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Abstract: The magnetic field intensity will be nondeterminacy with the flow of charged particles
thrown out by solar activities, the overlap of adjacent magnetic islands or non-axisymmetric magnetic
interference in tokamaks and so on. The model of a generalized Oldroyd-B fluid with fractional
derivative under oscillating pressure gradient and magnetic field with some disturbance will be
considered in this paper. The disturbance is regarded as the background noise of the system, and the
model is described by a fractional stochastic differential equation. Time and space are discretized by
L1, L2 schemes based on piecewise linear interpolation and the central difference quotient method.
We demonstrate the effects of the amplitude and period of the oscillating pressure gradient, magnetic
parameter, fractional parameters and noise on the velocity field, and two special cases are given.

Keywords: Oldroyd-B fluid; fractional stochastic differential equation; oscillating pressure gradient;
numerical method

1. Introduction

Fractional calculus is a generalization of classical integral calculus. In recent years, it
has been widely used in diverse fields of science and engineering [1,2]. The main reason
for using derivatives of fractional order in applications is that it can obtain the global
connection with power-law kernel in time and space, and it provides a unique idea to
describe the memory processes and inheritance properties of different substances. With
the development of viscoelastic fluids [3–6], the fractional order operator is widely applied
to them, which have attracted more and more attention in many fields such as academic,
chemical and petrochemical industries. Some related works about the theoretical analysis
and numerical simulation of fractional calculus equations are various, such as Laplace
transform, Hankel transform, finite difference method, finite element method, spectral
method and so on. Generally, the magnetic field has a stabilizing effect on instability,
therefore, magnetohydrodynamic (MHD) has great value in science and industry. Recently,
Shen et al. [7] studied MHD viscoelastic fluid with a heat source, which introduced the
time-dependent fractional derivative in formulating the boundary layer equations, and
obtained the numerical solution by using the finite difference method and L1 algorithm.
Zhang et al. [8] studied the unsteady two-dimensional (2D) flow analysis of MHD fractional
Maxwell fluid induced by variable pressure gradient, and used the implicit finite difference
method to compare with the exact solution. Feng et al. [9] considered the finite element
method for a 2D generalized Oldroyd-B fluid in a magnetic field on convex domains, which
has a special time-space coupled derivative. However, the magnetic field intensity is not
necessarily a constant, for instance, it may be variable in the interior of the earth. Due to
the importance of variable magnetic fields in chemical engineering and geophysics, some
scholars consider the dynamic behavior of viscoelastic fluid under a variable magnetic
field [10,11].

Unfortunately, there are complex physical fields in the practical environment, and the
magnetic field intensity may not be completely represented by several perfect curves. It
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may be disturbed by other factors, such as the flow of charged particles thrown out by
solar activities, the overlap of adjacent magnetic islands and non-axisymmetric magnetic
disturbance in tokamaks. Because of these disturbances, the behavior of material properties
in random magnetic field has attracted more and more attention [12–14]. Although most
papers ignore the possible randomness of magnetic field when discussing the dynamic
behavior of MHD, some researchers have made some achievements in studying the model
of fluid driven by random external force. Xu et al. [15] proved the global existence and
uniqueness of a weak solution of stochastic time-space fractional incompressible Navier–
Stokes equations driven by white noise. P.A. Razafimandimby [16] studied the stochastic
equation describing the motions of 2D incompressible linear viscoelastic fluids subject to
periodic boundary conditions and driven by random external forces. Manil T. Mohan [17]
established the unique global solvability, the existence of a unique ergodic and strongly
mixing invariant measure of the stochastic 2D viscoelastic fluid equations, which arises
from the Oldroyd model for the non-Newtonian fluid flows perturbed by multiplicative
Gaussian noise. There are many studies of fluid driven by random forces or disturbed by
noise, refer to [18–21]. These articles prove the existence and uniqueness of solutions from
the theoretical view, however, few papers use numerical methods to analyze viscoelastic
fluids driven by random external force. The exact solution of the stochastic differential
equation is too difficult to obtain, and the finite difference method [22–24] and finite element
method [25,26] are simple and effective numerical methods.

