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Abstract: In this paper, we use two new fractional integral operators with exponential kernel about
the midpoint of the interval to construct some Hermite-Hadamard type fractional integral inequal-
ities for h-convex functions. Taking two integral identities about the first and second derivatives
of the function as auxiliary functions, the main results are obtained by using the properties of -
convexity and the module. In order to illustrate the application of the results, we propose four
examples and plot function images to intuitively present the meaning of the inequalities in the main
results, and we verify the correctness of the conclusion. This study further expands the generaliza-
tion of Hermite-Hadamard-type inequalities and provides some research references for the study
of Hermite-Hadamard-type inequalities.

Keywords: fractional integrals operators; exponential kernel; Hermite-Hadamard-type inequalities;
h-convex function
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1. Introduction
Ifg:ICR—R,and m,n € [ with m < n, then

g1 < 8 () o

which is called Jensen’s inequality [1]. Afterward, Hermite and Hadamard insert the in-
tegral mean value of convex function g in inequality (1) to obtain the following classical
Hermite-Hadamard’s inequality [2,3] .

Let g: I C R — Rbea convex function and m, n € I with m < n, then

g(’”;”)gn_lmﬂg(x)dxgw' "

If g is concave, the inequalities (2) hold in the reversed direction. We note that
this inequality can make a bounded estimation of the integral mean on [m, 1], so it has
wide applications in numerical integration. For the research on the popularization and
application of the Hermite-Hadamard’s inequality, the readers can refer to [4-10].

The research shows that the fractional-order phenomenon is widespread, and the frac-
tional calculus modeling method is more accurate and reliable than the traditional in-
teger order method. Therefore, the fractional calculus method has been one of the hot
research topics in the academic community. Recently, the research results of fractional
order on the Hermite-Hadamard’s inequality are also numerous. For example, there are
Riemann-Liouville fractional integral inequalities [11-14], conformable fractional integrals
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g(m) +g(n)

inequalities [15], k-Riemann-CLiouville fractional integrals inequalities [16], and local frac-
tional integrals inequalities [17-19]. Because fractional integral operators have relatively
convenient applications in some special fields, the research on fractional operator type
integral inequalities is becoming more and more abundant. Set et al. [20] used Raina’s
fractional integral operators to obtain new Hermite-Hadamard-Mercer-type inequalities.
Srivastava et al. [21] introduced the generalized left-side and right-side fractional integral
operators with a certain modified Mittag-CLeffler kernel and utilized this general family
of fractional integral operators to investigate the interesting Chebyshev inequality. In
refs. [18,22], Sun presented two local fractional integral operators with a Mittag—Leffler
kernel to establish some Hermite-Hadamard-type inequalities for generalized h-convex
functions and generalized preinvex functions, respectively; afterward, Xu et al. [23] studied
Hermite-Hadamard—-Mercer for generalized h-convex functions with the help of the two
local fractional integral operators.

In [24], Ahmad et al. proposed two new fractional integral operators with exponential
kernels and establish some inequalities related to the right side of the Hermite—-Hadamard’s
inequality. Subsequently, Wu et al. [25] studied the bound for the left side of the Hermite—
Hadamard'’s inequality involving these integral operators. Budak et al. [26] utilized these
integral operators with exponential kernels to established some Hermite-CHadamard
and Ostrowski type inequalities. On the application of the new integral operators having
exponential kernels in Hermite-Hadamard-type inequalities, Du and Zhou et al. extended
them to interval-valued and interval-valued co-ordinated, see [27,28]. The new fractional
integral operators with exponential kernels are given as follows.

Definition 1 ([24]). Let g € L(m,n). The fractional integrals If1+g(§) and If,g(g"f) of order
B € (0,1) are, respectively, defined by

¢ —
7550 = 5 [ ew( - L —w)swing > m ©

and

(1B
Ths@) =5 [ ew(~ 5 0)swing <n @

Some known results about (3) and (4) in refs [24,25] are stated as follows.

