
[(1− ν)ρp + νζ p]

1
p , θ

)
dν.

Let κp = (1− ν)ρp + νζ p and yp = νρp + (1− ν)ζ p. Then, we have

2
1
β

Y∗

([
ρp + ζ p

2

] 1
p
, θ

)
≤ p

(ζ p − ρp)β

∫ ζ

ρ
(ζ p − yp)β−1 Y∗(y, θ)

y1−p dy +
p

(ζ p − ρp)β

∫ ζ

ρ
(κp − ρp)β−1 Y∗(κ, θ)

κ1−p dκ,

≤ pβΓ(β)

(ζ p − ρp)β

[
I p,β

ρ+
Y∗(ζ, θ) + I p,β

ζ− Y∗(ρ, θ)
]
.

Analogously, for Y∗(κ, θ) , we have

2
1
β

Y∗

([
ρp + ζ p

2

] 1
p
, θ

)
≤ pβΓ(β)

(ζ p − ρp)β

[
I p,β

ρ+
Y∗(ζ, θ) + I p,β

ζ− Y∗(ρ, θ)
]
.

That is,

2 1
β

⌈
Y∗

([
ρp+ζ p

2

] 1
p , θ), Y∗

([
ρp+ζ p

2

] 1
p , θ

)⌉
≤I

pβΓ(β)

(ζ p−ρp)β [I
p,β
ρ+

Y∗(ζ, θ)

+I p,β
ζ− Y∗(ρ, θ), I p,β

ρ+
Y∗(ζ, θ) + I p,β

ζ− Y∗(ρ, θ)].

Thus,

2
1
β

Y

([
ρp + ζ p

2

] 1
p
)
4

pβΓ(β)

(ζ p − ρp)β

[
I p,β

ρ+
Y(ζ)+̃I p,β

ζ− Y(ρ)
]
. (28)

In a similar way as above, we have

pβΓ(β)

(ζ p − ρp)β

[
I p,β

ρ+
Y(ζ)+̃I p,β

ζ− Y(ρ)
]
4

Y(ρ)+̃Y(ζ)
β

. (29)

Combining (28) and (29), we have

Y

([
ρp + ζ p

2

] 1
p
)
4

pβΓ(β + 1)

2(ζ p − ρp)β

[
I p,β

ρ+
Y(ζ)+̃I p,β

ζ− Y(ρ)
]
4

Y(ρ)+̃Y(ζ)
2

.

Hence, the required result. �

Remark 5. From Theorem 5 we can clearly see that:
If one attempts to require Y∗(κ, θ) = Y∗(κ, θ) and θ = 1, then one gets Theorem 2.1,

see [26].
Let one attempt to require p = 1 = θ and Y∗(κ, θ) = Y∗(κ, θ). Then one acquires Theorem

5, which becomes the result given in [25].
Let one attempt to require β = p = 1 = θ and Y∗(κ, θ) = Y∗(κ, θ). Then one achieves

Theorem 5, which reduces to the result in [21].
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Example 3. Let p be an odd number, β = 1
2 , κ ∈ [2, 3], and the f-i-v-m Y : [ρ, ζ] = [2, 3]→ EC,

defined by

Y(κ)(σ) =


σ

2−κ
p
2

σ ∈
[
0, 2−κ

p
2

]
,

2
(

2−κ
p
2

)
−σ

2−κ
p
2

σ ∈
(

2−κ
p
2 , 2

(
2−κ

p
2

)]
,

0 otherwise,

Then, for every θ ∈ [0, 1], we have Yθ(κ) =
[
θ
(

2−κ
p
2

)
, (2− θ)

(
2−κ

p
2

)]
. Since

end point mappings Y∗(κ, θ) = θ
(

2−κ
p
2

)
and Y∗(κ, θ) = (2− θ)

(
2−κ

p
2

)
are 1-convex

mappings for every θ ∈ [0, 1], then Y(κ) is 1-convex f-i-v-m. We can clearly see that Y ∈
L([ρ, ζ],EC) and

Y∗

([
ρp + ζ p

2

] 1
p
, θ

)
= Y∗

(
5
2

, θ

)
= θ

4−
√

10
2

,

Y∗
([

ρp + ζ p

2

] 1
p
, θ

)
= Y∗

(
5
2

, θ

)
= (2− θ)

4−
√

10
2

,

Y∗(ρ, θ) + Y∗(ζ, θ)

2
= θ

(
4−
√

2−
√

3
2

)
,

Y∗(ρ, θ) + Y∗(ζ, θ)

2
= (2− θ)

(
4−
√

2 +
√

3
2

)
.