In this paper, we regard the disturbance in the magnetic field as background noise
and describe the model with a fractional stochastic differential equation. The model
is numerically analyzed by L1, L2 formulas based on linear interpolation and central
difference quotient method, and the influence of the relevant parameters on the velocity
field is described graphically.

2. Mathematical Model

The oscillatory flow of Oldroyd-B fluid under the effect of a magnetic field with
perturbations in a uniform rectangular duct is considered. The continuity and momentum
equations for an incompressible fluid are:

∇V = 0. (1)

and:
ρ(

dV
dt

+ (V · ∇)V) = −∇p +∇ · S + Fb. (2)

The dynamic behavior of a complex MHD between parallel plates does not always
satisfy the classical law, and its mechanical evolution process has obvious memory effects.
In many already published papers, fractional derivatives are widely used in the fluid
model, and fit well with the experimental data of viscoelastic fluid [27,28]. The Laplace
transformation of Riemann–Liouvile fractional derivative contains a fractional derivative
term; however, the initial value of fractional order is difficult to obtain and the physical
meaning is unclear in engineering. Therefore, the Caputo fractional derivative is often used
in engineering and scientific applications [29,30]. The constitutive equation of fractional
Oldroyd-B fluid is given as follows:

(1 + λαDα
t )S = µ(1 + θβD

β
t )A1. (3)

where V is the fluid velocity, ρ, p, S and Fb are the density of the fluid, the pressure, the
extra stress tensor and the body force, respectively. µ, λ, θ are material constants, which
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represent the viscosity coefficient, the relaxation and retardation times. A1 = ∇V + (∇V)T

is the first Rivlin–Ericksen tensor and Dα
t S and D

β
t A1 are defined by:

Dα
t S = Dα

t S + (V · ∇)S− (∇V)S− S(∇V)T,

D
β
t A1 = Dβ

t A1 + (V · ∇)A1 − (∇V)A1 −A1(∇V)T.
(4)

Dα
t , and Dβ

t are the Caputo time-fractional derivatives of arbitrary order α, β. Caputo
fractional derivative of order α > 0 for a function f : (0, ∞)→ R can be written as [31]:

Dα
t f (t) =

1
Γ(n− α)

∫ t

0
(t− s)n−α−1 f n(s)ds. (5)

where 0 ≤ n − 1 < α < n. It should be noted that when α = β = 1. Equation (3) is
simplified as the ordinary Oldroyd-B model and when θ = 0. Equation (3) is simplified as
the fractional Maxwell model.

For the unidirectional flow of the fractional Oldroyd-B fluid in the horizontal rectan-
gular pipe, the velocity field is:

V(u, v, w) = [u(y, z, t), 0, 0]. (6)

Furthermore, we consider that the fluid is permeated by a non-uniform magnetic field
(B0 + ε, 0, 0), B0 is the deterministic magnetic field intensity, ε is a perturbation factor of
the system, which applies in the positive y-direction. σ(B0 + ε)2 represents the magnetic
body force in a low magnetic Reynolds number and σ represents the electrical conductivity
of the fluid. The momentum equation with the pressure gradient in the x-direction is:

(1 + λαDα
t )

∂u
∂t

= ν(1 + θβDβ
t )(∆u)− 1

ρ
(1 + λαDα

t )
∂p
∂x

− σ

ρ
(1 + λαDα

t )u(B0 + ε)2.
(7)

where ν = µ
ρ is the kinematical viscosity, and ∆ is the Laplace operator, ∆u = ∂2u(y,z,t)

∂2y2 +

∂2u(y,z,t)
∂2z2 . It is provided that the pressure is 1

ρ
∂p
∂x = −kcos(ωt), which is a harmonic periodic.

k, ω are constants, which represent the amplitude and periodic parameters of the pressure
gradient. Combined with Equation (7), we obtain:

(1 + λαDα
t )

∂u
∂t

= ν(1 + θβDβ
t )(∆u)−M(1 + λαDα

t )u + g(u, ε) + f (y, z, t). (8)

where M =
σB2

0
ρ is a magnetic parameter, and f (y, z, t) = kcos(ωt) + kωαcos(ωt + απ

2 ).
We regard the term with disturbance as the noise of the background field, which is usu-
ally represented by addictive noise. Using a stochastic differential equation to describe
this situation:

