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Abstract: In this article, we investigate a sideways problem of the non-homogeneous time-fractional
diffusion equation, which is highly ill-posed. Such a model is obtained from the classical non-
homogeneous sideways heat equation by replacing the first-order time derivative by the Caputo
fractional derivative. We achieve the result of conditional stability under an a priori assumption. Two
regularization strategies, based on the truncation of high frequency components, are constructed for
solving the inverse problem in the presence of noisy data, and the corresponding error estimates
are proved.

Keywords: sideways problem; non-homogeneous fractional diffusion equation; ill-posedness; stability
estimate; regularization method

1. Introduction

Fractional partial differential equations arose from the studies of Lévy motion [1],
continuous random walk [2] and high-frequency financial data [3], which has a wide range
of applications in some scientific fields, such as chemistry, physics, mechanical engineering,
fluid mechanics, signal processing and systems identification, control theory, electron
transportation, viscoelasticity, image processing, and so on [4-13]. Moreover, fractional
derivatives have been found to be more flexible in describing some practical phenomena
than the traditional integer-order derivatives. In particular, fractional diffusion equations
play an extremely important role in the study of some anomalous diffusion processes.
These equations can describe the dynamics of various non-local and complex systems.
Kinds of anomalous diffusion can be modeled by the following time-fractional diffusion
equation: find the temperature u(x, t) from known boundary temperature u(1,t) = ()
measurements satisfying the following system

%—uxxzo, x>0,t>0,
u(x,0) =0, x>0, )
u(l,t) = ¢(t), t>0,
u(x,t) |x—e0 bounded,
where (t) is given function (usually in L?(R)), %VTK is the Caputo fractional derivative of
order v (0 < v < 1) defined by [14]
0"u 1 Fou(x,s) ds
9r_ 1 2
otV 1"(1—1/)/0 ds (t—s)’ 0<v<i, @
"u _ ou(x,t) B
w - e v VL ®)
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The problem (1) in the case of v = 1, i.e., the following problem

Ut — Uyy =0, x>0,t>0,
u(x,0) =0, x>0, @)
u(l,t) = ¢(t), t>0,

u(x,t) |x—o00 bounded,

has been studied extensively in recent decades by many methods [15-28]. Tuan et al. [29]
and Triet et al. [30] extended this work to the non-linear case.

When 0 < v < 1, Xiong et al. [31,32] proposed an optimal filtering regularization
method for calculating an approximate solution of the fractional sideways heat equation
where the spatial domain is the interval [0, 1]. Li et al. [33] tackled the inverse problem of
recovering the temperature and flux distribution in the domain 0 < x < 1 for (1) from the
boundary data at x = 1, but the conditional stability result is not given. Zheng et al. [34-36]
obtains a stable estimate of temperature distribution by utilizing the spectral regularization
method, and numerical example shows that the computational effect of their methods
are satisfactory. Zhang [37] applied a Tikhonov-type regularized method to construct an
approximate solution and overcome the ill-posedness of (1). The a-posteriori convergence
estimates of logarithmic and double logarithmic types for the regularized method are
derived. Moreover, the authors verify the effectiveness of their method by doing the
numerical experiments. Furthermore, there are also some articles that discuss the fractional
sideways heat equation in 2-dimensional and higher-dimensions in space (see, e.g., [38—43]
and the references therein).

To the best of our knowledge, few investigations has been performed with respect
to a sideways problem of the non-homogeneous diffusion equation, and estimating the
heat flux at the inaccessible surface is more difficult than estimating temperature. Liu and
Chang in [44] addressed a three-dimensional non-homogeneous sideways heat equation in
a cuboid by a Fourier sine series method, and the analysis of the regularization parameter
and the stability of solution was worked out. According to them, this method is quite
accurate. Luan in [45] discussed the two-dimensional non-homogeneous heat equation
in the presence of a general source term, and proposed a kernel regularization method
to recover the temperature and heat flux distribution from the given data. However, the
above two articles only consider the case of integer order. Hence, in contrast to the previous
work, we consider a sideways problem of the non-homogeneous time-fractional diffusion
equation, which occurs in many applications related to reaction-diffusion

%—Mxef(x,i‘), x>0,t>0,
M(X,O):O, x>0,
u(Lt) =g(t), t>0,
u(x,t) |x—oco bounded,

©)

where the function f(x, t) is the heat source density. We first obtain an analytical solu-
tion to (5) via Fourier transform, and give the result of conditional stability under an a
priori assumption. Due to the problem considered is severely ill-posed, it is impossible
to solve it using classical numerical methods. Therefore, we propose dynamic spectral
and Fourier regularization method, the goal here consists of recovering not only the tem-
perature but also the heat flux distribution from the given data. Furthermore, for both
regularization strategies, in the presence of noisy data, we establish and prove the stability
and convergence estimates in the whole domain, i.e., including the case 0 < x < 1 and the
case x = 1.