Note that

pβΓ(β)

2(ζ p − ρp)β

[
I p,β

ρ+
Y∗(ζ, θ) + I p,β

ζ− Y∗(ρ, θ)
]

=
Γ
( 3

2
)

2
1√
π

∫ 3

2
(3p −κp)

−1
2 κp−1 θ

(
2−κ

p
2

)
dκ

+
Γ
( 3

2
)

2
1√
π

∫ 3

2
(κp − 2p)

−1
2 κp−1 θ

(
2−κ

p
2

)
dκ

=
1
4

θ

[
7393

10, 000
+

9501
10, 000

]
= θ

8447
20, 000

.

pβΓ(β)

(ζ p − ρp)β

[
I p,β

ρ+
Y∗(ζ, θ) + I p,β

ζ− Y∗(ρ, θ)
]

=
Γ
( 3

2
)

2
1√
π

∫ 3

2
(3p −κp)

−1
2 κp−1 (2− θ)

(
2−κ

p
2

)
dκ

+
Γ
( 3

2
)

2
1√
π

∫ 3

2
(κp − 2p)

−1
2 κp−1 (2− θ)

(
2−κ

p
2

)
dκ= 1

4
(2− θ)

[
7393

10, 000
+

9501
10, 000

]
= (2− θ)

8447
20, 000

.

Therefore

[
θ

4−
√

10
2

, (2− θ)
4−
√

10
2

]
≤I

[
θ

8447
20, 000

, (2− θ)
8447

20, 000

]
≤I

[
θ

(
4−
√

2−
√

3
2

)
, (2− θ)

(
4−
√

2 +
√

3
2

)]
,

and Theorem 5 is verified.

The following two theorems, which are linked with the well-known Hermite–Hadamard–
Fejér-type inequalities, were obtained using p-symmetric mappings of one-variable forms.
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Theorem 6. Let Y : [ρ, ζ]→ EC be a p-convex f-i-v-m together with ρ < ζ, as well as θ-levels
define the family of i-v-ms Yθ : [ρ, ζ] ⊂ R→ X+

C , satisfying that Yθ(κ) = [Y∗(κ, θ), Y∗(κ, θ)] for
every κ ∈ [ρ, ζ] and for every θ ∈ [0, 1]. If Y ∈ L([ρ, ζ],EC) and C : [ρ, ζ]→ R, C(κ) ≥ 0 are

p-symmetric with respect to
[

ρp+ζ p

2

] 1
p , then

[
I p,β

ρ+
(Y ◦ C)(ζ)+̃I p,β

ζ− (Y ◦ C)(ρ)
]
4

Y(ρ)+̃Y(ζ)
2

[
I p,β

ρ+
C(ζ) + I p,β

ζ− C(ρ)
]
. (30)

If Y is a p-concave f-i-v-m, then inequality (19) is reversed.

Proof. Let Y be a p-convex f-i-v-m and νβ−1C

(
[(1− ν)ρp + νζ p]

1
p

)
≥ 0. Then, for every

θ ∈ [0, 1], we have

νβ−1Y∗([νρp +(1− ν)ζ p]
1
p , θ

)
C

(
[(1− ν)ρp + νζ p]

1
p

)
≤ νβ−1(νY∗(ρ, θ) + (1− ν)Y∗(ζ, θ))C

(
[(1− ν)ρp + νζ p]

1
p

)
,

νβ−1Y∗([νρp +(1− ν)ζ p]
1
p , θ

)
C

(
[(1− ν)ρp + νζ p]

1
p

)
≤ νβ−1(νY∗(ρ, θ) + (1− ν)Y∗(ζ, θ))C

(
[(1− ν)ρp + νζ p]

1
p

)
.

(31)

In addition,

νβ−1Y∗ ([(1− ν)ρp + νζ p ]
1
p , θ

)
C

(
[(1− ν)ρp + νζ p]

1
p

)
≤ νβ−1((1− ν)Y∗(ρ, θ) + νY∗(ζ, θ))C

(
[(1− ν)ρp + νζ p]

1
p

)
,

νβ−1Y∗ ([(1− ν)ρp + νζ p ]
1
p , θ

)
C

(
[(1− ν)ρp + νζ p]

1
p

)
≤ νβ−1((1− ν)Y∗(ρ, θ) + νY∗(ζ, θ))C

(
[(1− ν)ρp + νζ p]

1
p

)
.