Theorem 1 ([24]). Let g : [m, n] — R be a positive function with0 < m < nand g € L(m,n).
If g is a convex function on [m, n], then the following inequalities about (3) and (4) hold.

mtn, 1-8

8 2 )< 2(1 —exp(—p)) nfm?(”) +If,g(m)] < w, 5)

- 2
where p = %(n —m).

Theorem 2 ([24]). Let g : I C R — R be a differentiable function on I. If |¢'| is convex
on [m,n],m,n € I, then the following inequality about (3) and (4) holds.

1-B

n—m

2

|Zh.g(m) + 20 g(m)]| <

tanh(§) ([g'(m)] + g’ (n)])- ©)

2(1 —exp(—p))

Theorem 3 ([25]). Let ¢ : I C R — R be a differentiable function on 1. If |g'| is convex
on [m,n],m,n € I, then the following inequality about (3) and (4) holds:
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- m+n n—m anh(£)
M[Ifﬁg(nwﬁfg(m)}—g( ;)‘S 5 ll balilt

] (I (m)| + 1 (m)]). %

These Hermite-Hadamard-type integral inequalities involving the fractional inte-
gral operators (3) and (4) are structurally in the form of ”IZ Lg(n) + If _g(m)” for convex
functions. In this paper, our main purpose is to apply the definition of i-convexity and
the properties of modules to propose some new Hermite-Hadamard-type fractional integral
inequalities about fractional integral operators (3) and (4) for generalized h-convex func-
tion, whose integral operators involving the midpoint of the interval [m, n] is in the form

of ”I’iﬁ L8(n)+ I’iﬁ _g(m)”. Some numerical examples are given to illustrate the correct-
2

2
ness of the results.

2. Results

In the subsequent text, we denote p = %(n —m) for B € (0,1). In order to obtain

our results, the following definition of i-convex function proposed by Varosanec in [29]
will be used in the subsequent text.

Definition 2 ([29]). Let h : Q) — R be a positive function. We say that g : & — R is an h-convex
function, if g is nonnegative and for all u,v € Eand { € (0,1), we have

g(Gu+(1=0)v) <h(Q)g(u) +h(1 = 7)g(v). ®)
If inequality (8) is reversed, then g is said to be h-concave.
Remark 1. Obviously, if h({) = {, then h-convex function derives the classical convex function.

Theorem 4. Let g : [m,n] — R bea positive function with 0 < m < n,and g(x) € L[m,n]. Ifgis
an h-convex function on [m, n|, then the following inequalities for integral operators (3) and (4) hold.

1 —exp(—g) (m+n)
Ph(3) 2

IN

i (IL@(H) +ILfg(m))

n—m
%
< lg(m) +g(n)]/0 exp(—pt)[1(t) +h(1 —t)ldt. (9)
Proof. Since g is an h-convex function on [, n], we obtain

s(*3Y) <h3)gt) +h(3)s(). (10)

Forx =tm+ (1 —t)n,y = (1 —t)m + tnin (10), t € [0,1], we have

m+n 1 1
g( 5 ) < h(i)g(tm +(1—t)n) +h(§)g((1 — t)m + tn).
Multiplying both sides of the above inequality by exp(—pt), and integrating the re-
sulting inequality with respect to t over [0, %}, we obtain
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(™) (1—exp(=5))  g(™*) 2
2 270 = 2 /Oexp(—pt)dt

ph(3) n(%)
< /0z exp(—Pt)g<tm +(1- t)n)dt + /07 exp(—pt)g((l —t)ym+ tn)dt (11)
_nfm[ls mr;nexp (_ 1;ﬁ(n—x))g(x)dX—|— nfm;/mm;ﬂeXp(— T(y—M))g(y)dy

L (2, s+ 1E, g(m).