(1 + λαDα
t )

∂u
∂t

= ν(1 + θβDβ
t )(∆u)−M(1 + λαDα

t )u + f (y, z, t) + ξ
dW
dt

. (9)

where ξ is a constant, which denotes the intensity of noise. W is a standard Wiener process
defined on a filtered probability space (Ω, F , Ft, P) [32]. In this paper, the initial and
boundary conditions are follows:

u(y, z, 0) = Φ1(y, z), ut(y, z, 0) = Φ2(y, z), 0 ≤ y ≤ L1, 0 ≤ z ≤ L2.

u(0, z, t) = 0, u(L1, z, t) = 0, u(y, 0, t) = 0, u(y, L2, t) = 0, 0 < t ≤ T.
(10)

where L1, L2, T are constants, Φ1, Φ2 are known functions.
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3. Numerical Discretization

The space (y, z) ∈ [0, L1] × [0, L2] are uniformly divided into M1 × M2 grids. Let
yi = ih1, zj = jh2, i = 0, 1, · · · , M1, j = 0, 1, · · · , M2, where h1 = L1

M1
and h2 = L2

M2
are space

steps in the y and z direction, respectively. Then, we divide the time into N grids, let τ = T
N

be the time step and tn = nτ, n = 0, 1, · · · , N.
Denote:

un
ij = u(xi, yj, tn), f n

ij = f (xi, yj, tn), Wn = W(tn), un− 1
2

ij =
un

ij+un−1
ij

2 , f n− 1
2

ij =
f n
ij+ f n−1

ij
2 .

δtun
ij =

un
ij−un−1

ij
τ , δ2

yun
ij =

un
i+1,j−2un

ij+un
i−1,j

h2
1

, δ2
z un

ij =
un

i,j+1−2un
ij+un

i,j−1

h2
2

, δtWn = Wn−Wn−1

τ .

The implicit difference scheme of Crank–Nicolson is used to discretize on the time
layer of n− 1

2 :

(1 + λαDα
t )

∂un− 1
2

ij

∂t
= ν(1 + θβDβ

t )(∆un− 1
2

ij )−M(1 + λαDα
t )u

n− 1
2

ij

+ f (yi, zj, tn− 1
2
) + ξ

dWn− 1
2

dt
.

(11)

Note γ = 1+ α, 1 < γ < 2, the L1, L2 formulas based on piecewise linear interpolation
are used, then:

Dα
t un− 1

2
ij =

Dα
t un

ij + Dα
t un−1

ij

2

=
τ−α

2Γ(2− α)
(a(α)0 un

ij −
n−1

∑
k=1

(a(α)n−k−1 − a(α)n−k)u
k
ij − a(α)n−1u0

ij

+ a(α)0 un−1
ij −

n−2

∑
k=1

(a(α)n−k−2 − a(α)n−k−1)u
k
ij − a(α)n−2u0

ij) + R1

=
τ1−α

2Γ(2− α)
(

n

∑
k=1

a(α)n−kδtuk
ij +

n−1

∑
k=1

a(α)n−k−1δtuk
ij) + R1

(12)

where |R1| < Cτ(2−α).

Dγ
t un− 1

2
ij =

Dγ
t un

ij + Dγ
t un−1

ij

2
=

τ1−γ

Γ(3− γ)

(a(γ)0 δtun
ij −

n−1

∑
k=1

(a(γ)n−k−1 − a(γ)n−k)δtuk
ij − a(γ)n−1(ut)

0
ij) + R2

(13)

where |R2| < Cτ(3−γ).
Similarly, we have:

Dβ
t un− 1

2
ij =

Dβ
t un

ij + Dβ
t un−1

ij

2

=
τ1−β

2Γ(2− β)
(

n

∑
k=1

a(β)
n−kδtuk

ij +
n−1

∑
k=1

a(β)
n−k−1δtuk

ij) + R3

(14)

where |R3| < Cτ(2−β).
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As for the Laplace operator, ∆un− 1
2 =