The remainder of the paper is organized as follows: in Section 2, we give an analysis
on the ill-posedness of the non-homogeneous fractional sideways heat equation. The
conditional stability result is then given in Section 3. In Sections 4 and 5, error estimates for
determination of temperature and flux distribute are derived. Finally, we draw a conclusion
to our method.
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2. Mathematical Analysis of the Problem

In order to simplify the discussion, our theoretical analysis will be performed in L?(IR)
and define all functions to be zero for t < 0. Let § denote the Fourier transform of g(f)
defined by

80 = o= [ st

and || - ||, denotes the norm in Sobolev space H,(R) defined by

0, )l = ([ ela oa&za)

When p = 0, || - |, = || - || denotes the L?(R) norm. Furthermore, we introduce the

following norm
15 onzy = ( ] 15 ||2dx) .

Applying the Fourier transform with respect to ¢ to both sides of (1), we obtain in the
frequency space the following second order ordinary differential equation

{ e (x,8) — (i€)0(x,8) = —f(x,8), CER,
1(1,8) = g(%), CER, (6)
1(x, &) |x—o0 bounded, FeR.

The standard calculation procedure yields the solution of (6) as

R _ SM1(@@—@)
u(x,gf)—e —I—/ f =5 ds, 0<x<1, ?)
and equivalently
u(x t) = \/ﬁ/ ( (1) 4( ) 4+/ mm%i%$_xnw>ﬂwgogx<L ®)
where « « a7t %4
7(§) = (i2)8 = l2f# (cos(YT) +isign(@)sin(*T)), VR ©

Note that the real part of 7(§) is increasing positive function of . Hence, the term
|e(1=2)7(&)| and | sinh (7(&)(s — x))| increase rather quickly when |¢| — oo, small errors in
the data can blow up and ultimately destroy the solution for x € [0,1). Comparing this with
homogeneous fractional sideways heat equation [31], it is no doubt that the problem (5) is
much more ill-posed, and some regularization methods are in order.

Remark 1. We do not consider the case f(x,t) = 0 in this paper. In fact, if f(x,t) = 0, our
problem is a homogeneous time-fractional sideways heat problem. We only note that, using our
method, we obtain again the results of [33].

Remark 2. By using the Fourier transform, the solution of general problem (5) where the data g is
fixed at an specific point xo € (0,1], can be expressed as

/ smh (t(&)(s —x))
©(¢)
If we put xo = 1 in (10), we will obtain (7). In this context, the similar property can be acquired for

this general problem and it is also an ill-posed problem. Furthermore, the similarity in (10) and (7)
indicates that the methods using in the present paper are also applicable to solve the general problem.

a(x, &) = eT@ ) g( ds, 0<x<1  (10)
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Lemma 1 ([45]). Forarbitraryz € C, x € [0,1) and 11 € (x, 1], we have
sinh ((77 — x)z) < e(n—x)R(z) , an
z 2]
sinh ((17 — x)z) -
e < (77 —x)e' ’ (12)
| cosh(xz)| < e(2) < ¥, (13)

where R(z) denotes the real parts of z.

Lemma 2 ([45]). For arbitrary c,d, p > 0, the following inequality holds

P+dp, 0<p<l,
(c+dyp <7 P=
1P 4 dP), p>1.

Lemma 3. If s # 0, then the function h(s) = eu;x)s
1

S = ="

gets its minimum hyin = (1 — x)e at

So as to acquire a more sharp convergence, we use the following a priori condition
[[u(0,-)[| < E. (14)

Furthermore, since the sinh(-) function is exponentially increasing, we must find a sharply
decreasing function to suppress its growth. Therefore, we also give the following assumption

/ f(s,8)2ds < eI, veeRr (15)

and the measured data (g, f5) satisfy
g — &Il +IIf *f5||L2(0,1;L2(R)) <90 (16)
Throughout this paper, we denote the real part and imaginary part of 7(&) as follows

a:=R(t(¢)), b:=3(t(¢)) (17)

3. A Conditional Stability Estimate

The object of stability estimates is to describe how much the development of solution
from data magnifies errors, when noise contaminated the data. Next, we give the main
results of this part.