(32)

Firstly, we discuss left endpoint mapping Y∗(κ, θ) of fuzzy-interval-valued mapping
Y(κ). After adding (31) and (32), and integrating over [0, 1], we get

∫ 1
0 νβ−1Y∗

(
[νρp + (1− ν)ζ p]

1
p , θ

)
C

(
[(1− ν)ρp + νζ p]

1
p

)
dν

+
∫ 1

0 νβ−1Y∗

(
[(1− ν)ρp + νζ p]

1
p , θ

)
C

(
[(1− ν)ρp + νζ p]

1
p

)
dν

≤
∫ 1

0

 νβ−1Y∗(ρ, θ)

{
νC

(
[(1− ν)ρp + νζ p]

1
p

)
+ (1− ν)C

(
[(1− ν)ρp + νζ p]

1
p

)}
+νβ−1Y∗(ζ, θ)

{
(1− ν)C

(
[(1− ν)ρp + νζ p]

1
p

)
+ νC

(
[(1− ν)ρp + νζ p]

1
p

)}
dν,

= Y∗(ρ, θ)
∫ 1

0 νβ−1C
(
[(1− ν)ρp + νζ p]

1
p

)
dν + Y∗(ζ, θ)

∫ 1
0 νβ−1C

(
[(1− ν)ρp + νζ p]

1
p

)
dν. (33)

Taking the right side of the above inequality and putting κp = (1− ν)ρp + νζ p , since
C is p-symmetric, then we have

[Y∗(ρ, θ) + Y∗(ζ, θ)]
∫ 1

0
νβ−1C

(
[(1− ν)ρp + νζ p]

1
p

)
dν

=
Y∗(ρ, θ) + Y∗(ζ, θ)

2
pβΓ(β)

(ζ p − ρp)β

[
I p,β

ρ+
C(ζ) + I p,β

ζ− C(ρ)
]
. (34)
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Now, taking the left side of the inequality (33) and putting κp = (1− ν)ρp + νζ p , we
have∫ 1

0 νβ−1Y∗

(
[νρp + (1− ν)ζ p]

1
p , θ

)
C

(
[(1− ν)ρp + νζ p]

1
p

)
dν

+
∫ 1

0 νβ−1Y∗

(
[(1− ν)ρp + νζ p]

1
p , θ

)
C

(
[(1− ν)ρp + νζ p]

1
p

)
dν

= p
(ζ p−ρp)β

∫ ζ
ρ (ζ

p −κp)β−1κp−1Y∗

(
[ρp + ζ p −κp]

1
p , θ

)
C(κ)dκ

+ p
(ζ p−ρp)β

∫ ζ
ρ (κ

p − ρp)β−1κp−1Y∗(κ, θ)C(κ)dκ.

= p
(ζ p−ρp)β

∫ ζ
ρ (ζ

p −κp)β−1κp−1Y∗(κ, θ)C

(
[ρp + ζ p −κp]

1
p

)
dκ

+ p
(ζ p−ρp)β

∫ ζ
ρ (κ

p − ρp)β−1κp−1Y∗(κ, θ)C(κ)dκ,

= pβΓ(β)

(ζ p−ρp)β

[
I p,β

ρ+
(Y∗C)(ζ) + I p,β

ζ− (Y∗C)(ρ)
]
.

(35)

Then from (34) and (35), (33) we have

pβΓ(β)

(ζ p − ρp)β

[
I p,β

ρ+
(Y∗C)(ζ) + I p,β

ζ− (Y∗C)(ρ)
]

≤ Y∗(ρ, θ) + Y∗(ζ, θ)

2
pβΓ(β)

(ζ p − ρp)β

[
I p,β

ρ+
C(ζ) + I p,β

ζ− C(ρ)
]
.

In a similar way as above, for Y∗(κ) , we have

pβΓ(β)

(ζ p−ρp)β

[
I p,β

ρ+
(Y∗C)(ζ) + I p,β

ζ− (Y∗C)(ρ)
]

≤ Y∗(ρ, θ)+Y∗(ζ, θ)
2

pβΓ(β)

(ζ p−ρp)β

[
I p,β

ρ+
C(ζ) + I p,β

ζ− C(ρ)
]
.

That is,

pβΓ(β)

(ζ p − ρp)β

[
I p,β

ρ+
(Y∗C)(ζ) + I p,β

ζ− (Y∗C)(ρ), I p,β
ρ+

(Y∗C)(ζ) + I p,β
ζ− (Y∗C)(ρ)

]
≤I

pβΓ(β)

(ζ p − ρp)β

[
Y∗(ρ, θ) + Y∗(ζ, θ)

2
,

Y∗(ρ, θ) + Y∗(ζ, θ)

2

][
I p,β

ρ+
C(ζ) + I p,β

ζ− C(ρ)
]
,

hence [
I p,β

ρ+
(Y ◦ C)(ζ)+̃I p,β

ζ− (Y ◦ C)(ρ)
]
4

Y(ρ)+̃Y(ζ)
2

[
I p,β

ρ+
C(ζ) + I p,β

ζ− C(ρ)
]
.

�

Next, we first construct the H–H–Fejér inequality for the p-convex f-i-v-m, which
generalizes theH–H–Fejér inequalities for convex mapping (see [45]).

