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Abstract: In this study, time-delayed stochastic dynamical systems of linear and nonlinear equations
are discussed. The existence and uniqueness of the stochastic semilinear time-delay system in finite
dimensional space is investigated. Introducing the delay Gramian matrix, we establish some sufficient
and necessary conditions for the relative approximate controllability of time-delayed linear stochastic
dynamical systems. In addition, by applying the Banach fixed point theorem, we establish some
sufficient relative approximate controllability conditions for semilinear time-delayed stochastic
differential systems. Finally, concrete examples are given to illustrate the main results.
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1. Introduction

One of the main problems of the qualitative theory of linear time-delay differen-
tial equations is associated with obtaining explicit representation of solutions. In 2003,
the authors of [1] introduced a new concept of the delayed matrix exponential function to
represent solutions of linear delayed differential equations with permutable linear coeffi-
cient matrices. In [2], the results are transferred to linear fractional time-delay differential
equations using delayed fractional matrix function. In [3], the concept of delayed matrix
exponential function is extended to nonpermutable matrices by introducing the concept
of delay perturbation of matrix exponential/Mittag–Leffler function. Two pioneering
papers [1,4] led to new results in fractional/nonfractional differential systems.

Stochastic differential equations are progressively used to model mathematical prob-
lems in control theory, dynamics of complex systems in engineering, epidemiology, in-
fectious disease, and other areas. Existence and relative exact controllability notions for
different deterministic/stochastic semilinear evolution systems in finite dimensional set-
ting have been studied in many publications by using different methods. There are many
different notions of controllability for linear deterministic/stochastic time-delayed equa-
tions: relative exact controllability, relative exact null controllability, space controllability,
and so on. Among the many scientific articles on existence and uniqueness and relative
controllability, we will mention only a few that motivate this work.

(i) The existence and uniqueness of solutions to the stochastic finite dimensional systems has
been studied by many authors, see [5–7] and references therein. In particular, existence
and uniqueness results of solutions to stochastic differential equations have achieved
a great deal of attention. Anh et al. [8] and Taniguchi [9] considered the existence and
uniqueness of mild solutions to stochastic partial differential equations under the Lips-
chitz condition, respectively. Govindan [10] established the existence and uniqueness
results for stochastic evolution differential equations with variable delay under the global
Lipschitz condition. Ahmadova and Mahmudov [11] investigated the existence and
uniqueness of mild solutions to stochastic neutral differential equations.
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(ii) There are several approaches to study approximate controllability of stochastic or
deterministic evolution systems. In [12], a resolvent approach have used, introduced
in [13] to study approximate controllability for linear evolution equations, and ob-
tained some sufficient conditions for the approximate controllability of deterministic
or stochastic semilinear systems. Later, this method was adapted to study the ap-
proximate controllability of fractional semilinear evolution systems in [14]. Later,
several researchers, i.e., Bora and Roy [15], Dhayal and Malik [16], Kavitha et al. [17],
Haq and Sukavanam [18], Aimene [19], Bedi [20], Matar [21], Ge et al. [22], Grudzka
and Rykaczewski [23], Ke et al. [24], Kumar and Sukavanam [25,26], Liu and Li [27],
Sakthivel et al. [28], Wang et al. [29], Yan [30], Yang and Wang [31], Rykaczewski [32],
Mahmudov and McKibben [33,34], and Ndambomve and Ezzinbi [35], have used dif-
ferent methods to study approximate controllability for several fractional differential
and integro-differential systems.

(iii) The relative exact controllability notion for first-order linear time-delay deterministic
systems with commutative matrices was established in [36], see also [37–39]. Some au-
thors have studied the relative exact controllability for linear/semilinear time-delayed
stochastic differential systems, see [40–50] and the references therein. In [45], the au-
thors studied the relative and approximate controllability of the nonlinear stochastic
differential systems with delays in control. The paper [46] is concerned with the rel-
ative controllability for a class of nonlinear dynamical control systems described by
fractional stochastic differential equations with nonlocal conditions. In [47], the relative
controllability of a fractional stochastic system with pure delay in finite dimensional
stochastic spaces is investigated. In [48], both linear and semilinear stochastic impulsive
control systems modeled by finite-dimensional Itô stochastic differential equations
with time-varying multiple delays in admissible controls are considered.

However, according to authors’ knowledge, the results on the relative approximate con-
trollability of linear/semilinear time-delayed stochastic differential systems in finite/infinite
dimensional spaces have not yet been studied. The proposed work on the relatively ap-
proximate controllability of finite dimensional linear/semilinear time-delayed stochastic
differential systems is new.

We give the notations needed to provide our principal results:

• (Ft)t≥0 is a normal filtration and (Ω,F, P) is a probability space;
• Rd is a d-dimensional Euclidean space;

• L2
(
FT ,Rd

)
is the Hilbert space of all FT-measurable functions f : Ω→ Rd;

• L2
F(0, T;Rd) is the Hilbert space of all square integrable and Ft-adapted functions

f : [0, T]×Ω→ Rd;
• C

(
[0, T];Rd

)
is the Banach space of all continuous functions f : [0, T]→ Rd endowed

with the norm ‖x‖C := sup{‖x(t)‖Rd : t ∈ [0, T]};
• H2 ⊂ L2(F; C

(
[0, T];Rd

)
) is the closed subspace of measurable andFt-adapted processes

ϕ ∈ L2(F; C
(
[0, T];Rd

)
) furnished with the norm ‖ϕ‖H2

=

(
E sup

0≤t≤T
‖ϕ(t)‖2

Rd

) 1
2

.