Theorem 1. Suppose that ii(x, &) given by (7) be the exact solution of problem (5) in the frequency
space, and (16) is satisfied, then the following estimate holds for 0 < x < 1

()l <\l

. 22x 7I|?
Mz“zuuman el + 1715 namy) + oA oz

0112(®))

where C1 and Cy are constants that only depends on x.
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Proof. By the Parseval’s identity, we have
2 R 2
[uCx, O] =[la(x &)
1 sinh (t(s —x)) , |?
_ eT1=X)5 4 / SN T 4| d
<1 g+ f . s| dg
A (18)
1 sinh (t(s —x)) , |
[ Jerigs [PEEAEE ) e,
o1 g+ f = g
Ay
Next, we divide the argument into two steps.
Step 1. Estimate the term A; in (18). By Lemma 2, we have
1 _sinh (t(s — x)) , |?
A <2 ef(1=%) 524z 12 / M ) | de. 19
<2 Jegfag2 ) S 5| d¢ (19)
An A
Note that
Il =122 <1, (20)
we obtain
An<2 [ AT0-9g1248 < 220-9)| 4|2, @1)
Ig1<1
Using Cauchy-Schwarz integral inequality, (12) yields
LI 1|sinh(t(s — x)) |*
hw [ ([l i) ([0 ),
2= |r;‘|<1(xf| x T })d
1 1
< ( [ f|2ds> ( / eZT(S"‘)ds)d@‘ 22)
|g1<1 x x
2(1-x) || £]|2
< X)HfHLZ(O,l;LZ(]R))'
Substituting (21) and (22) into (19), we obtain
A < Ci(ll8]12 2112
1 <G8+ HfHLZ(o,l;LZ(R)))' (23)
where
Cy = 22017, (24)
Step 2. Estimate the term A, in (18). Again, in view of Lemma 2, we have
1 _sinh (t(s — x)) , |?
Ay <2 (10124 +2/ / ST W) s e 25
ps2f et glar2 [ [ : 25)
An A

We first estimate Aj;. Using (7) and Lemma 2, we have

_ 1 sinh(ts)]|?
Ap =2 (o, _/ - } d
21 o1 [ [u( ¢) A J— g
_ _ 1 sinh(ts) , |
<4 e ™2 |4 (0, 2d+4/ T“/ Smd‘d.
<af Rl o s [ e [T e

A~2] A~22
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By (17), Lemma 2, Holder inequality, we have

2(0,8) — / fsmh Ts) /1 ;sinh(ts) ‘ rd‘:
2(0,8) / Asmh >x
) e

0o /01 / mr(Ts)dsDxdé
i /|.§\>1(’ﬁ(0’ §)|2)1_x <2€_2a Jo ds 2>xd§
§</|§|>1 |12(0, §)|2d§> 1x</€>1232“ 2(0,&) — /01 f@ds

" ( /\€|>1 #(0,6) ’2d€> - ( /\§|>1 2e7

By. Cauchy-Schwarz integral inequality and (11), we obtain

1, sinh 2 1, 1 sinh
./O fsm T(Ts)dS’ <2€_2a(/0 |f|2ds>(/0 |sm T(TS) |2ds>
o 1 - 1 p2sa
<2¢ (/0 £ ds)( | |T|2ds) (26)
Lo 1
<o [ 1P ) i

<[ Gaoap" [(

n (262,1 / f81nh(Ts)ds
0 T

— (la(o, &))" (26»-2“

Ig>1

/‘1 fsinlr;(*rs)

2d€) X

/01 pon(zs) ds‘zdé‘)x.

26—20

Therefore,

i <( [ m00Pw) ([, Vi)

1—x 1 X
- 2 212 1
" (/§>1 20, dg) (/§>12(/ 7Fds)3 Izdé)
2-2 2 2-2 2
<||a(0,¢) H xH\[SH 2% A 2012 my)
=2%||a Hz 2x( L2 0,1;L2(R ))
Likewise, we have
- 1 .sinh(ts) | |? >1x< Asmh )x
Ay < ——ds| d
22_</|é:>1 /0 A /§\>1 %

Lo (F0Pe) (1 ez'T'Sdsﬂ (TR d@)x

< foo (£ 0)557]

<1X

2x

(O.LLA(R))

L2 (R))
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Combining the estimates of A1 with Ay, we obtain

22x

Ap < 2x+2||ﬁ(0 ¢) H H H + HfHL2(01L2 (R)) >+4el x”fHLZ (0,1;L2(R))" (27)

Next, we estimate Ap. By Cauchy-Schwarz integral inequality, (12) and Lemma 3,

we obtain
Am<2f ( / 1 |f|2ds>( / l d5>d§
o 70 ) ([ ) -
g[>1 </ P ) 2TOIX) %
1—x)e

HfHL2(01 ;L2(R))"

sinh(7(s — x)) 2
T

<2(

Inserting (27) and (28) into (25), we have

2x 2112x

200,8)|1772(|| (29)

o12®)) T2

(Ole(R))’

where
Cy =4 ™ +2(1 —x)e. (30)