Tn—m

Thus, the first inequality of (9) holds.
On the other hand, note that g is an h-convex function for ¢ € [0,1], we get

g(tm+ (1—t)n) < h(t)g(m) +h(1—t)g(n)

and
(1 —t)m+tn) <h(1—t)g(m)+h(t)g(n).
Adding the above two inequalities, we have

g(tm+ (1 —t)n) +g((1 = t)m+tn) <[h(t) +h(1 = 1)][g(m) +g(n)].  (12)

Multiplying both sides of the inequality (12) by exp(—pt), and integrating the result
with respect to ¢ over [0, 3], we obtain

/0% exp(—pt)g(tm +(1- t)n)dt + /O% exp(—pt)g((l —tm+ tn)dt

<lg(m) +g(m)] [ " exp(=p)lh(t) +h(1 - D)t (13)

By (11), the inequality (13) becomes

P (Zh 800+ Zhy () < [g(m) + ()] [ exp(—pt)(e) + (1~ 1)lat. (19

n—m
Thus, the second inequality of (9) holds. This completes the proof. [

Corollary 1. Under the conditions of Theorem 4, for B — 1, we obtain

(m;—n) < 2h(1)

[ sdx < [g(m) + g(n2n(z) [Pt +h1—p)de. 15)

m

Proof. By (9), thatis

1y(1 _
ﬂm;n)ﬁfbi;}%(ﬂ}”ﬁM+I%“(m»

S
< lg(m) + () _‘;iij()_p) [ exp(ptn(e) + 11— )at. qte
2
By calculating, we have
1-8 2

I T ep(p ~ o
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and

lim M -9

11— exp(—5)

Thus, from the inequality (16) for B — 1, we obtain the inequality (15). [

Remark 2. Tuking h(t) = t in (15), we obtain the classical Hermite-Hadamard inequality for con-
vex function (2).

Corollary 2. If we take h(t) = t in Theorem 4, then the following fractional integral inequality
for the convex function is obtained.

(3™ < S o] () + Ty gom)) < S8 a7

which is Theorem 2 proved by Budak in ref. [26].

In order to obtain our results, according to Lemma 1 in ref. [26], we can obtain
the following identity.

Lemma 1 ([26]). Let g : [m,n] — R be a differentiable function with m < n. If ¢’ € L{m,n],
then the following identity involving fractional integral operators (3) and (4) holds.

m+n, 1-8 B " 8 .
(— 21— () (I%@( )+ T80 ))

1

+ /11 (1 —exp(—p(1 - f)))g/(tm +(1- t)n)dt

Theorem 5. Let g : [m,n] — R be a differentiable function with m < n. If §'(u) € L[m,n|, and
|§’| is h-convex on [m, n], then the following fractional integral inequality holds.

m+n, 1-8 ; 5 .
’ ( 2 2(1 —exp (—g)) (I%#g( ) +I%’g( ))‘
Sz(l _ne;pn(i_g)) /O% (1—exp(—pt)) (h(t) +h(1- t)) (|g/(m)‘ n |g’(n)|)dt. 19)

Proof. Since [¢'| is h-convex on [m,n] and h is a nonnegative function, by Lemma 1,
we obtain
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m+n, 1-8 B " B .
) (o) (0o s(m) + 0, s >)‘

(e [} - ewim)

_2(1—exp( gl(tm+(1_t)n>’dt

+ /; (1—exp(—p(1 = 1)) |¢'(tm + (1~ )n) ‘dt]

e _"e;p”z_g)) [ |7 (= exp(-p1)

g’(tm+ (1- t)n)’dt

g’((l - t)m+tn)‘dt]

+ [ (= exp(—pn)

<" * (1= exp(—pt)) ((B)lg'(m)] + (L — £)lg'(n) )
2(1—exp(—%)) [/0 ( )
+ [* (1= exp(=pt)) (n(1 = 1)lg'(m) +h<t>|g’<n>|)dt]