Theorem 7. Let Y : [ρ, ζ]→ EC be a p-convex f-i-v-m together with ρ < ζ, as well as θ-levels de-
fine the family of i-v-ms Yθ : [ρ, ζ] ⊂ R→ X+

C , satisfying that Yθ(κ) = [Y∗(κ, θ), Y∗(κ, θ)] for
every κ ∈ [ρ, ζ] and for every θ ∈ [0, 1]. If Y ∈ L([ρ, ζ],EC) and C : [ρ, ζ]→ R, C(κ) ≥ 0

is p-symmetric with respect to
[

ρp+ζ p

2

] 1
p , then

Y

([
ρp + ζ p

2

] 1
p
)[
I p,β

ρ+
C(ζ) + I p,β

ζ− C(ρ)
]
4
[
I p,β

ρ+
(Y ◦ C)(ζ) + I p,β

ζ− (Y ◦ C)(ρ)
]
. (36)
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If Y is a p-concave f-i-v-m, then inequality (36) is reversed.

Proof. Since Y is a p-convex f-i-v-m, then for θ ∈ [0, 1], we have

Y∗

([
ρp + ζ p

2

] 1
p
, θ

)
≤ 1

2

(
Y∗

(
[νρp + (1− ν)ζ p]

1
p , θ

)
+ Y∗

(
[(1− ν)ρp + νζ p]

1
p , θ

))
. (37)

Since C

(
[νρp + (1− ν)ζ p]

1
p

)
= C

(
[(1− ν)ρp + νζ p]

1
p

)
, then by multiplying (37) by

νβ−1C

(
[(1− ν)ρp + νζ p]

1
p

)
and integrating it with respect to ν over [0, 1], we obtain

Y∗

([
ρp+ζ p

2

] 1
p , θ

) ∫ 1
0 νβ−1C

(
[(1− ν)ρp + νζ p]

1
p

)
dν

≤ 1
2


∫ 1

0 νβ−1Y∗

(
[νρp + (1− ν)ζ p]

1
p , θ

)
C

(
[(1− ν)ρp + νζ p]

1
p

)
dν

+
∫ 1

0 νβ−1Y∗

(
[(1− ν)ρp + νζ p]

1
p , θ

)
C

(
[(1− ν)ρp + νζ p]

1
p

)
dν

.
(38)

Let κp = (1− ν)ρp + νζ p. Then, by taking the right side of the above inequality, we
have ∫ 1

0 νβ−1Y∗

(
[νρp + (1− ν)ζ p]

1
p , θ

)
C

(
[(1− ν)ρp + νζ p]

1
p

)
dν

+
∫ 1

0 νβ−1Y∗

(
[(1− ν)ρp + νζ p]

1
p , θ

)
C

(
[(1− ν)ρp + νζ p]

1
p

)
dν

= p
(ζ p−ρp)β

∫ ζ
ρ (ζ

p −κp)β−1κp−1Y∗

(
[ρp + ζ p −κp]

1
p , θ

)
C(κ)dκ

+ p
(ζ p−ρp)β

∫ ζ
ρ (κ

p − ρp)β−1κp−1Y∗(κ, θ)C(κ)dκ.

= p
(ζ p−ρp)β

∫ ζ
ρ (ζ

p − ρp)β−1κp−1Y∗(κ, θ)C

(
[ρp + ζ p −κp]

1
p

)
dκ

+ p
(ζ p−ρp)β

∫ ζ
ρ (κ

p − ρp)β−1κp−1Y∗(κ, θ)C(κ)dκ,

Since C is p-symmetric mapping, then from C(κ) = C

(
[ρp + ζ p −κp]

1
p

)
, we have

∫ 1
0 νβ−1Y∗

(
[νρp + (1− ν)ζ p]

1
p , θ

)
C

(
[(1− ν)ρp + νζ p]

1
p

)
dν

+
∫ 1

0 νβ−1Y∗

(
[(1− ν)ρp + νζ p]

1
p , θ

)
C

(
[(1− ν)ρp + νζ p]

1
p

)
dν

=
pβΓ(β)

(ζ p − ρp)β

[
I p,β

ρ+
(Y∗C)(ζ) + I p,β

ζ− (Y∗C)(ρ)
]
. (39)

Then, from (39), we have

pβΓ(β)

(ζ p−ρp)β Y∗

([
ρp+ζ p

2

] 1
p , θ

)[
I p,β

ρ+
C(ζ) + I p,β

ζ− C(ρ)
]
≤ pβΓ(β)

(ζ p−ρp)β

[
I p,β

ρ+
(Y∗C)(ζ) + I p,β

ζ− (Y∗C)(ρ)
]
.