∆un
ij+∆un−1

ij
2 =

δ2
yun

ij+δ2
z un

ij+δ2
yun−1

ij +δ2
z un−1

ij
2 , and:

Dβ
t ∆un− 1

2
ij =

τ1−β

2Γ(2− β)
(

n

∑
k=1

a(β)
n−kδt(δ

2
yuk

ij + δ2
z uk

ij)

+
n−1

∑
k=1

a(β)
n−k−1δt(δ

2
yuk

ij + δzuk
ij)) + R4

(15)

where |R4| < Cτ(2−β).
The coefficient aθ

l is:

aθ
l =

{
(l + 1)1−θ − l1−θ , 0 < θ < 1

(l + 1)2−θ − l2−θ , 1 < θ < 2
l = 0, 1, · · · , N − 1. (16)

Then central finite difference formula is used to approximate dWn− 1
2

dt :

dWn− 1
2

dt
≈ Wn −Wn−1

τ
= δtWn, n = 1, 2, · · · , N (17)

Applying the Wiener process, W(tn)−W(tn−1) ∼ N(0, tn− tn−1). That is, Wn−Wn−1
√

τ
∼

N(0, 1). Omitting the small quantity term Ri, i = 1, · · · , 4, we get the following difference
equation in this paper:

λα τ1−γ

Γ(3− γ)
(a(γ)0 δtun

ij −
n−1

∑
k=1

(a(γ)n−k−1 − a(γ)n−k)δtuk
ij − a(γ)n−1(ut)

0
ij) + δtun

ij

+ Mλα τ1−α

2Γ(2− α)
(

n

∑
k=1

a(α)n−kδtuk
ij +

n−1

∑
k=1

a(α)n−k−1δtuk
ij) + M

un
ij + un−1

ij

2

− ν
δ2

yun
ij + δ2

z un
ij + δ2

yun−1
ij + δ2

z un−1
ij

2
− νθβ τ1−β

2Γ(2− β)

(
n

∑
k=1

a(β)
n−kδt(δ

2
yuk

ij + δ2
z uk

ij) +
n−1

∑
k=1

a(β)
n−k−1δt(δ

2
yuk

ij + δzuk
ij))

=
f n
ij + f n−1

ij

2
+ ξδtWn.

(18)

The initial and boundary conditions are discretized into:

u0
ij = Φ1(yi, zj), (ut)

0
ij = Φ2(yi, zj), i = 0, 1, · · · , M1, j = 0, 1, · · · , M2.

un
0j = un

M1 j = un
i0 = un

iM2
= 0, n = 0, 1, · · · , N.

(19)

4. Results and Discussion

Oldroyd-B fluid with oscillating pressure gradient, magnetic field and addictive noise
is considered:

(1 + λαDα
t )

∂u
∂t

= ν(1 + θβDβ
t )(∆u)−M(1 + λαDα

t )u + f (y, z, t) + ξ
dW
dt

u(y, z, 0) = 0, ut(y, z, 0) = 0, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1.

u(0, z, t) = 0, u(L1, z, t) = 0, u(y, 0, t) = 0, u(y, L2, t) = 0, 0 < t ≤ T.

where f (y, z, t) = kcos(ωt) + kωαcos(ωt + απ
2 ), ξ is a constant, which denotes the size of

the noise.
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The effect of parameters on the amplitude and period of velocity field is presented.
Select a point (y = 0.5, z = 0.5) in the fluid and observe its variation over time with
λ = 2, ν = 0.2, θ = 1.5, ξ = 0. Figure 1 shows the effect on the fluid velocity when the
amplitude of the pressure change. It can be seen that the change is consistent with our
feelings. When the amplitude of pressure gradient increases, the amplitude of velocity
increases, but the period of velocity remains unchanged. Figure 2 shows the influence of
the period of the pressure gradient on the velocity field. When the period of the pressure
gradient becomes smaller with the increase of ω, not only the amplitude but also the period
of the velocity field becomes smaller.