We consider the following semilinear stochastic time-delay control system of differen-
tial equations:{

ζ ′(t) = Aζ(t) + Bζ(t− h) + Du(t) + P(t, ζ(t), ζ(t− h)) + Q(t, ζ(t), ζ(t− h)) dw(t)
dt ,

ζ(t) = ϕ(t), −h ≤ t ≤ 0,
(1)

where A, B ∈ Rd×d, D ∈ Rd×m are matrices, the control u ∈ L2
F(0, T;Rm), (P, Q) : [0, T]×

Rd ×Rd → Rd ×Rd , h > 0 is delay, and ϕ : [0, T] → Rd is a continuously differentiable
function. Moreover, w(t) is a one-dimensional Wiener process.
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It should be noticed that, say at time t = T, the solution ζ(T) ∈ L2
(
FT ,Rd

)
and

the space L2
(
FT ,Rd

)
is infinite dimensional. Thus, one can consider the relative exact

controllability and the relative approximate controllability concepts for the mild solution to
the semilinear stochastic time-delay system of differential Equation (1).

The main contribution and advantage of this article can be highlighted as follows:

(i) The existence and uniqueness of the linear/semilinear time-delayed stochastic differ-
ential system in finite dimensional space is investigated;

(ii) The relative approximate controllability of the of the semilinear time-delay stochastic
system in finite dimensional space is studied under the suitable sufficient conditions that
for the corresponding linear time-delay deterministic system is relatively exact controllable;

(iii) The delayed controllability Grammian operator, defined using the delayed pertur-
bation of the matrix exponential function, is used to derive sufficient conditions at
stochastic settings to guarantee that the time-delayed semilinear stochastic differential
system is relatively approximate controllable;

(iv) Examples are given to verify the proposed theoretical results.

2. Preliminaries

Recall some definitions and lemmas for more details.

Definition 1. R-valued process w is called a standard one-dimensional Wiener process over [0, ∞)
if it is Ft-adapted and for all 0 < s < t, w(t) − w(s) is independent of Fs and is normally
distributed with mean 0 and covariance t− s. Namely, for any 0 ≤ s ≤ t, P(w(0) = 0) = 1:

E{w(t)− w(s) | Fs} = 0, P- a.s.,

E
{
(w(t)− w(s))2 | Fs

}
= t− s, P- a.s.

Definition 2 ([17]). Delay matrix exponential function eBt
h generated by B is defined by:

eBt
h =


Θ, −∞ ≤ t < −h,
I, −h ≤ t < 0,

p

∑
j=0

Bj (t− (j− 1)h)j

j!
, (p− 1)h < t ≤ ph.

(2)

The delayed extension of exponential matrix function, the so called purely delayed
exponential matrix function, is defined in [1]. The delayed extension of exponential matrix
functions has been defined and studied more recently in [3], where the delayed exponential
matrix functions is defined by means of the following determining matrix equation for
Qk(s), k = 1, 2, . . . :

Qk+1(s) = AQk(s) + BQk(s− h),

Q0(s) = Qk(−h) = Θ, Q1(0) = I,

k = 0, 1, 2, . . . , s = 0, h, 2h, . . .

(3)

where Θ is a zero matrix and I is an identity matrix.
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Definition 3. The delay exponential matrix function YA,B
h [3] generated by A, B is defined as:

YA,B
h (t) :=



Θ, −h ≤ t < 0,
I, t = 0,
∞
∑

i=0
Qi+1(0)

ti

i!
+

∞
∑

i=1
Qi+1(h)

(t− h)i

i!

+ · · ·+
∞
∑

i=p
Qi+1(ph)

(t− ph)i

i!
, ph < t ≤ (p + 1)h.

Remark 1. It is clear that Qk+1(s) plays a role of kernel in this definition. If B = Θ then
Qi+1(0) = Ai and Qi+1(ih) = Θ, i = 1, . . . , p, YA,B

h (t) becomes exponential matrix function:
YA,B

h (t) = exp(At). If A = Θ then Qi+1(ih) = Bi, Qi+1(jh) = Θ for j 6= i + 1 (see [3]) and
YA,B

h (t) becomes purely delayed exponential matrix function.

Remark 2. It is clear that for any t ≥ 0:

∥∥∥YA,B
h (t)

∥∥∥ ≤
∞
∑

k=0

k
∑

m=0
‖Qk+1(mh)‖ (t−mh)k

k!

≤
∞
∑

k=0

k
∑

m=0

(
k
m

)
‖A‖k−m‖B‖m (t−mh)k

k!

≤
∞
∑

k=0
(‖A‖+ ‖B‖)k (t−mh)k

k!
≤ tβ−1 exp((‖A‖+ ‖B‖)t).

(4)

Lemma 1 ([5]). Let {Mt : t ≥ 0} be Rd-valued martingale. Then:

(i) If q ≥ 1 and Mt ∈ Lq
(

Ω;Ed
)

, then:

P

{
ω : sup

0≤t≤T
|Mt(ω)| ≥ c

}
≤ 1

cq E
(
|MT |q

)
for all positive c > 0.

(ii) If q > 1 and Mt ∈ Lq
(

Ω;Rd
)

, then:

E

(
sup

0≤t≤T
|Mt(ω)|q

)
≤
(

q
q− 1

)q
E
(
|MT |q

)
.

Theorem 1 ([51]). Suppose that ζ(τ) and ν(τ) are and locally integrable nonnegative functions
defined on [0, T], µ(τ) ≥ 0 is a continuous nondecreasing function on [0, T]. Assume that:

ζ(τ) ≤ ν(τ) + µ(τ)
∫ τ

0
ζ(s)ds, τ ∈ [0, T],

then:

ζ(τ) ≤ ν(τ) + µ(τ)
∫ τ

0
ν(s) exp

(∫ τ

s
µ(r)dr

)
ds, τ ∈ [0, T].

Corollary 1 ([51]). If ν(r) is a nondecreasing function, then under the hypothesis of Theorem 1
we have:

ζ(r) ≤ ν(r) exp(rµ(r)) r ∈ [0, T].
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3. Existence and Uniqueness Result

We formulate and proof the existence and uniqueness results for solution to the
semilinear stochastic delayed differential system (5). To this purpose, we apply the method
of Picard iteration. Firstly, we give the definition of a mild solution.