1

B pow ) [} = exp(-pn) () + 11 = 1)) (Is'0m)] + 15/ 0o ). @0)
—exp(—5

This completes the proof. [

Remark 3. For B — 1, by calculating, we obtain

1-g 1

- 7

T
,31—>n} 2l —exp(—5)] n-—m

and
lim 1—exp(—pt) =t
P 21— ep(-8))

Thus, from the inequality (19) for B — 1, we obtain the following inequality

1

< (n—m)(Ig'(m)|+1g'0m)1) [* ¢((t) +n(1 =) (21)

n—mJm

‘g(m—i—n) 1 /ng(u)du

Remark 4. Taking h(t) = t in (21), we obtain the following inequality

‘g(m;n) - n}m /mng(u)du

which is Theorem 2.2 proved by U. Kirmaci in ref. [30].

< 5= (Ig'm)+1g'(m)]),
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Corollary 3. If we take h(t) = t in Theorem 5, then the following fractional integral inequality
for convex function is obtained.

m4n, 1-8 8 B "
‘ ( 2 ) 2(17exp(7%)) (Im—é—n*’g( )+Iw* ( ))‘
n— , , 1 exp(—§)—1
i er D) (I8l +1g'ml) (5 + =), 2)

Proof. If h(t) = t, by (19) we obtain

NI—=

/ (1 —exp(— ))(h(t)—l—h(l—t))dt

/ (1 —exp(—pt))dt

exp(—5) 1
§+f

This completes the proof. [

Lemma 2. Let ¢ : [m,n] — R be a twice differentiable function on [m,n| with m < n.
Ifg" (x) € L[m,n], then the following identity involving fractional integral operators (3) and (4) holds.

m+n, 1-8
) e )

(n—m)? 11— xp(—pt) /)
| Gt RO RIS

+/ 1—exp pa—1) (1—t))g”(tm+(1—t)n)dt].

T80+ T),g(m))

Proof. Using integration by parts, we have

/0} (exp(—pt) — 1)g/(tm +(1- t)n) dt

= /0% exp(—pt)g' (tm+ (1= t)n)dt — /07 g'(tm+ (1= tn)at
1 1

- _ E l/oz g’(tm +(1— t)n)d(exp(—pt))] — /0% g (tm +(1- t)n)dt (24)

1
m+mn 2

——;[exm—;’)g’( ) =g/ (n) — (m =) /02exp(—pt)g”(tm+(1—t>n)dt]

_%g'( 5 )_|_(m—n)/0%tg”(tm—i—(l—t)n)dt.

Similarly, one has
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1
(1 - exp(—p(1—1)))g'(tm + (1~ yn)dt

1
/

8 (tm+ ) —/llexp(—p(l—t))g (tm+( tn )dt
1
’(

, 8

N»—-\ N»—'\ N\H\

tm —+ ( )dt—p/;g’(tm+(1—t)n)d(eXp(—P(1—f)))

%m+n

:g’(m)—%g 5 )—(m—n)/;tg”(tmnt(l—t)n)dt

—;[ywn—emx—gw%mg“)—<m—n)@¥nx—M1—wm-Qm+< >)dﬂ

Adding (24) and (25), we obtain

1

/02 (exp(—pt) — 1)g’(tm +(1- t)n)dt + /; (1—exp(—p(1— t)))g’(tm +(1- t)n) dt

m-+n

=g'(m) — ¢'( > )+(m—n)/0%tg”(tm+(1—t)n)dt—(m—n)/lltg”(thr(l—t)n)dt

1

—me—ymw+m—mjfwmﬂmyem+a—o@m

~(m—n) /11 exp(—p(1 — t))g”(tm +(1- t)n)dt

V2

:(m—n)/;g"(tm—l-(l—t)n)dt—i—(m—n)/oé (t+ exp(p_pt)>g"(tm+(1—t)n)dt

_mpn/olg (tm+( ))dt (m—n)/;(t—exp(p "

:(m—n)/oé(t—lexp(pt))g (tm—l—( Hn )dt

0
+(m—1‘l)/ll (1—t— 1_eXp(;p(1_ ))>g”(tm+(1—t)n>dt

=)
—~
—_
\
—
~—
~—
N—
oqQ
/N
—
3
+
—~
—_
—
~—
N———
[
—

R G L P (TR I

+ (n—m) /; (1 _eXp(;p(l ) +t—1)g”(tm+ (1 —t)n)dt.