0 0.5 1 1.5 2 2.5 3

t

-4

-3

-2

-1

0

1

2

3

u
(x

=
0
.5

,y
=

0
.5

,t
)

k=5

k=10

k=15

k=20

Figure 1. Velocity varies with amplitude of pressure gradient k.

0 0.5 1 1.5 2 2.5 3

t

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

u
(x

=
0
.5

,y
=

0
.5

,t
)

= /2

=

=2

=4

Figure 2. Velocity varies with period parameter of pressure gradient ω.

Figure 3 shows the effect of the magnetic parameter on velocity, it illustrates that the am-
plitude of fluid oscillation decreases when magnetic parameter M increases. Figures 4 and 5
present the influence of fractional parameters on velocity. Figure 4 demonstrates that
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by increasing the fractional parameter α, the amplitude of fluctuation increases slightly.
However, the degree of oscillation decreases when the fractional parameter β increases as
shown in Figure 5.

0 0.5 1 1.5 2 2.5 3

t

-2

-1.5

-1

-0.5

0

0.5

1

1.5

u
(x

=
0
.5

,y
=

0
.5

,t
)

M=2

M=4

M=6

M=8

Figure 3. Velocity varies with magnetic parameter M.

0 0.5 1 1.5 2 2.5 3

t

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

u
(x

=
0
.5

,y
=

0
.5

,t
)

=0.2

=0.4

=0.6

=0.8

Figure 4. Velocity varies with fractional parameter α.
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0 0.5 1 1.5 2 2.5 3

t

-2

-1.5

-1

-0.5

0

0.5

1

1.5

u
(x

=
0
.5

,y
=

0
.5

,t
)

=0.2

=0.4

=0.6

=0.8

Figure 5. Velocity varies with fractional parameter β.

In addition, the impact of the sizes of noise to the solution behavior is discussed, and
solutions vary with time under different intensities of noise are presented. Figures 6 and 7
describe the variation of solutions at the midpoint (y = 0.5, z = 0.5) with time under
fixed parameters, such as α = 0.5, β = 0.4, γ = 1.5, M = 0.5, k = 10, ω = 2π, and fixed
Brownian path by using the command ′randn(‘state′, 100)′ in MATLAB. It can be noted
that the amplitude of the velocity field is only slightly disturbed under small noise size,
which becomes stronger and stronger with growing the scales of noise in a certain range,
but the intrinsic shape of velocity is not changed. When the intensity of noise continues
increasing, which will even become the dominant factor in the whole system, the flow
velocity will be disordered. It can be concluded that the smaller the inherent amplitude in
the system is, the worse the anti-interference ability (Figures 6 and 7).

We also observe the influence of different Brownian paths with the same intensity of
noise on the velocity. Figure 8 shows the comparison of velocity among three different
Brownian paths and without noise. It can be seen that for different Brownian paths, the
velocity may be increasing or decreasing. It is worth emphasizing that it is similar to
the stochastic resonance phenomenon in the signal, the presence of noise sometimes can
enhance the velocity.
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0 0.5 1 1.5 2 2.5 3
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Figure 6. Velocity varies with intensity of noise ξ when k = 10.
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Figure 7. Velocity varies with intensity of noise ξ when k = 1.
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0 0.5 1 1.5 2 2.5 3

t
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-1.5

-1

-0.5

0
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1

1.5

2

u
(x
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0
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=

0
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=50

=50

=50

=0

Figure 8. Velocity varies with different Brown paths.

Special case I. Consider a mixed diffusion-wave equation without white noise, which
has an analytic solution when ξ = 0. When other parameters and known functions are

λ = 1, M = 1, ν = 1, θ = 1, α = 0.7, β = 0.8, γ = 1.6, f (y, z, t) = sin(πy) sin(πz)[ Γ(4)t3−γ

Γ(4−γ)
+

3t2 + Γ(4)t3−α

Γ(4−α)
+ (1 + 2π2)(t3 + 1) + 2π2 Γ(4)t3−β

Γ(4−β)
], Φ1 = sin(πy) sin(πz), Φ2 = 0, the exact

solution to the equation is u(y, z, t) = (t3 + 1) sin(πy) sin(πz).
We apply the finite difference method to obtain the numerical solution at t = 1 , which

is presented in Figure 9. Figure 10 shows the analytical solution at t = 1.

