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Abstract: Since Gösta Magus Mittag-Leffler introduced the so-called Mittag-Leffler function in 1903
and studied its features in five subsequent notes, passing the first half of the 20th century during
which the majority of scientists remained almost unaware of the function, the Mittag-Leffler function
and its various extensions (referred to as Mittag-Leffler type functions) have been researched and
applied to a wide range of problems in physics, biology, chemistry, and engineering. In the context of
fractional calculus, Mittag-Leffler type functions have been widely studied. Since Carlson established
the notion of Dirichlet average and its different variations, these averages have been explored and
used in a variety of fields. This paper aims to investigate the Dirichlet and modified Dirichlet
averages of the R-function (an extended Mittag-Leffler type function), which are provided in terms of
Riemann-Liouville integrals and hypergeometric functions of several variables. Principal findings in
this article are (possibly) applicable. This article concludes by addressing an open problem.

Keywords: Dirichlet averages; B-splines; dirichlet splines; Riemann–Liouville fractional integrals;
hypergeometric functions of one and several variables; generalized Mittag-Leffler type function;
Srivastava–Daoust generalized Lauricella hypergeometric function
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1. Introduction and Preliminaries

The Mittag-Leffler function Eα(z) (see [1])

Eα(z) =
∞

∑
`=0

z`

Γ(α`+ 1)
(<(α) > 0), (1)

Γ being the familiar Gamma function (see, for example, Section 1.1 in [2]), is named
after the eminent Swedish mathematician Gösta Magus Mittag-Leffler (1846–1927), who
explored its features in 1902–1905 in five notes (consult, for instance, [1]) related to his
summation technique for divergent series (see also Chapter 1, [3]). Because Γ(`+ 1) = `!
(` ∈ N0) and therefore E1(z) = ez, this function gives a straightforward extension of the
exponential function. Here and elsewhere, let N, Z−0 , R, R+, and C be the sets of positive
integers, non-positive integers, real numbers, positive real numbers, and complex numbers,
respectively, and put N0 := N ∪ {0}. Passing the first half of the 20th century during
which the majority of scientists remained almost unaware of the function, the Mittag-Leffler
function and its various extensions (referred to as Mittag-Leffler type functions) have been
studied and applied to a wide range of problems in physics, biology, chemistry, engineering,
etc. This function’s most significant features are described in Chapter XVIII [4], which is
dedicated to so-called miscellaneous functions. The Mittag-Leffler function was categorized
as miscellaneous because it was not until the 1960s that it was discovered as belonging to a
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broader class of higher transcendental functions known as Fox H-functions, thus the term
“miscellaneous” (consult, for instance, [5]). In reality, this class was not well-established
until Fox’s landmark study (see [6]). The simplest (and most crucial for applications)
extension of the Mittag-Leffler function, notably the two-parametric Mittag-Leffler function

Eα,β(z) =
∞

∑
`=0

z`

Γ(α`+ β)
(α, β ∈ C, <(α) > 0) (2)

was separately studied by Humbert and Agarwal in 1953 (see, for example, [7]) and by
Dzherbashyan in 1954 (see, for example, [8]). However, it first appeared formally in
Wiman’s article [9]. Prabhakar [10] introduced the following three-parametric Mittag-
Leffler function:

Eγ
α,β(z) =

∞

∑
`=0

(γ)`
`! Γ(α`+ β)

z` (α, β, γ ∈ C, <(α) > 0, <(γ) > 0), (3)

where (λ)ν denotes the Pochhammer symbol defined (for λ, ν ∈ C) by

(λ)ν :=
Γ(λ + ν)

Γ(λ)
=

{
1 (ν = 0; λ ∈ C \ {0})
λ(λ + 1) · · · (λ + n− 1) (ν = n ∈ N; λ ∈ C),

(4)

it being accepted conventionally that (0)0 := 1. This Function (3) is being used for a variety
of applicable issues. Scientists, engineers, and statisticians recognize the significance of the
aforementioned H-function due to its great potential for applications in several scientific
and technical domains. In addition to the Mittag-Leffler Functions (1)–(3), the H-function
includes a variety of functions (see, for example, [5]). Among several monographs on
the H-function, monograph [5] discusses the theory of the H-function with a focus on its
applications. The H-function (or Fox’s H-function [6]) is defined by means of a Mellin–
Barnes type integral in the following manner (consult also [5]):