Definition 4. A stochastic process ζ : [−h, T] ×Ω → Rd is called a mild solution of (1) if it
satisfies the following conditions:

(i) ζ(t) ∈ H2;

(ii) (P, Q) ∈ L2
(
[0, T]×Rd ×Rd;Rd

)
× L2

(
[0, T]×Rd ×Rd;Rd

)
;

(iii) For each t ∈ [0, T], ζ(t) satisfies the integral equation almost surely:

ζ(t) = Y(t + h)ϕ(−h) +
∫ 0

−h
Y(t− s)[ϕ′(s)− Aϕ(s)]ds

+
∫ t

0
Y(t− s)[Du(s) + P(s, ζ(s), ζ(s− h))]ds +

∫ t

0
Y(t− s)Q(s, ζ(s), ζ(s− h))dw(s).

(5)

Consider the following two assumptions:

Hypothesis 1 (H1). For all t ∈ [0, T], x1, x2, z1, z2 ∈ Rd, the function (P, Q) : [0, T]×Rd ×
Rd → Rd ×Rd satisfies the global Lipchitz condition:

‖P(t, x1, x2)− P(t, z1, z2)‖2 ≤ L‖x1 − z1‖2 + M‖x2 − z2‖2, (6)

‖Q(t, x1, x2)−Q(t, z1, z2)‖2 ≤ L‖x1 − z1‖2 + M‖x2 − z2‖2, (7)

Hypothesis 2 (H2). The function (P, Q) : [0, T] × Rd × Rd → Rd × Rd satisfies
the following condition:

‖P(t, 0, 0)‖ ≤ N, ‖Q(t, 0, 0)‖ ≤ N, t ∈ [0, T].

Next, we prove the a priori estimate. It is based on the Picard iterations, Doob’s
inequality, and the Gronwall inequality.

Theorem 2. Assume that the coefficients P and Q obey the Lipschitz conditions (H1) and the con-
dition (H2). Then, any solution of (1) satisfies:

E
(

sup
s∈[−h,T]

‖ζ(s)‖2

)
≤ E‖ϑ(T)‖2

+
{(

3 + 6N2(T + 4)T
)
E‖ϑ(T)‖2 + 6N2(T + 4)T exp(2(‖A‖+ ‖B‖)T)

}
× exp(6(T + 4)(L + M)T),

where:

ϑ(t) := Y(t + h)ϕ(−h) +
∫ 0

−h
Y(t− s)

[
ϕ′(s)− Aϕ(s)

]
ds.

Proof. We introduce the stopping time ηj := T ∧ inf{t ∈ [0, T] : ‖ζ(t− h)‖ ≥ j} for each
j ≥ 1. Obviously, ηj ↑ T a.s. as j→ ∞, setting ζ j(t) := ζ

(
t ∧ ηj

)
for t ∈ [0, T]. Equation (5)

can be written as:

ζ j(t) = ϑ(t) +
∫ t∧ηj

0
Y
(
t ∧ ηj − s

)
P(s, ζ(s), ζ(s− h))ds

+
∫ t∧ηj

0
Y
(
t ∧ ηj − s

)
Q(s, ζ(s), ζ(s− h))dw(s).

(8)
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Having in mind the Doob’s martingale inequality, one can get:

E
(

sup
s∈[0, t]

∥∥ζ j(s)
∥∥2
)
≤ 3E‖ϑ(t)‖2

+3TE
∫ t∧ηj

0

∥∥Y(t ∧ ηj − s
)∥∥2∥∥P

(
s, ζ j(s), ζ j(s− h)

)∥∥2ds

+12E
∫ t∧ηj

0

∥∥Y(t ∧ ηj − s
)∥∥2∥∥Q

(
s, ζ j(s), ζ j(s− h)

)∥∥2ds.

From (6) and (7), we can easily derive:∥∥P
(
s, ζ j(s), ζ j(s− h)

)∥∥2 ∨
∥∥Q
(
s, ζ j(s), ζ j(s− h)

)∥∥2

≤ 2L
∥∥ζ j(s)

∥∥2
+ 2M

∥∥ζ j(s− h)
∥∥2

+ 2N2.

On the other hand:∥∥Y(t ∧ ηj − s
)∥∥ ≤ exp

(
(‖A‖+ ‖B‖)

(
t ∧ ηj − s

))
.

Therefore:

E
(

sup
s∈[0, t]

∥∥ζ j(s)
∥∥2
)
≤ 3E‖ϑ(t)‖2

+6TE
∫ t∧ηj

0
exp 2

(
(‖A‖+ ‖B‖)

(
t ∧ ηj − s

))(
L
∥∥ζ j(s)

∥∥2
+ M

∥∥ζ j(s− h)
∥∥2

+ N2
)

ds

+24E
∫ t∧ηj

0
exp 2

(
(‖A‖+ ‖B‖)

(
t ∧ ηj − s

))(
L
∥∥ζ j(s)

∥∥2
+ M

∥∥ζ j(s− h)
∥∥2

+ N2
)

ds

≤ 3E‖ϑ(t)‖2 + 6N2(T + 4)T exp2((‖A‖+ ‖B‖)T)

+6(T + 4)E
∫ t∧ηj

0
exp 2

(
(‖A‖+ ‖B‖)

(
t ∧ ηj − s

))(
L
∥∥ζ j(s)

∥∥2
+ M

∥∥ζ j(s− h)
∥∥2
)

ds

≤
(
3 + 6N2(T + 4)T

)
E‖ϑ(T)‖2 + 6N2(T + 4)T exp(2(‖A‖+ ‖B‖)T)

+6(T + 4)(L + M)E
∫ t∧ηj

0
E
(

sup
r∈[0,s]

∥∥ζ j(r)
∥∥2
)

ds.