0

0.2

1

0.4

0.6

0.8

0.8

1

1

u
(y

,z
,t

=
1
)

1.2

0.6 0.8

1.4

Numerical solution

z

1.6

0.6

1.8

y

0.4

2

0.4
0.2

0.2

0 0

Figure 9. Numerical solution of velocity distribution.
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1
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0.8

0.8
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1

u
(y

,z
,t

=
1
)
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0.6 0.8

1.4

Exact solution

z

1.6

0.6

1.8

y

0.4

2

0.4
0.2

0.2

0 0

Figure 10. Exact solution of velocity distribution.

Several fixed lines for comparing are selected, z = 0.3, 0.4, 0.5. Figure 11 presents the
velocity distribution with y. By comparison, we can find that the numerical solution fits
well with the analytical solution.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

u
(y

,z
,t

=
1
)

Numerical solution at z=0.3

Numerical solution at z=0.4

Numerical solution at z=0.5

Exact solution at z=0.3

Exact solution at z=0.4

Exact solution at z=0.5

Figure 11. Comparison of exact solution and numerical solution in special case I.



Fractal Fract. 2022, 6, 322 12 of 14

Special case II. Brownian motion with drift is considered,

dX(t)
dt

= a + ξ
dW(t)

dt
, X(0) = X0.

where a and ξ are constants. It is worth noting that Equation (9) is simplified as the above
stochastic differential equation when λ = 0, ν = 0, M = 0, θ = 0, f = a, and u(y, z, t) are
only dependent on t. The exact solution is:

X(t) = X0 + at + ξW(t).

Taking a = 1, ξ = 1, and X0 = 1, and the central finite difference method with a step
size τ = 1

1000 is applied.
Figure 12 shows the simulation of a single Brownian path. It can be seen that the finite

difference method is very effective for the approximation of stochastic differential equations.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

0.5

1

1.5

2

2.5

3

3.5

X

exact solution

numerical solution

Figure 12. Comparison of exact solution and numerical solution in special case II.

5. Conclusions

The flow model of Oldroyd-B fluid subjected to magnetic field, oscillating pressure
gradient and background noise is considered in this paper. By comparison, we can observe
that the amplitude of the velocity field increases with the increasing of the amplitude of
the oscillating pressure gradient, and the large period of the oscillating pressure gradient
can increase the period and the amplitude of the velocity field. It can also be seen that the
enhancing of magnetics and diffusion can reduce oscillation. However, the convection can
slightly enhance the amplitude of velocity. In addition, by fading the noise and comparing
it with the ideal case, it is concluded that the stronger the noise, the more obvious the
velocity oscillation; however, the existence of small noise does not change the general trend
of velocity variation. The uncertainty of velocity variation is revealed by different Brownian
paths with the same intensity. We can control the relevant parameters artificially to make
the stochastic resonance phenomenon apply better to engineering.

Author Contributions: Supervision, modeling, C.M.; methodology,writing—original draft, P.Y.;
writing—review and editing, C.M. and P.Y. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.



Fractal Fract. 2022, 6, 322 13 of 14

Acknowledgments: This research has been funded by the Undergraduate Education and Teaching
Reform Project of Beijing University of Science and Technology (Grants No. JG2019M37). We greatly
appreciate the anonymous reviewers for the insightful comments that improved this manuscript
greatly.

Conflicts of Interest: The authors declare no conflict of interest.

Symbols

∇ gradient operator V viscoelastic fluid velocity
ρ constant density of the fluid p pressure gradient
S the extra-stress tensor Fb body force
λ retardation time µ dynamic viscosity of the fluid
α, β, γ order of the fractional derivative A1 first Rivlin–Ericksen tensor
ν dynamic viscosity coefficient of fluid B0 magnetic field intensity
ε perturbation factor σ electrical conductivity of the fluid
∆ Laplace operator k amplitude of the pressure gradient
ω periodic of the pressure gradient M magnetic parameter
ξ intensity of noise W Wiener process
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