Substituting (23) and (29) into (18), and using Lemma 2, we obtain
[2(x, E) || <V A1+ VA
N 2112
<GB+ 1oz

n 2-2
+\/2X+2Hu(0 g || x H || + Hf||L2 Ole +C2||fHL2 OlLZ(R))

where C; and C; is given by (24) and (30), respectively. O

4. Determination of the Temperature Distribution

In this part, we use the dynamic spectral method to recover the temperature distri-
bution from the measured data. Since the matter of instability lies in the noise of data
in the high frequency components, naturally a “corrector” is added to these in order to
control their growth. As a result, one may obtain a stable approximation. Suppose f is
the regularization parameter, motivated by [31], we contemplate the following regularized
solutions in the frequency domain:

Method 1
T (&) 1 [ (s, 7)) 4 %) > /3,
(X C) e—20(1-x) T(g)(l foéf 5 T(é) smh T(Z)(S x)) e_a(l_x) B \/B (31)
Method 2
5 eT(©O1-2) 60 (&) +f f5 Smh T(Efé)(s ) ds, ea(l-x) > VB
0 (X C) = e—a(l-x) smh —a(1— (32)
p 7[ ()(1 x) +f f<5 (Ti(g)(s x))ds], e—a(1-x) ~ \/B

Method 3
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; rO0=0g5(g) 4 1 (5, ) Tl g, e 1 >
wig(x, ) = g%ﬁg i [e7(6)1=%) gb +fx Fos, g)Lﬂh )(s Dgs], e~21-2 < /B. (33)
Generally,
@ &)+ [LFs, mnh)&gyfxnds e-a1-) > /B,
(x ¢) = {ezh;jf[ () (1-%) g0 (& +,f Fo(s,€) §E@££T%igﬂlds} e~a1-%) < /B, (34)

where 7y > 0 is a real number. Because the three spectral methods are very similar, then we
only give the properties of the first two methods.

Remark 3. It is apparently that the reqularization solutions approach the exact solution if § — 0
asé — 0.

Lemma 4. If condition (14) and (15) hold, B(¢) = 1(0,¢&) — fo Smh( *) ds, then
[BE)|| < E+ Ny,

where Ny is a constant.

Proof. Successively using the triangle inequality, (14), Cauchy-Schwarz integral inequality,
(12) and (15), we obtain

B <lao.a))+ | [ 720 >dsH

o L2 (4 P2 o )]
<t [ [7 ([ leas /01 s ) g :
<t+ ([ _de)

It is easy to know that the generalized integral on the right-hand side of the last
inequality converges, here we introduce the notation

Ny = (/w e '“d@)l (35)

IBE)II < E+ Ny,

smh (Ts)

Therefore,

where Nj is a constant. [

Theorem 2. Let ii(x, {) given by (7) be the exact solution of problem (5) in the frequency space,
ﬁ‘;(x, &) given by (31) be the regularized solution, condition (14)-(16) hold. If the regularization
parameter B is selected dynamically

B(x) —22x2<2fx)”( . sz])z(”). (36)
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Then, for a fixed x € (0,1), we have

1—x —§
Hu,@(x,-)—u(x,-)ugzz_x(zfx) S (E+2N;) " 46,/(1—x)e. (37)

Proof. By the triangle inequality, we have

Hu‘},(x,) —u(x, )| < ||u%(x, ) - uﬂ(x,~)|| + ||u5(x, D —u(x,)|- (38)

Il I,

Next , we divide the argument into two steps.
Step 1. Estimate the term Z; in (38). It follows immediately from Parseval’s equality
and the triangle inequality that

7 = ajx) - ()|
—2a(1—x) ) 1 _sinh -
_H min {1, e } |:er(1x) (g\,() _g,) + ( ) _ )Sln (T(S x)) dS:| ‘
.B X T
—2a(1—x)
< H min {1, ¢ 5 }eT(lx) (& —9)
s}
e—2a(1-x) 1 sinh (T(S _ x))
+Hmm{1, 5 }/x (f 7f) s
I

By (17) and (16), we obtain

e—2a(1-x)

B

plmatbi)(1-x)
#(85*8)

oA < 5B 2.

IN

e(u+bi)(1—x) (gf\5 - g)

Using Cauchy-Schwarz integral inequality, (12), Lemma 3 and (16) yields

S

_ /xl (- f) sinh (T(X—S))d

I, <
T

<|[([170 - roas) ([ o -mras)|
<|[( [ 17 eas) S

<64/ (1 —x)e.