Analogously, for Y∗(κ, θ) , we have

pβΓ(β)

(ζ p − ρp)β
Y∗
([

ρp + ζ p

2

] 1
p
, θ

)[
I p,β

ρ+
C(ζ) + I p,β

ζ− C(ρ)
]
≤ pβΓ(β)

(ζ p − ρp)β

[
I p,β

ρ+
(Y∗C)(ζ) + I p,β

ζ− (Y∗C)(ρ)
]
,



Fractal Fract. 2022, 6, 324 13 of 19

from which, we have

pβΓ(β)

(ζ p−ρp)β

[
Y∗

([
ρp+ζ p

2

] 1
p , θ

)
, Y∗

([
ρp+ζ p

2

] 1
p , θ

)][
I p,β

ρ+
C(ζ) + I p,β

ζ− C(ρ)
]

≤I
pβΓ(β)

(ζ p−ρp)β

[
I p,β

ρ+
(Y∗C)(ζ) + I p,β

ζ− (Y∗C)(ρ), I p,β
ρ+

(Y∗C)(ζ) + I p,β
ζ− (Y∗C)(ρ)

]
.

That is
pβΓ(β)

(ζ p−ρp)β Y
([

ρp+ζ p

2

] 1
p
)[
I p,β

ρ+
C(ζ) + I p,β

ζ− C(ρ)
]

4 pβΓ(β)

(ζ p−ρp)β

[
I p,β

ρ+
(Y ◦ C)(ζ) + I p,β

ζ− (Y ◦ C)(ρ)
]

This completes the proof. �

Remark 6. Theorems 6 and 7 lead to the conclusion that
If C(κ) = 1, then we get Theorem 5.
If Y∗(κ, θ) = Y∗(κ, θ) and β = 1 = θ, then we get Theorem5 of [46].
If Y∗(κ, θ) = Y∗(κ, θ) and C(κ) = p = β = 1 = θ, then we get the classical H–H

inequality [45].
If Y∗(κ, θ) = Y∗(κ, θ) and β = 1, then we obtain the classical H–H–Fejér-type inequal-

ity [22].

Theorem 8. Let Y,G : [ρ, ζ]→ EC be two p-convex f-i-v-ms on [ρ, ζ], as well as θ-levels
Yθ , Gθ : [ρ, ζ] ⊂ R→ X+

C be defined by Yθ(κ) = [Y∗(κ, θ), Y∗(κ, θ)] and Gθ(κ) =
[G∗(κ, θ),G∗(κ, θ)] for everyκ ∈ [ρ, ζ] and for every θ ∈ [0, 1]. If Y, G and Y×̃G ∈ L([ρ, ζ],EC),
then

pβΓ(β)

2(ζ p − ρp)β

[
I p,β

ρ+
Y(ζ)×̃G(ζ) + I p,β

ζ− Y(ρ)×̃G(ρ)
]

4
(

1
2
− β

(β + 1)(β + 2)

)
M(ρ, ζ)+̃

(
β

(β + 1)(β + 2)

)
N (ρ, ζ).

where M(ρ, ζ) = Y(ρ)×̃G(ρ) +̃ Y(ζ)×̃G(ζ), N (ρ, ζ) = Y(ρ)×̃G(ζ) +̃ Y(ζ)×̃G(ρ), and
Mθ(ρ, ζ) = [M∗((ρ, ζ), θ), M∗((ρ, ζ), θ)] and Nθ(ρ, ζ) = [N∗((ρ, ζ), θ), N ∗((ρ, ζ), θ)].

Proof. Since Y, G both are p-convex f-i-v-ms, then for every θ ∈ [0, 1] we have

Y∗

(
[νρp + (1− ν)ζ p]

1
p , θ

)
≤ νY∗(ρ, θ) + (1− ν)Y∗(ζ, θ).

and

G∗

(
[νρp + (1− ν)ζ p]

1
p , θ

)
≤ νG∗(ρ, θ) + (1− ν)G∗(ζ, θ).

From the definition of p-convex f-i-v-ms, it follows that 0̃ 4 Y(κ) and 0̃ 4 G(κ) , then
by (6), (7) and (8), we obtain

Y∗

(
[νρp + (1− ν)ζ p]

1
p , θ

)
×G∗

(
[νρp + (1− ν)ζ p]

1
p , θ

)
≤
(

νY∗(ρ, θ) + (1− ν)Y∗(ζ, θ)
)(

νG∗(ρ, θ) + (1− ν)G∗(ζ, θ)
)

= ν2Y∗(ρ, θ)×G∗(ρ, θ) + (1− ν)2Y∗(ζ, θ)×G∗(ζ, θ)
+ν(1− ν)Y∗(ρ, θ)×G∗(ζ, θ) + ν(1− ν)Y∗(ζ, θ)×G∗(ρ, θ).

(40)

Analogously, we have

Y∗

(
[(1− ν)ρp + νζ p]

1
p , θ

)
×G∗

(
[(1− ν)ρp + νζ p]

1
p , θ

)
≤ (1− ν)2Y∗(ρ, θ)×G∗(ρ, θ) + ν2Y∗(ζ, θ)×G∗(ζ, θ)
+ν(1− ν)Y∗(ρ, θ)×G∗(ζ, θ) + ν(1− ν)Y∗(ζ, θ)×G∗(ρ, θ).