The application of Lemma 1 to the above inequality gives:

E
(

sup
s∈[0, t]

∥∥ζ j(s)
∥∥2
)

≤
{(

3 + 6N2(T + 4)T
)
E‖ϑ(T)‖2 + 6N2(T + 4)T exp(2(‖A‖+ ‖B‖)T)

}
× exp(6(T + 4)(L + M)T).

Since ζ j(s) = ϕ(s) for any −h ≤ s ≤ 0, we deduce that:

E
(

sup
s∈[−h,t]

∥∥ζ j(s ∧ ηj
)∥∥2
)

= E
(

sup
s∈[−h,t]

∥∥ζ j(s)
∥∥2
)
≤ E‖ϑ(t)‖2 +E

(
sup

s∈[0, t]

∥∥ζ j(s)
∥∥2
)

≤ E‖ϑ(t)‖2 +
{(

3 + 6N2(T + 4)T
)
E‖ϑ(T)‖2 + 6N2(T + 4)T exp(2(‖A‖+ ‖B‖)T)

}
× exp(6(T + 4)(L + M)T).
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Next we take the limit as j→ ∞ to obtain:

E
(

sup
s∈[−h,T]

‖ζ(s)‖2

)
≤ E‖ϑ(t)‖2

+
{(

3 + 6N2(T + 4)T
)
E‖ϑ(T)‖2 + 6N2(T + 4)T exp(2(‖A‖+ ‖B‖)T)

}
× exp(6(T + 4)(L + M)T).

Using the Theorem 2, we prove the first main result of the paper on the uniqueness
and existence solution.

Theorem 3. Assuming that ϕ ∈ C
(
[−h, 0];Rd

)
and P, Q satisfy the Lipschitz condition, then

Equation (5) has a unique solution in H2.

Proof. Uniqueness: Let ζ(t), ζ̂(t) ∈ H2 represent two mild solutions of the Equation (1). Then:

ζ(t)− ζ̂(t) =
∫ t

0
Y(t− s)

[
P(s, ζ(s), ζ(s− h))− P

(
s, ζ̂(s), ζ̂(s− h)

)]
ds

+
∫ t

0
Y(t− s)

[
Q(s, ζ(s), ζ(s− h))−Q

(
s, ζ̂(s), ζ̂(s− h)

)]
dw(s).

By the Holder’s and the Dood’s inequalities due to the Lipchitz condition, we have:

E
(

sup
s∈[−h,t]

∥∥∥ζ(s)− ζ̂(s)
∥∥∥2
)

≤ 2T exp 2((‖A‖+ ‖B‖)T)
∫ t

0

∥∥∥P(s, ζ(s), ζ(s− h))− P
(

s, ζ̂(s), ζ̂(s− h)
)∥∥∥2

ds

+8 exp 2((‖A‖+ ‖B‖)T)
∫ t

0

∥∥∥Q(s, ζ(s), ζ(s− h))−Q
(

s, ζ̂(s), ζ̂(s− h)
)∥∥∥2

ds

≤ (L + M)(2T + 8) exp2((‖A‖+ ‖B‖)T)
∫ t

0
E
(

sup
r∈[−h,s]

∥∥∥ζ(r)− ζ̂(r)
∥∥∥2
)

ds.

It follows from the Gronwall inequality (Corollary 1) that:

E
(

sup
s∈[−h,T]

∥∥∥ζ(s)− ζ̂(s)
∥∥∥2
)

= 0.

Hence, the mild solution for Equation (1) is unique in H2.
Existence: Without loss of generality, it is assumed that T > 0 is sufficiently small,

such that:
γ := (L + M)(2T + 8) exp(2(‖A‖+ ‖B‖)T)T < 1. (9)

Let ζ0(t) := ϑ(0), 0 < t ≤ T. For each natural j = 1, 2, . . . , we set ζ0
0 = ϑ and define

the following Picard iteration sequence for 0 < t ≤ T:

ζ j(t) = ϑ(t) +
∫ t

0
Y(t− s)P

(
s, ζ j−1(s), ζ j−1(s− h)

)
ds

+
∫ t

0
Y(t− s)Q

(
s, ζ j−1(s), ζ j−1(s− h)

)
dw(s).

(10)
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By (10), we have:

E
∥∥ζ j(t)

∥∥2 ≤ 3E‖ϑ(t)‖2

+6(T + 1)E
∫ t

0
exp 2

(
(‖A‖+ ‖B‖)(t− s)α)(L

∥∥ζ j−1(s)
∥∥2

+ M
∥∥ζ j−1(s− h)

∥∥2
+ N

)
ds

≤ (3 + 6M(T + 4)T)E‖ϑ(t)‖2 + 6N(T + 4)T exp(2(‖A‖+ ‖B‖)T)

+6(T + 1)(L + M)E
∫ t

0
E
(∥∥ζ j−1(s)

∥∥2
)

ds.

For a natural number k ≥ 1, we deduce from the above inequality that:

max
1≤j≤k

E
∥∥ζ j(t)

∥∥2 ≤ (3 + 6M(T + 4)T)E‖ϑ(t)‖2 + 6N(T + 4)TE2((‖A‖+ ‖B‖)T)

+6(T + 1)(L + M)E
∫ t

0
max
1≤j≤k

E
(∥∥ζ j−1(s)

∥∥2
)

ds.

We should notice that:

max
1≤j≤k

E
(∥∥∥ζ j−1(s)

∥∥∥2
)
≤ E‖ϑ(0)‖2 + max

1≤j≤k
E
∥∥∥ζ j(t)

∥∥∥2
.