Hence,

Ty < 0B 2 +64/(1—x)e. (39)
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Step 2. Estimate the term 7, in (38). Again, by the Parseval’s identity and the triangle
inequality,

To =[[ap(x,) = (x|

:H in {1 e—2a(1-x) }
©B
: (er(lx)ng/ stmh (TTS ))ds> N (er(lx)gjL/xlfSinh (Tis _x))ds) H

7211
<[ (1-min {55 g

e e

I,

We start by estimating the first term above. Let
e—2a(1—x) .
Bi(a) = (1 - ﬁ>e .
Using (7) and (17), we obtain

=] (1-min 1, 2 e gy - |

2(0,8) —/Olfsmh(fs)dsH.

< sup Bia) -

E—2a(lfx)§5

By elementary calculations, it is easy to find the zero point a* of B} (a) satisfies

e—Za*(l—x) _ :Bx

2—x’

and a* maximize the function By (a). Thus,

By(a) < By(a") = (1—2fx> (f_xx)” (40)

Using Lemma 4, we have

f1§<1—2fx)<2%}>mx%E+Nﬂ.
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Now we estimate Z5. Using Cauchy-Schwarz integral inequality, (12), (17), (15), (40),
(9) and (10) yields

—2411 x) _
IN2§H<1 )e / sinh(z(s x))dse‘”

< sup B«a)[ () |f|2ds>( [ ez|r|<s-x)ds>62axd€r
N

e—2a(1 x>§/3
1
L 32|T|(1*x) 5 2
ds | ———e2lxg
[, 1) e

e*Za(lfx)Sﬂ
x ‘Bx 2(1—x)
<({1-—
—( 2—x)<2—x> Ni
Therefore,
x ’Bx 2(1—x) 1 X)
< — .
., < (1 2_x> (2_x> (E+2Ny) (41)

Substituting (39) and (40) into (38), we obtain
[y (x, ) = u(x, )l (42)

<GB 2 +6y/(1—x)e+ (1— Zxx) <2ﬁxx>“ ! (E+2Ny) :=h(B).  (43)

Minimizing the right-hand side of (42) with respect to B, we can obtain (36). Hence,
(37) hold. O

Theorem 3. Let ii(x, {) given by (7) be the exact solution of problem (5) in the frequency space,

62 (x, &) given by (32) be the regularized solution, condition (14)—(16) hold. If the regularization
parameter B is selected dynamically

5 5 2(1—x)
B(x) = x <E+2N1> : (44)
Then, for a fixed x € (0,1), we have

1—x

[0 (x,-) —u(x,-)|| < (E+2Ny) " 46/ (1—x)e. (45)
Proof. By the triangle inequality, we have
o3 ) — e )| < 2, ) — o | + e ) —ux )l )
I3 Z-4

Next, we divide the argument into two steps.
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Step 1. Estimate the term Z3 in (45). Taking a similar procedure of the estimate of Z;,
we have

Ty =05 (x,-) — 0p(x, )

e—a(1—x) )
SH min {1, }eT(lx) (8° -39

T =

e—a(1—x)
VB

S(S,Bf% +64/(1 —x)e.

e(ﬂ%’bi)(l*){) (g\_ts _ g)

Step 2. Estimate the term 7, in (45). By the Parseval’s identity, we have

I4 :H’UA[; X, ﬁ

—a(l x)
H(lmm{ )

() ey

Iy

We start by estimating the first term above. Let

By(a) = (1 - e_ll(\/l;)e_”x.

Using (7) and (17), we obtain

e Lo
00,0 [ g

< sup  By(a)
a(l—x <\/>

By elementary calculations, it is easy to find the zero point a* of B} (a) satisfies

e—a*(l—x) _ \/Bx,

and a* maximize the function B;(a). Thus,

By(a) < Ba(a”) = (1—x) (v/Bx) °*. (48)

By Lemma 4, we have

s < 1—x(fx)17(E+N1)
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lo(0,-) —

Now we estimate Z;. Using Cauchy-Schwarz integral inequality, (12), (17), (15), (9),
(47) and (35) yields

o ol (]
21—x(f x)

Therefore,

T, < (1—x)(v/Bx) T (E +2Ny). (49)

Substituting (46) and (48) into (45), we obtain

[0 (x, ) — u(x, )| < 1+0y/(1—x)e+(1—x (fx) “(E+2Np) = hy(B). (50)

Minimizing the right-hand side of (49) with respect to 8, we can obtain (43). Hence,
(44) hold. O

Remark 4. In Theorems 2 and 3, we choose the regularization parameter 5 to depend on the position
of x , which will justify our use of the phrase “dynamic spectral”. Moreover, we can find that the
estimate of Theorem 3 is better than the estimate of Theorem 2.