(41)
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Adding (29) and (30), we have

Y∗

(
[νρp + (1− ν)ζ p]

1
p , θ

)
×G∗

(
[νρp + (1− ν)ζ p]

1
p , θ

)
+Y∗

(
[(1− ν)ρp + νζ p]

1
p , θ

)
×G∗

(
[(1− ν)ρp + νζ p]

1
p , θ

)
≤
[
ν2 + (1− ν)2

]
[Y∗(ρ, θ)×G∗(ρ, θ) + Y∗(ζ, θ)×G∗(ζ, θ)]

+2ν(1− ν)[Y∗(ζ, θ)×G∗(ρ, θ) + Y∗(ρ, θ)×G∗(ζ, θ)].

(42)

Taking multiplication of (31) by νβ−1 and integrating the obtained result with respect
to ν over (0,1), we have

∫ 1
0 νβ−1Y∗

(
[νρp + (1− ν)ζ p]

1
p , θ

)
×G∗

(
[νρp + (1− ν)ζ p]

1
p , θ

)
+νβ−1Y∗

(
[(1− ν)ρp + νζ p]

1
p , θ

)
×G∗

(
[(1− ν)ρp + νζ p]

1
p , θ

)
dν

≤M∗((ρ, ζ), θ)
∫ 1

0 νβ−1
[
ν2 + (1− ν)2

]
dν + 2N∗((ρ, ζ), θ)

∫ 1
0 νβ−1ν(1− ν)dν.

It follows that

pβΓ(β)

(ζ p−ρp)β

[
I p,β

ρ+
Y∗(ζ, θ)×G∗(ζ, θ) + I p,β

ζ− Y∗(ρ, θ)×G∗(ρ, θ)
]

≤ 2
β

(
1
2 −

β
(β+1)(β+2)

)
M∗((ρ, ζ), θ) + 2

β

(
β

(β+1)(β+2)

)
N∗((ρ, ζ), θ).

In a similar way as above, for Y∗(κ, θ) and G∗(κ, θ) we have

pβΓ(β)

(ζ p − ρp)β

[
I p,β

ρ+
Y∗(ζ, θ)×G∗(ζ, θ) + I p,β

ζ− Y∗(ρ, θ)×G∗(ρ, θ)
]

≤ 2
β

(
1
2
− β

(β + 1)(β + 2)

)
M∗((ρ, ζ), θ) +

2
β

(
β

(β + 1)(β + 2)

)
N ∗((ρ, ζ), θ).

That is,

pβΓ(β)

(ζ p−ρp)β

[
I p,β

ρ+
Y∗ (ζ, θ)×G∗(ζ, θ)

+I p,β
ζ− Y∗(ρ, θ)×G∗(ρ, θ), I p,β

ρ+
Y∗(ζ, θ)×G∗(ζ, θ)

+I p,β
ζ− Y∗(ρ, θ)×G∗(ρ, θ)

]
≤I

2
β

(
1
2 −

β
(β+1)(β+2)

)
[M∗((ρ, ζ), θ), M∗((ρ, ζ), θ)]+

2
β

(
β

(β+1)(β+2)

)
[N∗((ρ, ζ), θ), N ∗((ρ, ζ), θ)].

Thus,
pβΓ(β)

2(ζ p−ρp)β

[
I p,β

ρ+
Y(ζ)×̃G(ζ) + I p,β

ζ− Y(ρ)×̃G(ρ)
]

4
(

1
2 −

β
(β+1)(β+2)

)
M(ρ, ζ)+̃

(
β

(β+1)(β+2)

)
N (ρ, ζ).

and the theorem has been established. �

Example 4. Let p be an odd number, [ρ, ζ] = [0, 2], β = 1
2 , Y(κ) = [κp, 2κp], and G(κ) =

[κp, 3κp].

Y(κ)(σ) =


σ
κp σ ∈ [0, κp],
2κp−σ
κp σ ∈ (κp, 2κp],
0 otherwise,

G(κ)(σ) =


σ

2κp σ ∈ [0, 2κp],
4κp−σ

2κp σ ∈ (2κp, 4κp],
0 otherwise.
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Then, for every θ ∈ [0, 1], we have Yθ(κ) = [θκp, (2− θ)κp] and Gθ(κ) =
[2θκp, 2(2− θ)κp]. Since end point mappings Y∗(κ, θ) = θκp, Y∗(κ, θ) = (2− θ)κp,
G∗(κ, θ) = 2θκp, and G∗(κ, θ) = 2(2− θ)κp are p-convex mappings for every θ ∈ [0, 1], then
Y(κ) and G(κ) both are p-convex f-i-v-ms. We can clearly see that Y(κ)×̃G(κ) ∈ L([ρ, ζ],EC)
and

pβΓ(1 + β)