H(z) = Hm,n
p,q (z) = Hm,n

p,q

[
z
∣∣∣ (ap, αp)
(bq, βq)

]
= Hm,n

p,q

[
z
∣∣∣ (a1, α1), . . . , (ap, αp)
(b1, β1), . . . , (bq, βq)

]
=

1
2πω

∫
L

Ω(s) z−s ds,
(5)

where ω =
√
−1, and

Ω(s) :=

m
∏
j=1

Γ
(
bj + β j s

)
·

n
∏
j=1

Γ
(
1− aj − αj s

)
q

∏
j=m+1

Γ
(
1− bj − β j s

)
·

p
∏

j=n+1
Γ
(
aj + αj s

) . (6)

We also assume the following: z−s = exp[−s{ln |z| + i arg z}], where ln |z| is the
natural logarithm, and η < arg z < η + 2π for some η ∈ R. The integration path L =
Liγ∞(γ ∈ R) extends from γ− i∞ to γ + i∞ with indentations, if necessary, so that the
poles of Γ(1 − aj − αjs) (1 ≤ j ≤ n ∈ N0) can be separated from those of Γ(bj + β js)
(1 ≤ j ≤ m ∈ N0) and has no those poles on it. The parameters p, q ∈ N0 satisfy the
conditions 0 ≤ n ≤ p, 0 ≤ m ≤ q; the parameters αj, β j ∈ R+ and aj, bj ∈ C. The empty
product in (6) (and elsewhere) is (as usual) understood to be unity.

For the existence conditions of the H-function, one may refer to Appendix F.4 [3], Sec-
tion 1.2 [5]. Here it is recalled that the three-parametric Mittag-Leffler function (Prabhakar
function) (3) is represented by the following Mellin–Barnes integral (see p.10, Example 1.5
in [5]):
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Eγ
α,β(z) =

1
2πω Γ(γ)

∫ ξ+ω∞

ξ−ω∞

Γ(s) Γ(γ− s)
Γ(β− αs)

(−z)−s ds (7)(
| arg z| < 2π, ξ ∈ R (fixed), α ∈ R+, <(β) > 0, γ ∈ C \Z−0

)
.

We find from (5) and (7) that

Eγ
α,β(z) =

1
Γ(γ)

H1,1
1,2

[
−z
∣∣∣∣ (1− γ, 1)
(0, 1), (1− β, α)

]
. (8)

Using (8) in the relation E1
α,β(z) = Eα,β(z), we get (consult, for example, p.9, Equation

(1.50) in [5])

Eα,β(z) = H1,1
1,2

[
−z
∣∣∣∣ (0, 1)
(0, 1), (1− β, α)

]
. (9)

Indeed, the Mittag-Leffler type functions in association with the fractional calculus
have been actively researched (see, for example, [11,12]).

Carlson developed the notion of the Dirichlet average in his work [13] (see also
[14–18]). Carlson also provided a full and thorough analysis of the numerous varieties
of Dirichlet averages. A function’s so-called Dirichlet average is the integral mean of
the function with regard to the Dirichlet measure. Subsequently and more recently, this
study topic has been explored in publications such as [19–28]. Neuman and Van Fleet [19]
defined Dirichlet averages of multivariate functions and demonstrated their recurrence
formula. Daiya and Kumar [20] researched the double Dirichlet averages of S-functions.
Saxena and Daiya [29] proposed and explored the S-functions. Kilbas and Kattuveet-
till [22] investigated Dirichlet averages of the three-parametric Mittag-Leffler Function (3),
whose representations are provided in terms of the Riemann–Liouville fractional integrals
and the hypergeometric functions with multiple variables. Saxena et al. [25] explored
Dirichlet averages of the generalized multi-index Mittag-Leffler functions (see, for instance,
[30]), whose representations are expressed in terms of Riemann–Liouville integrals and
hypergeometric functions of several variables. Using Riemann–Liouville fractional integral
operators, Vyas [31] investigated the solution of the Euler–Darboux equation in terms of
Dirichlet averages of boundary conditions on Hölder space and weighted Hölder spaces of
continuous functions. For further Dirichlet averages in connection with fractional calculus,
one may consult [21,24,32–36]. These Dirichlet averages were used in a number of studies,
in particular, Dirichlet splines (see [19]), B-splines (see [18,23]), and Stolarsky means (see
[37]).