It is easy to see that two errors in Theorems 2 and 3 are not near to zero, if 6 fixed and x
tend to zero. Hence, the convergence of the approximate solution is very slow when x is in
a neighborhood of zero. In addition, considering that the sinh(-) function is exponentially
increasing, to retain the continuous dependence of the solution at x = 0, we have to
introduce some stronger a priori assumptions

[u(0, )], <E. p>0, (51)

1, @
(1+ Cz>p/ |f (s, 6)’2115 <e Sl veeRr (52)
0
Next , we only give error estimate at x = 0 for (32).

P
2

Lemma 5. Let condition (50) and (51) hold, B(¢) = (1 + ¢2)

[ ( )_ fol f‘sinhT(Ts) dS], then
IBE)|I < E+ Ny,

where Ny is a constant.

Theorem 4. Let ii(x, {) given by (7) be the exact solution of problem (5) in the frequency space,
ﬁg (x, &) given by (32) be the reqularized solution, condition (16), (50), (51) hold. The regularization
parameter B is chosen as

1
G &

where0 <r <1,C(a*) = - Hzp < 1, a* is a constant. Then, the following inequality hold

(0,)]| < C(a")d" " +dv/e+ [1 - C(a")] (rln(15> ' (E+2N;), p>0. (54)
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Proof. By the triangle inequality, we have

[05(0,-) — (0, )| < [[05(0,-) = 0p(0, )| + [|op (0, -) — u(0, )] - (55)

I5 Ié

Next, we divide the argument into two steps.
Step 1. Estimate the term 75 in (54). In view of the Parseval’s equality, the triangle
inequality, Cauchy-Schwarz integral inequality, (12), Lemma 3 and (16), we have

s =[|03(0,) — 05(0,-) |

gHmin{l,i/; (80— 9)| + Hmin{l,e\/%}/ol (f‘s—f)sm};(“)ds
S BRI

<6pI + {/_0:0 (/01 o —f|2ds) (/01 eZSTdS>d(;’:|%

<5B71+6\/e.

Step 2. Estimate the term Zg in (54). By the Parseval’s equality and the triangle
inequality, we obtain

I =|/9(0, ) — (0, -)||

o 20 e Sl S 0 e

15 I

We start by estimating the first term above. Let

Using (7), and note thata < || %, we obtain

b= (i oo - [ 5

<€f‘<113/3(1—‘;%)(1+§2)—5 [ﬁ(o,(f)_/o fmrﬁlr(rs)ds} 11a)

su NP ! ;sinh(7s) b
< sw m 0.0 [ 7| 0+

By elementary calculations, it is easy to find the zero point a* of B}(a) satisfies

where )
Ca) = —F <1, (56)
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and a* maximize the function Bs(a). Thus,
By(a) < By(a*) = [1 = C(a")] (m@) - (57)

By Lemma 5, we obtain

15 < [1—C(a*)]< (E+ Ny).

In 1)
VBC(a¥)
Now we estimate Zg. Using (56) and Lemma 5 yields
7& 1 N . ?
7 §H <1 - 6) (1+e2) " /0 fismi(”)ds(l +22)

p
v L .sinh(7s) 4
< sup Bs(a) /0 fi’r ds(1+ 62) 2

g—u(lfx)é\/g

Therefore,

7, < [1_C(a*)](1n*)“(E+zN1). 58)

Then, by (54), we have

N
S

va(x,-)—u(x,-){ (E+2Ny)

S&Bi% +6ve + [1 - C(a*)] <1n\/ﬁ(1j(a*)>

=C(a*)6"" + 6v/e+ [1 - C(a")] <rln ;) (E+2Ny).

where C(a*) is given by (55). O

Remark 5. If we replace the assumption (14) and (15) by (50) and (51), then the convergence
||uf3(x, ) —u(x,-)|pand ||vf3(x, -) —u(x,-)||p is also hold.

Remark 6. From a theoretical point of view, Theorem 4 has obtained the stability estimate for the
endpoint x = 0, since }in% ||v/55(0, S —u(0,)] =0.
—

Remark 7. In 1987, Eldén [19] proved that it is impossible to obtain the error asymptotically better
than logarithmic rate at x = 0. So our estimates is reasonable, although the logarithmic term In %
implies the convergence rate is very slow.