2(ζ p − ρp)β

[
I p,β

ρ+
Y∗(ζ)×G∗(ζ) + I p,β

ζ− Y∗(ρ)×G∗(ρ)
]

=
Γ
( 3

2
)

2
√

2
1√
π

∫ 2

0
(2p −κp)

−1
2 κp−1

(
2θ2κ2p

)
dκ +

Γ
( 3

2
)

2
√

2
1√
π

∫ 2

0
(κp)

−1
2 κp−1

(
2θ2κ2p

)
dκ ≈ 2.9332θ2,

pβΓ(1 + β)

2(ζ p − ρp)β

[
I p,β

ρ+
Y∗(ζ)×G∗(ζ) + I p,β

ζ− Y∗(ρ)×G∗(ρ)
]
=

Γ
( 3

2
)

2
√

2
1√
π

∫ 2

0
(2p −κp)

−1
2 κp−1

(
2(2− θ)2κ2p

)
dκ+

Γ
( 3

2
)

2
√

2
1√
π

∫ 2

0
(κp)

−1
2 κp−1

(
2(2− θ)2κ2p

)
dκ ≈ 2.9332(2− θ)2.

Note that(
1
2
− β

(β + 1)(β + 2)

)
M∗(ρ, ζ) = [Y∗(ρ)×G∗(ρ) + Y∗(ζ)×G∗(ζ)] =

11
30
·8θ2,(

1
2
− β

(β + 1)(β + 2)

)
M∗(ρ, ζ) = [Y∗(ρ)×G∗(ρ) + Y∗(ζ)×G∗(ζ)] =

11
30
·8(2− θ)2,(

β

(β + 1)(β + 2)

)
N∗(ρ, ζ) = [Y∗(ρ)×G∗(ζ) + Y∗(ζ)×G∗(ρ)] =

2
15

(0),(
β

(β + 1)(β + 2)

)
N∗(ρ, ζ) = [Y∗(ρ)×G∗(ζ) + Y∗(ζ)×G∗(ρ)] =

2
15

(0).

Therefore, we have(
1
2
− β

(β + 1)(β + 2)

)
Mθ((ρ, ζ), θ) +

(
β

(β + 1)(β + 2)

)
Nθ((ρ, ζ), θ)

=
11
30

[8θ2, 8(2−θ)2] +
2

15
[0, 0] ≈

[
2.9332θ2, 2.9332(2− θ)2

]
.

It follows that[
2.9332θ2, 2.9332(2− θ)2] ≤I [2.9332θ2, 2.9332(2− θ)2

]
,

and Theorem 8 has been demonstrated.

Theorem 9. Let Y,G : [ρ, ζ]→ EC be two p-convex f-i-v-ms, as well as θ-levels define the
family of i-v-ms Yθ , Gθ : [ρ, ζ] ⊂ R→ X+

C , satisfying that Yθ(κ) = [Y∗(κ, θ), Y∗(κ, θ)] and
Gθ(κ) = [G∗(κ, θ), G∗(κ, θ)] for every κ ∈ [ρ, ζ] and for every θ ∈ [0, 1]. If Y×̃G ∈
L([ρ, ζ],EC), then

1
β

Y

([
ρp + ζ p

2

] 1
p
)
×̃G

([
ρp + ζ p

2

] 1
p
)
4

pβΓ(β + 1)

4(ζ p − ρp)β

[
I p,β

ρ+
Y(ζ)×̃G(ζ)+̃I p,β

ζ− Y(ρ)×̃G(ρ)
]

+
1

2β

(
1
2
− β

(β + 1)(β + 2)

)
N (ρ, ζ)+̃

1
2β

(
β

(β + 1)(β + 2)

)
M(ρ, ζ),
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where M(ρ, ζ) = Y(ρ)×̃G(ρ) +̃ Y(ζ)×̃G(ζ), N (ρ, ζ) = Y(ρ)×̃G(ζ) +̃ Y(ζ)×̃G(ρ), and
Mθ(ρ, ζ) = [M∗((ρ, ζ), θ), M∗((ρ, ζ), θ)] and Nθ(ρ, ζ) = [N∗((ρ, ζ), θ), N ∗((ρ, ζ), θ)].