Therefore:

max
1≤j≤k

E
∥∥ζ j(t)

∥∥2

≤ (3 + 6M(T + 1)T)E‖ϑ(0)‖2 + 6N(T + 4)T exp2((‖A‖+ ‖B‖)T)

+6(T + 1)(L + M) exp(2(‖A‖+ ‖B‖)Tα)E
∫ t

0

(
E‖ϑ(0)‖2 + max

1≤j≤k
E
(∥∥ζ j(s)

∥∥2
))

ds

≤ (3 + 6(2M + 1)(T + 1)T)E‖ϑ(0)‖2 + 6N(T + 4)T exp(2(‖A‖+ ‖B‖)T)

+6(T + 1)(L + M) exp(2(‖A‖+ ‖B‖)T)E
∫ t

0
max
1≤j≤k

E
(∥∥ζ j(s)

∥∥2
)

ds.

By the Gronwall Lemma 1 inequality, we get:

max
1≤j≤k

E
∥∥∥ζ j(t)

∥∥∥2
≤ C1 exp(C2T),

where:

C1 := (3 + 6(2M + 1)(T + 1)T)E‖ϑ(0)‖2 + 6N(T + 4)T exp 2((‖A‖+ ‖B‖)T),

C2 := 6(T + 1)(L + M) exp(2(‖A‖+ ‖B‖)T).

It follows that:

E
∥∥∥ζ j(t)

∥∥∥2
≤ C1 exp(C2T), j ≥ 1, 0 < t ≤ T. (11)

Next, integral representation (10) implies that:

ζ1(t)− ζ0(0) =
∫ t

0
Y(t− s)P

(
s, ζ0(s), ζ0(s− h)

)
ds

+
∫ t

0
Y(t− s)Q

(
s, ζ0(s), ζ0(s− h)

)
dw(s).



Fractal Fract. 2022, 6, 307 9 of 18

Similar to the proof of uniqueness, one can have:

E
(

sup
s∈[0, t]

∥∥∥ζ j+1(s)− ζ j(s)
∥∥∥2
)

≤ (L + M)(2T + 8) exp(2(‖A‖+ ‖B‖)Tα)

×
∫ t

0
E
(

sup
r∈[0,s]

∥∥∥ζ j(r)− ζ j−1(r)
∥∥∥2
)

ds

≤ (L + M)(2T + 8) exp(2(‖A‖+ ‖B‖)T)TE
(

sup
r∈[0, t]

∥∥∥ζ j(r)− ζ j−1(r)
∥∥∥2
)

. (12)

Considering mathematical induction by j, one may have:

E
(

sup
s∈[0, t]

∥∥∥ζ j+1(s)− ζ j(s)
∥∥∥2
)
≤ E

(
sup

s∈[0, t]

∥∥∥ζ1(s)− ζ0(s)
∥∥∥2
)

γj.

We assumed that:

γ = (L + M)(2T + 8) exp(2(‖A‖+ ‖B‖)T)T < 1.

It follows that there exists: ζ ∈ H2 such that

lim
j→∞

ζ j(t) = ζ(t) in H2.

Taking limit in (10), we get:

ζ(t) = ϑ(t) +
∫ t

0
Y(t− s)P(s, ζ(s), ζ(s− h))ds

+
∫ t

0
Y(t− s)Q(s, ζ(s), ζ(s− h))dw(s).

This shows that ζ(t) is a mild solution of (1).
In order to eliminate the restriction posed by (9), we choose τ > 0 sufficiently small

such that:
γ = (L + M)(2τ + 8) exp(2(‖A‖+ ‖B‖)τ)τ < 1.

Then, the system (1) has a unique mild solution [−h, τ]. Considering the solution
on [τ, 2τ] and repeating the same argument as before, we can prove that the system (1)
has a unique mild solution on [−h, T].

4. Relative Approximate Controllability

Consider the related linear time-delay stochastic differential control system of (1):{
ζ ′(t) = Aζ(t) + Bζ(t− h) + Du(t) + Q(t) dw(t)

dt ,
ζ(t) = ϕ(t), −h ≤ t ≤ 0,

(13)

We know that the solution has the following representation:

ζ(t) = Y(t + h)ϕ(−h) +
∫ 0

−h
Y(t− s)[ϕ′(s)− Aϕ(s)]ds

+
∫ t

0
Y(t− s)Du(s)ds +

∫ t

0
Y(t− s)Q(s)dw(s).
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Next, we consider the linear time-delay deterministic control system of (13):{
ζ ′(t) = Aζ(t) + Bζ(t− h) + Du(t),
ζ(t) = ϕ(t), −h ≤ t ≤ 0,

(14)

We define the deterministic and stochastic controllability operators (see [12]):(
L̂
)T

0
u :=

∫ T

0
Y(T − s)Du(s)ds : L2(0, T;Rm)→ Rd,

LT
0 u :=

∫ T

0
Y(T − s)Du(s)ds : L2

F(0, T;Rm)→ L2
(
FT ,Rd

)
.

Similar to the Gramian matrix, we give the following deterministic delayed Gramian
matrix and stochastic Gramian operator:

WT
0 :=

∫ T

0
Y(T − s)DDᵀYᵀ(T − s)ds : Rd → Rd,

ΓT
0 {·} := LT

0
(

LT
0
)∗h =

∫ T

0
Y(T − s)DDᵀYᵀ(T − s)E{· | Fs}ds : L2

(
FT ,Rd

)
→ L2

(
FT ,Rd

)
.

Definition 5. The system (14) is said to be relatively exactly controllable on [0, T] if Im
(

L̂
)T

0
= Rd.

Definition 6. The system (13) is said to be relatively approximate controllable on
[0, T] if Im LT

0 = L2
(
FT ,Rd

)
.

Theorem 4. If the deterministic system (14) corresponding to (13) is relatively exact controllable
on [0, T], then the system (13) is relatively approximate controllable on [0, T].

Proof. Assume that the deterministic system (14) is relatively exact controllable on [0, T].
Then, it is known that the following:

WT
r :=

∫ T

r
Y(T − s)DDᵀYᵀ(T − s)ds, 0 ≤ r < T,

is positive. On the other hand, for any h ∈ L2
(
FT , Rd

)
, there exists a stochastic process

ψ ∈ L2
F(0, T;Rd) such that:

E{h | Ft} = Eh +
∫ t

0
ψ(s)dw(s).