5. Determination of Flux Structure and Error Estimate

In this section, we use the Fourier regularization method to recover the flux distribution
from the measure data. Differentiating the variable x on the right-hand side of (7), we
obtain the following formula for the heat flux, denoted by

fy(x, &) = —1(&)e1=¥)T@) g0 _ /l focosh (T(&)(s —x))ds, 0<x<1

X
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The method we adopt is to eliminate all high frequencies from the solution, and
instead consider (5) for |¢| < ¢max. Then, we obtain a regularized solution

005 (x, &) = | — 7(g)e1=07 / 2 cosh (T(&) (s — x))ds | Xmax- (59)

where ¢ max is the regularization parameter, xmax is the characteristic function of the interval

[_gmax/ (;rmax]-

Theorem 5. Let ii(x, {) given by (7) be the exact solution of problem (5) in the frequency space,
1/ max (x,¢) given by (58) be the reqularized solution, condition (14)—(16) hold. If the reqularization
parameter Cmax 15 selected by
2
E\ &
Cmax = <1n ) . (60)

1)
Then for a fixed x € (0,1), we have

Huégmax(x ) _ ux(x’.)H

1
2

1
< (zm]; + (1n§)‘2>51—xfsx +eV2E T 0Y (E+ Ny) + (mi) N,

where €1 = max{1,In £}, Ny and Ny are some constants.
Proof. By the triangle inequality, we have

“uirémax(x, ) _ ux(xl )H < Huirgmax(x,,) _ ugmax H + Hugmax ) _ Mx(.X, )H . (61)

T /)

Next , we divide the argument into two steps.
Step 1. Estimate the term J; in (60). It follows immediately from Parseval’s equality
and Lemma 2 that

‘71 _HAt)émax ) _uf\gmax(x,.)H

1

:|:/§|<gm1X|T€ 1= (g — ¢ +/ £%) cosh (T (s—x))ds|2d§f}2

2
< / 2|7e™(1-%) (¢ — ¢°) |*d ]
{ |¢]<&max | (§=&)fac

N1

1

+ |:/§|<€max 2| /xl (f — f°) cosh (t(s — x))ds|2d§] ’

T

By (16) and (59), we obtain

Ji <26 sup |t 79| < 26|lell7¥) < 268, efmax(1-%) — g% ¥ 1n§. (62)
121 <Emax
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Using Cauchy-Schwarz integral inequality, (13), (59) and (16) yields

. [/¢|<cmax2(/xl eZT(S_X)dS> (/xl \f—f‘S\zds> dﬁ]%

R TN
<Emavel! Vo || f — 2 lr201,22(m)) (63)
1
2
< <ln E) E'Y5%.
0
Thus , by (61) and (62)
1
J < (21n§—|— (ln§)2>Elx5". (64)
Step 2. Estimate the term 7, in (60). Again, using the Parseval’s identity and Lemma 2,
we have
To = a5 (x, ) — iy (x, )

l A
et (1% —l—/ feosh (t(s —x))ds
X

2 41
N {/C [>Cmax d@’]

1
2 1
< zrer(lx)Azd]2+[ ) ? cosh (1(s — 1) ds
B |:/§|>gmax | &l /|§‘>5max /xf (t(s —x))

T V)

2 14
.

We first estimate 7;. Let

Ba(|]) = v2z|te k1%,

By (7), we have
- —ex 1 sinh(7ts) 2 11
T = |:/§|>Cmax2 Te (u(O,(;‘) —/0 fi_( ds)‘ d@]
. 1 sinh(7s)
< sup Ba4(|¢])]|%(0,8) — fdsH.
11> Cmax «(¢) /0 T

By elementary calculations, it is easy to find the unique zero point |&*| of Bj(||) is

&7l = <i>

and |¢*| maximize the function By (|Z|). Thus,

V2|5 |Ee I < V2|t B iine, Ey < |7,

121> Eman V28R e oitax, Emax > &)

s nt0-]
By (59), we have

| fup B4(2]) < {i,lni}\/ie‘““? = e1V2E 5%,
g>§max
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where
E

1
= —,In= 3.
€1 max{x, né} (65)

Therefore , by Lemma 4, we obtain
J1 < e1V2E ¥ (E+ Ny).

Now we estimate J,. Using Cauchy-Schwarz integral inequality, (13) and (15) yields

sl L) [ ]
<[/é>¢max <|g| e 1o ) (/ f|2ds>dg}

_a [ 13 7
<ed [ / 21218 (1-x) 328 dg} ,
121> Emax

Since the generalized integral on the right side of the last inequality converges for
0 < x < 1, we introduce the notation

1

& 2
N, — [/ eézdg] . 66)
|Z]>Cmax
Using (59), we have
_ E\ 2
Thus,
£\
I < el\/EE*x(Sx (E + Nl) + (ln 5) N». (67)

where €7 is given by (64). By substituting (63) and (66) into (60), we arrive at the final
conclusion. [

Remark 8. If we replace assumptions (14) and (15) by (50) and (51), then the convergence
[[udfma (x, ) — uy(x, )|l p also holds.