Substituting (26) into (18), we have

m+n, 1-8 B " B -
g(——) 2(1— e (5) (I%@( )+ D80 ))

_ (Vl—m)z 3 1_eXP(—pt)_ . o
_2(1_exp(_§)) M ( P f)g (t +(1—t) )dt

+/;(1_6Xp(;p(1_t))+t1>g (tm+ (1= by )dt]

This completes the proof. [

(25)

(26)
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Theorem 6. Let g : [m, n] — R be a twice differentiable function with m < n. If ¢ (u) € L[m, n],
and |g"| is h-convex on [m, n|, then the following fractional integral inequality holds.

’(m—i—n B 1-8
20 2(1-exp(-5)
<n—wm205%mn+wy%nn)/g<1_eqx_p”

2(1-exp(-5)) 0 2

I5.,:8(n) + T, g(m)
e+

+ t) (h(t) +h(1- t))dt. 27)

Proof. Since || is h convex on [m, n], by Lemma 2, we can obtain

‘ (m+n)_ 1-p
T

(n—m)? l 2
sl
+A1
_ (n—m)? [ 2
sl

1

2
—i—/
0

>@%wﬂ@+1@nﬂmﬂ

1 — exp(—pt)
[y

_t‘

g”(tm+ (1— t)n)‘dt

1-— eXP(;P(l —h) _ (1- t)l g”(tm +(1— t)”) ‘dt]

1 —exp(—pt)
0

_t‘

g”(tm +(1- t)n) ‘dt

1—exp(—pt) t’
Y

g”((l —)m+ tn) ’dt]

1 —exp(—pt) B t‘(

8”(”” +(1— t)”) ’ + g”((l —t)ym+ tn) Ddt

_ (n —m)? 2
2(1-exp(~5)) /0

P
52<1 (—n;g()_zg)) /0% (1 - eXf))(—Pt) £0) (k) + 80— 0) (18" )] + 18" (n)] ). o8

This completes the proof. [

Corollary 4. If we take h(t) = t in Theorem 6, then the following fractional integral inequality
for convex function is obtained.

’ (m+n _ 1-8
20 2(1-ep(-h)
(n=mP(Ig"(m)| +18"(M]) 1 exp(—&)—1 1
2(1—e><p(—§)) ( )

)@@Mam+1@namﬂ

(29)

wt— 2 *ts)

Proof. By h(t) = t and the proof of Corollary 3, it is easy to obtain the desired result. [

3. Numerical Examples

To illustrate our main conclusions, we will present four examples to show these
conclusions in this section.
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Example 1. From Corollary 2, we get the following inequalities

~exp(_£ ~exn(_f
AP (") < (20 47, g0m) < LR o) 4 g

Taking ¢(&) = ¢%°, we know that g is an h-convex function for h(t) = t. It meets
the conditions of Corollary 2 for B € [0,1]. If we choose m = 1,n = 3, then the following
formulas are drawn.

2(1 —exp(—& 1—exp(—~
( 19195( 2))g(m;'”): ip(ﬁ 2)234/

(2hes + T8 gm) =3[ [ exp( 1;’3<3—u>)e2”du
+/ exp (u—l))ezudu},
5

_1 5,1
e —e ﬁ e2—¢ F

B+1  36-1"
—eX - —eX g
R )+ (0]~ (@ ),

We plot the function image of the above three functions for § € [0,1], as shown
in Figure 1. From the position relationship of the image, we can see that the middle
term of the inequalities is just between the left and right images, and the left image is
at the bottom, and the right image is at the top. These show that the inequalities relationship
in Corollary 2 is tenable.