Then, we can write ΓT
0 in terms of matrix WT

r :

ΓT
0 h =

∫ T

0
Y(T − s)DDᵀYᵀ(T − s)E{h | Fs}ds

=
∫ T

0
Y(T − s)DDᵀYᵀ(T − s)

(
Eh +

∫ s

0
ψ(r)dw(r)

)
ds

= WT
0 Eh +

∫ T

0

∫ T

r
Y(T − s)DDᵀYᵀ(T − s)dsψ(r)dw(r)

= WT
0 Eh +

∫ T

0
WT

r ψ(r)dw(r).
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It follows that for any nonzero h ∈ L2
(
FT ,Rd

)
E
〈

ΓT
0 h, h

〉
=
〈

WT
0 Eh,Eh

〉
+E

∫ T

0

〈
WT

r ψ(r), ψ(r)
〉

dr > 0.

Thus, ΓT
0 = LT

0
(

LT
0
)∗ : L2

(
FT ,Rd

)
→ L2

(
FT ,Rd

)
is a positive operator. It follows that:

Im LT
0 = L2

(
FT ,Rd

)
.

This means that the system (13) is relatively approximate controllable on [0, T].

Next, we investigate the relative approximate controllability for semilinear stochastic
time-delay systems. We derive sufficient conditions of relatively approximate controllability
for the following semilinear time-delay fractional stochastic system:{

ζ ′(t) = Aζ(t) + Bζ(t− h) + Du(t) + P(t, ζ(t), ζ(t− h)) + Q(t, ζ(t), ζ(t− h)) dw(t)
dt ,

ζ(t) = ϕ(t), −h ≤ t ≤ 0,
(15)

Consider the following relatively exact controllability assumption:

Hypothesis 3 (H3). The linear deterministic system corresponding to (13) is relatively exact
controllable [0, T].

The mild solution of (15) is expressed in the following form:

ζ(t) = Y(t + h)ϕ(−h) +
∫ 0

−h
Y(t− s)[ϕ′(s)− Aϕ(s)]ds

+
∫ t

0
Y(t− s)Du(s)ds +

∫ t

0
Y(t− s)P(s, ζ(s), ζ(s− h))ds

+
∫ t

0
Y(t− s)Q(s, ζ(s), ζ(s− h))dw(s).

(16)

We define the control u(s) as follows:

u(s, ζ) := DᵀYᵀ(T − s)
(
αI + ΓT

0
)−1
(
EζT −Y(T + h)ϕ(−h)−

∫ 0

−h
Y(T − s)[ϕ′(s)− Aϕ(s)]ds

)
+DᵀYᵀ(T − s)

∫ s

0

(
αI + ΓT

r
)−1

Y(T − r)ψ(r)dw(r)

−DᵀYᵀ(T − s)
∫ s

0

(
αI + ΓT

r
)−1

Y(T − r)P(r, ζ(r), ζ(r− h))dr

−DᵀYᵀ(T − s)
∫ s

0

(
αI + ΓT

r
)−1

Y(T − r)Q(r, ζ(r), ζ(r− h))dw(r),

(17)

where ψ ∈ L2
F(0, T;Rd) from the representation:

ζT = EζT +
∫ t

0
ψ(r)dw(r)

of ζT ∈ L2
(
FT ,Rd

)
, see [12].
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Next we define the nonlinear operator R : H2 → H2:

(Rζ)(t) := Y(t + h)ϕ(−h) +
∫ 0

−h
Y(t− s)[ϕ′(s)− Aϕ(s)]ds

+
∫ t

0
Y(t− s)Du(s, ζ)ds +

∫ t

0
Y(t− s)P(s, ζ(s), ζ(s− h))ds

+
∫ t

0
Y(t− s)Q(s, ζ(s), ζ(s− h))dw(s).

Thus, the relative approximate controllability problem has transformed into the exis-
tence of a fixed point for R.

Lemma 2. There exists a positive constant Lu > 0 such that for all ζ, ζ̂ ∈ H2 the control function
u satisfies the following inequalities:

E
(

sup
s∈[−h,t]

∥∥∥u(s, ζ)− u
(

s, ζ̂
)∥∥∥2

)
≤ 1

α2 Lu

∫ t

0
E
(

sup
r∈[−h,s]

∥∥∥ζ(r)− ζ̂(r)
∥∥∥2
)

ds,

E sup
s∈[−h,t]

‖u(s, ζ)‖2 ≤ 1
α2 Lu

(
1 +

∫ s

0
E sup

r∈[−h,s]
‖ζ(r)‖2dr

)
.

Proof. We will prove the first inequality, since the proof of the second inequality is similar.

E
(

sup
s∈[−h,t]

∥∥∥u(s, ζ)− u
(

s, ζ̂
)∥∥∥2

)

≤ 2E sup
s∈[−h,t]

∥∥∥∥DᵀYᵀ(T − s)
∫ s

0

(
αI + ΓT

r
)−1

Y(T − r)

×
(

P(s, ζ(s), ζ(s− h))− P
(

s, ζ̂(s), ζ̂(s− h)
))

ds
∥∥∥2

+2E sup
s∈[−h,t]

∥∥∥∥DᵀYᵀ(T − s)
∫ s

0

(
αI + ΓT

r
)−1

Y(T − r)

×
(

Q(s, ζ(s), ζ(s− h))−Q
(

s, ζ̂(s), ζ̂(s− h)
))

dw(s)
∥∥∥2

≤ 1
α2 (L + M)(2T + 8)‖Dᵀ‖ exp(2(‖A‖+ ‖B‖)T)

∫ t

0
E
(

sup
r∈[−h,s]

∥∥∥ζ(r)− ζ̂(r)
∥∥∥2
)

ds.

Lemma 3. Under assumptions (H1)–(H3), the operator R maps H2 into itself.