Similarly, the accuracy of the regularized solution becomes progressively lower as
x — 0, and then we use the condition (50) and (51) to give convergence estimate at x = 0.

Theorem 6. Let ii(x, {) given by (7) be the exact solution of problem (5) in the frequency space,

1/ 6max (x,¢) given by (58) be the regularized solution, condition (16), (50) and (51) hold. If the
reqularization parameter Cmax is selected by

2
E E,_ 2 \«
Emax = <ln(5(1n5) w )) | (68)
Then, for p > 5, we have
5/§max -1 E _%Tp %771 %+%’
=™ (0, -) = ux (0, )| < (2¢; +€2) In— +V2ey (E4+N1) +€] "Ny, (69)

_p \ 1
where €y = <1n (E(In&)™™ )) , N1 and Ny are some constants.
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Proof. By the triangle inequality, we have

||u(5§max(0 ) _ ux || < ||Ll(> gmax(ol.) _ ugmax(ol.)H + ||u§max(ol ) _ ux(or‘)H . (70)
I3 Ja

Next , we divide the argument into two steps.
Step 1. Estimate the term J3 in (69). Taking a similar procedure of the estimate of 73,
and by (67), we obtain

J3 =

1
2 2
g/ 2|7et(§ — dg} +[/ 2
|: |1 <&max ’ g g)’ |€]<&max

1 v :
s [ A [F) ([0 )] o

‘§| <Cmax

ﬁi,émax(ol ) _ ﬁgmaX(Ol ) H

/01 (f — f°) cosh(ts)ds ng]

SZéggnaxeC%ax + gl;gxe(’:r%ax ||f5 - fHLZ(O,l;Hp(R))

o

_ 3 E
<(2¢5! +622)E(1n5) ,
where )
E E.-x2 \~
€ = <1n((5(1n5) ")) . (72)
Step 2. Estimate the term Jj in (69). By Lemma 2, we have
Ja =850, ) = (0, )|
: 3 1
< / 2|te’ ¢ ] +[/ 2/ f cosh(ts)ds
[ |&]>Cmax ‘ $ |&1>Emax 0 f ( )

I3 VA

2

|

We first estimate J3. By (7), (9), (67)and Lemma 5, we have

B=| [ 20 (a0 - [ fsmll(”)ds)uw)?z
<V2gd.t (1+§2)5(ﬁ(0,g)—/0 psinh(ts) )H

g
<V2ep  (E+Ny).

x|’

Now we estimate J;. Using Cauchy-Schwarz integral inequality, (13), (9), (51), (67)
and (65) yields

Jas [/|c>t:max 20+8) ( /01 emlsds) </01 |f2ds> (1+ Cz)pds’} %
= [/|c>¢max < 2p<|¢| zlgu) (/01 lflzds> (1+§2)pdgr

1
o 2
< mz(ix+p)|:/ e—é’lfdg}
|&]>Emax

+
2 I3
=€; Np.
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References

Then
21,1 l+2l
Ji<V2ef (E+Nj)+el “Ny, (73)

where €; is given by (71). The Theorem now follows from equations (69)-(72). O

Remark 9. Since the reqularization parameter {max — o0 as & — 0, we can easily find that, for
p > 5, € — 0(6 = 0). In addition, note that for p > 4 there hold

E, E, E\* E\'"F 2 E E\ *
E E 777 E o _ E a_l E E o
1n<5(1n§) >(ln5> (ln(s) . [In(ln(s)]<ln5> -0, 6—=0.

Therefore,
lim [[u%™(0,) — ux(0,-)] =0, p> >
00 2
Remark 10. In 2007, Qian [46] proved that it is impossible to obtain the error asymptotically
better than logarithmic rate at x = 0. So our estimates is reasonable.

6. Conclusions

In this paper, we have considered the problem of finding a function u(x, t) satisfying
(5). This is a sideways problem for non-homogeneous fractional heat equation, and the
problem is ill-posed. To regularize the problem, we propose the dynamic spectral method
and Fourier method, which are rather simple and convenient for dealing with some ill-
posed problems. Error estimations between the approximate solution and the exact one,
established from noise data g; and f5, are given. In fact, the paper extends the work in [33].
It is worth noting that the obtained estimates are sufficient to prove the results, but most of
them are quite rough and can be improved.

As we all know, the most common regularization methods are the Tikhonov method,
iterative method, quasi-reversibility method, truncation method, quasi-boundary value
method and spectral method. The main difference between these methods is their conver-
gence order. We can compare the convergence rate of errors by using different methods to
discuss the problem. In addition, the dynamic spectral method and Fourier method can
easily be extended to multi-dimensional case, which needs further study.
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