800

700 = The curve of the right term |
== The curve of the middle term

600 = The curve of the left term

ul

o

o
T

w

o

o
T

Function value f(B)
N
o
o

200

0 s s s s
0 0.2 0.4 0.6 0.8 1
variable B

Figure 1. The image description of Corollary 2 for /i(t) = t and g(&) = %.

Specidically, if we choose = %, then we have

21 _eXPl; 2) o ) =138.0505,
(70 8(m) + 0, g (m) ) <2809551,
Lp(_g)[g(m) +g(n)] = = 519.3728.

1-B
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This further verifies that the conclusion of Corollary 2 is correct.

Example 2. From Corollary 3, we get the following inequalities

—exp (—P
it 1_pﬁ( 2))g(m§”)—(zizﬂ+g<n>+zizﬂg(m))'

n—

<7 (lg/ml+1g'0n)) GG+ exp(?*»

Taking g(&) = &3, we know that |g'| is an h-convex function for h(t) = t. It meets the conditions
of Corollary 3 for p € [0, 1]. If we choose m = 1,n = 3, then the following formulas are drawn.

—exp (—P
2(1 f_Pﬁ( 2)) (m;rﬂ)_(zfi;}?+g(n)+liyg(m))‘

2(1—exp(-9) 3 B ) B
= ( 1-p 2>g(2)—;{/2 ex]P(—l18'3(3—14))u3du—|—/1 exp(—lﬁﬁ(u—l))tﬁdu}

16(1 - exp(f§)> B —76,33 + 156[32 — 1088 + 28 B exp(1l— %)(40,33 - 72,52 + 485 — 16)
1-p (B=1)* (B—1)*

7

T (o o) g+ S = 5 SR

We plot the function image of the above two functions for B € [0,1], as shown
in Figure 2. From the position relationship of the image, we can see that the left image is

at the bottom, and the right image is at the top. These show that the inequality relationship
in Corollary 3 is tenable.

40

351 i
=== The curve of the lef term

30 === The curve of the right term i

25

Function value ()
N
o

variable

Figure 2. The image description of Corollary 3 for i(t) = t and g(&) = ¢&.
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2(1 —exp (—

[
2

Specifically, if we choose § = %, then we have

2(1 —exp (—g))
-8

(Ig'(m)| +1g'(m)]) (1 + eXp(_f)_l) — 25.5450.

m-+n
25"~ (2,000 +zf,+ng<m>)‘ _ 7780
2 2

n—m
1-8

2

This further verifies that the conclusion of Corollary 3 is correct.

Example 3. From Corollary 4, we get the following inequalities

Cexp (0
2(1 1_Pﬁ( 2)) (m;—n)(zmzﬂ+g(n)+zizﬂg(m))’

<O (gl + 101 (5 + e"p(p§ ]

Taking () = €%, we know that |¢’| is an h-convex function for h(t) = t. It meets
the conditions of Corollary 4 for 8 € [0, 1]. If we choose m = 1,n = 3, then the following
formulas are drawn.

1-B

>)g(m+n

)~ (Zhus) +Iﬁi2+ng<m>)‘

1-B

_ 2(1—exp(—g)) (2)_1[/23@(})(_ﬂ(g._u))ee’”dqu/lzexp(— 1;ﬁ(u_1))e3udu}

(236) (1*9XP(*%)) &9 —377% &3 —(377%

(o)

p p

1-B

1

(n__rz)z(|8”(m)|+g”(n)|)( L, op(-5)-1 1) _ 4(9e9+9e3)( 1 exp(—8)—1 1)

7

2611 4p_1

20 P2 8

% 2 tg)

1-p

We only plot the function image of the above two functions for g € [0,0.5], as shown
in Figure 3. From the position relationship of the image, we can see that the left image is
at the bottom, and the right image is at the top. These show that the inequality relationship
in Corollary 4 is tenable for g € [0, 1], because the growth rate of the right term is much
faster than that of the left term in interval g € [0.5,1].
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x 10

2.5

= The curve of the lef term 7
== The curve of the right term

Function value f(B)

0 1 ¥ . ———
0 0.1 0.2 0.3 0.4 0.5
variable

Figure 3. The image description of Corollary 4 for /(t) = t and g(&) = %.