Proof. The proof goes in similar lines to that of Theorem 2. In addition, we need to use
Lemma 2.

Lemma 4. Under assumptions (H1)–(H3), the operator Rn, n ≥ 1, is contractive on H2 and R

has a unique fixed point in H2.

Proof. We prove that for any fixed α > 0, the operator R has a unique fixed point in H2.
To do so, we use the classical Banach fixed point theorem. By Lemma 3, R sends H2 into
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H2. We prove that there exists n > 0 such that Rn is a contraction. Take ζ, ζ̂ ∈ H2. Using
Lemma 2 and the estimations used in the proof of inequality (12), one can easily get:

E
(

sup
s∈[0, t]

∥∥∥(Rζ)(s)−
(
Rζ̂
)
(s)
∥∥∥2
)

≤ 2(L + M)(2T + 8) exp(2(‖A‖+ ‖B‖)T)
∫ t

0
E
(

sup
r∈[0,s]

∥∥∥ζ(r)− ζ̂(r)
∥∥∥2
)

ds

+2E sup
s∈[0, t]

∥∥∥∥∫ s

0
Y(s− r)D

(
u(r, ζ)− u

(
r, ζ̂
))

dr
∥∥∥∥2

≤ 2(L + M)(2T + 8) exp(2(‖A‖+ ‖B‖)T)T
∫ t

0
E
(

sup
r∈[0,s]

∥∥∥ζ(r)− ζ̂(r)
∥∥∥2
)

dr

+2 exp(2(‖A‖+ ‖B‖)T)‖D‖2 1
α2 Lu

∫ t

0
E
(

sup
r∈[−h,s]

∥∥∥ζ(r)− ζ̂(r)
∥∥∥2
)

ds.

Hence, there exists a positive number k(α) > 0 such that:

E
(

sup
s∈[−h,t]

∥∥∥(Rζ)(s)−
(
Rζ̂
)
(s)
∥∥∥2
)
≤ k(α)

∫ t

0
E
(

sup
r∈[−h,s]

∥∥∥ζ(r)− ζ̂(r)
∥∥∥2
)

ds. (18)

For any natural number n ≥ 1, by iteration, it follows from (18) that:

E
(

sup
s∈[−h,t]

∥∥∥(Rnζ)(s)−
(
Rn ζ̂

)
(s)
∥∥∥2
)
≤ (Tk(α))n

n!
E
(

sup
r∈[−h,t]

∥∥∥ζ(r)− ζ̂(r)
∥∥∥2
)

.

Since for sufficiently large n, (Tk(α))n

n! , Rn is a contraction map on H2, and therefore, R
itself has a unique fixed point in H2. The theorem is proved.

Theorem 5. Assume that the functions (P, Q) : [0, T]× Rd × Rd → Ed × Rd are uniformly
bounded. Under assumptions (H1) and (H3), the mild solution of the system (16) is relatively
approximate controllable on [0, T].

Proof. Let ζα be a fixed point of R in H2 and ζT ∈ Rd. Using the Fubini theorem, one can
show that any fixed point of R satisfies:

ζα(T) = ζT − α
(
αI + ΓT

0
)−1
(
EζT −Y(T + h)ϕ(−h)−

∫ 0

−h
Y(T − s)[ϕ′(s)− Aϕ(s)]ds

)
−
∫ T

0
α
(
αI + ΓT

r
)−1

ψ(r)dw(r)

+
∫ T

0
α
(
αI + ΓT

r
)−1

Y(T − r)P(r, ζα(r), ζα(r− h))dr

+
∫ T

0
α
(
αI + ΓT

r
)−1

Y(T − r)Q(r, ζα(r), ζα(r− h))dw(r).

(19)

By our assumption, P and Q are uniformly bounded on [0, T]×Ω, that is, there exists
L > 0 such that:

‖P(r, ζα(r), ζα(r− h))‖2 + ‖Q(r, ζα(r), ζα(r− h))‖2 ≤ L.

Then, there is a subsequence, still denoted by {P(r, ζα(r), ζα(r− h)), Q(r, ζα(r), ζα(r− h))},
weakly converging to, say, {P(r), Q(r)}.
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Thus, by the Lebesgue dominated convergence theorem, we have:

E
∫ T

0
‖Y(T − r)(P(r, ζα(r), ζα(r− h))− P(r))‖2ds → 0,

E
∫ T

0
‖Y(T − r)(Q(r, ζα(r), ζα(r− h))−Q(r))‖2ds → 0,

as α→ 0+.
Then, having in mind

∥∥∥α
(
αI + ΓT

r
)−1
∥∥∥ ≤ 1 and

∥∥∥α
(
αI + ΓT

r
)−1
∥∥∥→ 0 for all 0 ≤ r < T,

from (19) we obtain:

E‖ζα(T)− ζT‖2

≤ 4
∥∥∥∥α
(
αI + ΓT

0
)−1
(
EζT −Y(T + h)ϕ(−h)−

∫ 0

−h
Y(T − s)[ϕ′(s)− Aϕ(s)]ds

)∥∥∥∥2

+4
∫ T

0

∥∥∥α
(
αI + ΓT

r
)−1

ψ(r)
∥∥∥2

dr

+
∫ T

0

∥∥∥α
(
αI + ΓT

r
)−1
∥∥∥2
‖Y(T − r)(P(r, ζα(r), ζα(r− h))− P(r)) +Y(T − r)P(r)‖2dr

+
∫ T

0

∥∥∥α
(
αI + ΓT

r
)−1
∥∥∥2
‖Y(T − r)(Q(r, ζα(r), ζα(r− h))−Q(r)) +Y(T − r)Q(r)‖2dr

→ 0,

as α→ 0+. This gives the relative approximate controllability. The theorem is proved.