Proof. Since Y, G both are p-convex f-i-v-ms, then from (1), (2), and (3), and by hypothesis,
for every θ ∈ [0, 1], we have

Y∗

([
ρp + ζ p

2

] 1
p
, θ

)
×G∗

([
ρp + ζ p

2

] 1
p
, θ

)

≤ 1
4

 Y∗

(
[νρp + (1− ν)ζ p]

1
p , θ

)
×G∗

(
[νρp + (1− ν)ζ p]

1
p , θ

)
+Y∗

(
[νρp + (1− ν)ζ p]

1
p , θ

)
×G∗

(
[(1− ν)ρp + νζ p]

1
p , θ

)


+
1
4

 Y∗

(
[(1− ν)ρp + νζ p]

1
p , θ

)
×G∗

(
[νρp + (1− ν)ζ p]

1
p , θ

)
+Y∗

(
[(1− ν)ρp + νζ p]

1
p , θ

)
×G∗

(
[(1− ν)ρp + νζ p]

1
p , θ

)
,

≤ 1
4

 Y∗

(
[νρp + (1− ν)ζ p]

1
p , θ

)
×G∗

(
[νρp + (1− ν)ζ p]

1
p , θ

)
+Y∗

(
[(1− ν)ρp + νζ p]

1
p , θ

)
×G∗

(
[(1− ν)ρp + νζ p]

1
p , θ

)


+
1
4


(νY∗(ρ, θ) + (1− ν)Y∗(ζ, θ))
×((1− ν)G∗(ρ, θ) + νG∗(ζ, θ))
+((1− ν)Y∗(ρ, θ) + νY∗(ζ, θ))
×(νG∗(ρ, θ) + (1− ν)G∗(ζ, θ))

,

=
1
4

 Y∗

(
[νρp + (1− ν)ζ p]

1
p , θ

)
×G∗

(
[νρp + (1− ν)ζ p]

1
p , θ

)
+Y∗

(
[(1− ν)ρp + νζ p]

1
p , θ

)
×G∗

(
[(1− ν)ρp + νζ p]

1
p , θ

)


+
1
4

[ {
ν2 + (1− ν)2

}
N∗((ρ, ζ), θ)

+{ν(1− ν) + (1− ν)ν}M∗((ρ, ζ), θ)

]
.

(43)

Taking multiplication of (43) with νβ−1 and integrating over (0, 1), we get

1
β Y∗

([
ρp+ζ p

2

] 1
p , θ

)
×G∗

([
ρp+ζ p

2

] 1
p , θ

)
≤ p

4(ζ p−ρp)β

[∫ ζ
ρ (ζ

p −κp)β−1Y∗(κ, θ)×G∗(κ, θ)dκ +
∫ ζ

ρ (y
p − ρp)β−1Y∗(y, θ)×G∗(y, θ)dy

]
+ 1

2β

(
1
2 −

β
(β+1)(β+2)

)
N∗((ρ, ζ), θ) + 1

2β

(
β

(β+1)(β+2)

)
M∗((ρ, ζ), θ),

= pβΓ(β+1)
4(ζ p−ρp)β

[
I p,β

ρ+
Y∗(ζ)×G∗(ζ) + I p,β

ζ− Y∗(ρ)×G∗(ρ)
]

+ 1
2β

(
1
2 −

β
(β+1)(β+2)

)
N∗((ρ, ζ), θ) + 1

2β

(
β

(β+1)(β+2)

)
M∗((ρ, ζ), θ).

In a similar way as above, for Y∗(κ, θ) and G∗(κ, θ) we have

1
β Y∗

([
ρp+ζ p

2

] 1
p , θ

)
×G∗

([
ρp+ζ p

2

] 1
p , θ

)
= pβΓ(β+1)

4(ζ p−ρp)β

[
I p,β

ρ+
Y∗(ζ)×G∗(ζ) + I p,β

ζ− Y∗(ρ)×G∗(ρ)
]

+ 1
2β

(
1
2 −

β
(β+1)(β+2)

)
N ∗((ρ, ζ), θ)

+ 1
2β

(
β

(β+1)(β+2)

)
M∗((ρ, ζ), θ).
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That is,

1
β

Y

([
ρp + ζ p

2

] 1
p
)
×̃G

([
ρp + ζ p

2

] 1
p
)
4

pβΓ(β + 1)

4(ζ p − ρp)β

[
I p,β

ρ+
Y(ζ)×̃G(ζ)+̃I p,β

ζ− Y(ρ)×̃G(ρ)
]

+
1

2β

(
1
2
− β

(β + 1)(β + 2)

)
N (ρ, ζ)+̃

1
2β

(
β

(β + 1)(β + 2)

)
M(ρ, ζ).

Hence, the required result. �

4. Conclusions and Future Plans

The p-convex (concave) class of f-i-v-ms and various related topics were explored in
this paper. We also used fuzzy order relations and fuzzy generalized fractional integrals
to establish certain H–H inequalities for p-convex f-i-v-ms. We demonstrated that our
conclusions cover a broad range of new and well-known inequalities for p-convex f-i-v-ms
and their variant forms as special cases. In the near future, we will try to analyze Jensen
andH–H inequalities for i-v-m and f-i-v-ms on a temporal scale. Moreover, we will extend
these concepts for (p, h)-convex f-i-v-ms. We hope that the concepts and methodologies
presented in this study will serve as a springboard for future research in this field.
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