Specifically, if we choose = 0.01, then we have

Cexp(~f
2(1 fipﬁ( 9) (m;n>_(zw+g(n)+zf,yg(m))‘:7150.1,

n—m)? exp(—P) —
(1_[3) (Ig”(m)l + Ig”(n)\) (;p + p(pzz)l + %) = 37669.

This further verifies that the conclusion of Corollary 4 is correct.
Example 4. Taking ¢(&) = €% and h(t) = et for t € [0,1], we know that g is an h-convex

function by Remark 5 in ref. [29]. It meets the conditions of Theorem 4 for B € [0,1]. If we choose
m = 2,n = 4, then the following formulas are drawn.

1—exp(—5) (m—i—n) :17exp(—%) 6 {1*9)(13(*%)}5 1
)

Ph(%) 2 pe% e = 21— p ez,
nfm(z%+g(n)+l'ﬁ%,g(m)> Z%[/:exp (_ 1;8(4—11))62”(11/[
+/239Xp(—1;‘8(1,[—2))621‘1114},

1
2

N—

[g(m)+(n)] [ exp(~p0)(t) +h(1 — )]dt =[(2) +g(4)] " exp(=pt)le! + o' ]dr
1
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B

n—m

We plot the function image of the above three functions for § € [0,1], as shown
in Figure 4. From the position relationship of the image, we can see that the middle
term of the inequalities is just between the left and right images, and the left image is
at the bottom, and the right image is at the top. These show that the inequalities relationship
in Theorem 4 for h(t) = ¢! is tenable.

5500 T T T T

= The curve of the right term
= The curve of the middle term
= The curve of the left term

5000

4500

4000

3500

3000

2500

Function value f(B)

2000

1500

1000

500

0 I 1
0 0.2 0.4 0.6 0.8 1
variable

Figure 4. The image description of Theorem 2 for h(t) = ¢! and g(&) = ¢%.

Specifically, if we choose = 0.001, then we have

1—exp(—5) (m—f—n

) = 0.1225,

ph(3) 2

In1+n+g(n) +I‘B (m)) == 15164,
2

m+n *g
2

1

lg(m) +g(m)] | " exp(—pt) (1) + (1 = )at =[g(2) +3(4)] | " exp(—pt)[e’ + o1~ ]at = 5.6479.

This further verifies that the conclusion of Theorem 4 is correct.

4. Conclusions and Discussion

In this study, using two integral operators with exponential kernel proposed by
Ahmad et al. in ref. [24], we establish the new Hermite-Hadamard’s integral inequality
for h-convex functions. Two midpoint type inequalities are also obtained in which the abso-
lute values of the first derivative and the second derivative of the function are h-convex
functions, respectively. The integral operators (3) and (4) involved in the results obtained
in this paper are integral operators about the same midpoint of the interval, which is
different from the integral operators about the two ends of the interval used in refs [24,25].
For different cases of h(t) =t and h(t) = e!, we construct four numerical examples that
intuitively show the size relationship of the function values of the inequalities through
the function image, and verify the correctness of the results.

Because fractional integral operators are widely used in the field of engineering
technology, such as mathematical models, and different integral operators are suitable
for different types of practical problems, our research on the fractional integral operator-
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type integral inequalities will also expand the practical application scope of Hermite—
Hadamard-type inequalities. We know that there are many fractional integral operators
involved in other disciplines, which will also inspire us to use other types of integral
operators to further study these kinds of inequalities, which also provide a direction for our
future research.
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