5. Example

Example 1. We consider linear stochastic delayed dynamic differential control system of the form (13):

ζ ′(t) =

1 0 0
0 1 0
0 0 1

ζ(t) +

−1 1 0
1 0 1
0 1 1

ζ(t− h)

+

0 0
1 0
0 1

u(t) + σ(t, ζ(t)) dw(t)
dt ,

ζ(t) = ϕ(t), −h ≤ t ≤ 0,

(20)

defined in a given time interval [0, T], T > 1, with one constant point delay h = 1, with an
arbitrary 3 dimensional vector σ. Hence, d = 3, m = 2 and:

Q(T) := {Q0(t), Q1(t), Q2(t) : t ∈ [0, T)}.

Moreover, using the notation given in [41], we have:

Q(T) = [Q1(0) Q2(0) Q2(h) Q3(0) Q3(h) Q3(2h)]

=
[
D AD BD A2D (AB + BA)D B2D

]
.

Substituting the matrices A, B, and D given above, we easily obtain:

rankQ(T) = rank

 0 0 0 0 1 0 0 0 2 0 −1 1
1 0 1 0 0 1 1 0 0 2 0 1
0 1 0 1 1 1 0 1 2 4 2 1

 = 3.
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Hence, by [52] the linear deterministic system associated with (20) is relatively exactly control-
lable in each time interval [0, T] for T > 1. Thus, by Theorem 3, the system (20) is relatively approx-
imate controllable, provided that σ(t, ζ) satisfies the Lipschitz condition and uniformly bounded.

Example 2. Now, we present a stochastic model of population dynamics with delayed birthrates
and delayed logistic terms given by the system. The deterministic analogue of the following system
used in [53] was used to model the population growth:

ζ ′(t) =

[
−a1 0

0 −a2

][
ζ1(t)
ζ2(t)

]
+

[
d1 0
0 d2

][
ζ1(t− h)
ζ2(t− h)

]

+

[
P1(t, ζ1(t), ζ2(t− h))
P2(t, ζ2(t), ζ1(t− h))

]
+

[
ψ1(t)

dw(t)
dt

ψ2(t)
dw(t)

dt

]
, 0 ≤ t ≤ T.

(21)

Then, (21) can be turned into:

ζ ′(t) = Aζ(t) + Bζ(t− h) + P(t, ζ(t), ζ(t− h)) + Q(t)
dw(t)

dt
.

The deterministic linear system corresponding to (21) is controllable, see [53]. Thus, for any
Lipschitz continuous and uniformly bounded P, by Theorem 5, the system (21) is relatively approxi-
mate controllable on [0, T].

Example 3. Let h = 0.2, T = 0.8, and d = 2. Consider the relative approximate controllability of
the following linear time-delay differential controlled system:

y′(t) =
(

1 2
0 1

)
y(t− 0.2) +

(
1/2 0

0 1/2

)
u(t) + σ(t)dw(t), 0 ≤ t ≤ 0.8

y(t) =
(

t
2t

)
, −0.2 ≤ t ≤ 0.

(22)

In this case, YA,B
h (t) = eB(t−h)

h , which is defined in Definition 2. The delayed Grammian
matrix of system (22) has the following explicit form:

W0.8
0 =

∫ 0.8

0
Y(0.8− s)DDᵀYᵀ(0.8− s)ds =

∫ 0.8

0
eB(0.6−s)

h DDᵀeBᵀ(0.6−s)
h ds

=
∫ 0.8

0
eB(0.6−s)

h D2eBᵀ(0.6−s)
h ds

= W1 + W2 + W3 + W4.

Here:

W1 =
∫ 0.2

0

(
I + B (0.6−s)

1! + B2 (0.4−s)2

2! + B3 (0.2−s)3

3!

)
×D2

(
I + Bᵀ (0.6−s)

1! + (Bᵀ)2 (0.4−s)2

2! + (Bᵀ)3 (0.2−s)3

3!

)
ds,

W2 =
∫ 0.4

0.2

(
I + B (0.6−s)

1! + B2 (0.4−s)2

2!

)
×D2

(
I + Bᵀ (0.6−s)

1! + (Bᵀ)2 (0.4−s)2

2!

)
ds,

W3 =
∫ 0.6

0.4

(
I + B

(0.6− s)
1!

)
D2
(

I + Bᵀ (0.6− s)
1!

)
ds,

W4 =
∫ 0.8

0.6
D2ds.
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By elementary computation, one can get:

W1 =

(
0.192 3 9.264 8× 10−2

9.264 8× 10−2 6. 994 5× 10−2

)
, W2 =

(
0.106 17 4.138 3× 10−2

4.138 3× 10−2 8.557 1× 10−2

)
W3 =

(
6.333 3× 10−2 1.133 3× 10−2

1.133 3× 10−2 6.066 7× 10−2

)
, W4 =

(
0.05 0

0 0.05

)
.

Therefore, we obtain:

W =

(
0.411 8 0.145 36
0.145 36 0.266 18

)
, W−1 =

(
3.0082 −1.6428
−1.6428 4.6539

)
.

This means that the linear deterministic delay system corresponding to (22) is relatively exact
controllable on [0, 0.8]. By Theorem 4 the system (22) is relatively approximate controllable on [0, 0.8].

6. Conclusions

The purpose of this contribution is to discuss the existence uniqueness and relative
approximate controllability of time-delayed stochastic dynamical systems of linear and
nonlinear equations with linear parts defined by noncommutative matrix coefficients.
Introducing the delayed Gramian matrix, we establish some sufficient and necessary
conditions for the relative approximate controllability of linear time-delayed stochastic
dynamical systems. In addition, by applying the generalized Banach fixed point theorem,
we establish sufficient the relative approximate controllability conditions for semilinear
time-delayed stochastic differential systems.

One possible direction in which to extend the results of this paper is toward fractional
time-delay and conformable fractional time-delay differential systems, as well as fractional
time-delay stochastic differential systems. Another challenge is to find out if similar results can
be derived in the infinite dimensional cases for various type of time-delay fractional systems.
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