In this work, we propose to investigate the Dirichlet and modified Dirichlet averages of
the R-function (an extended Mittag-Leffler type function) (see, for details, Section 2). Main
results stated in this paper, which are presented in terms of Riemann–Liouville integrals
and hypergeometric functions of several variables, are (potentially) useful.

Let Ω be a convex set in C and z := (z1, . . . , zn) ∈ Ωn (n ∈ N \ {1}). Suppose that f is
a measurable function on Ω. Then the general Dirichlet average of the function f is defined
as follows (see [15]):

F(b; z) =
∫

En−1

f (u ◦ z)dµb(u), (10)

where b and u denote the arrays of n parameters b1, . . . , bn and u1, . . . , un, respectively, and
dµb(u) is the Dirichlet measure defined by

dµb(u) =
1

B(b)
ub1−1

1 · · · ubn−1−1
n−1 (1− u1 − · · · − un−1)

bn−1du1 · · · dun−1, (11)

and En−1 is the Euclidean simplex in Rn−1 (n ∈ N \ {1, 2}) given by

En−1 =
{
(u1, . . . , un−1) : uj ≥ 0 (j ∈ 1, n− 1), u1 + · · ·+ un−1 ≤ 1

}
, (12)
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and B(b) is the multivariate Beta-function defined by

B(b) :=
Γ(b1) · · · Γ(bn)

Γ(b1 + · · ·+ bn)

(
<
(
bj
)
> 0 (j ∈ 1, n)

)
,

and

u ◦ z :=
n−1

∑
j=1

ujzj + (1− u1 − · · · − un−1)zn.

Here and throughout this paper, the notation 1, p := {1, . . . , p} (p ∈ N) is used. The
special case of (11) when n = 2 reduces to the following form:

dµβ,β′(u) =
Γ(β + β′)

Γ(β)Γ(β′)
uβ−1 du. (13)

Carlson [15] investigated the average (10) for the function f (z) = zk (k ∈ R) in the
following form:

Rk(b; z) =
∫

En−1

(u ◦ z)k dµb, (14)

whose special case n = 2 was given as follows (see [13,15]):

Rk
(

β, β′; x, y
)
=

1
B(β, β′)

∫ 1

0
[ux + (1− u)y]k uβ−1(1− u)β′−1du, (15)

where β, β′ ∈ C with min{<(β), <(β′)} > 0, and x, y ∈ R, B(β, β′) is the familiar Beta
function (consult, for instance, Chapter 1, [2]).

The Riemann–Liouville fractional integral of a function f is defined as follows (consult,
for instance, (p. 69) [38]): For α ∈ C with <(α) > 0 and a ∈ R,

(Iα
a+ f )(x) =

1
Γ(α)

∫ x

a
(x− t)α−1 f (t) dt (x > a). (16)

The Srivastava–Daoust generalization FA:B(1);...;B(n)

C:D(1);...;D(n) of the Lauricella hypergeometric
function FD in n variables is defined by (see (p. 454) [39]; see also (p. 37) [40], (p. 209) [5])

FA:B(1);...;B(n)

C:D(1);...;D(n)

( [
(a) : θ(1), . . . , θ(n)

]
:
[(

b(1)
)

: ϕ(1)]; . . . ;
[(

b(n)
)

: ϕ(n)];[(
c
)

: ψ(1), . . . , ψ(n)] :
[(

d(1)
)

: δ(1)
]
; . . . ;

[(
d(n)

)
: δ(n)

]
;

x1, . . . , xn

)

=
∞

∑
m1,...,mn=0

∏A
j=1
(
aj
)

m1θ
(1)
j +···+mnθ

(n)
j

∏B(1)

j=1

(
b(1)j

)
m1 ϕ

(1)
j

· · ·∏B(n)

j=1

(
b(n)j

)
mn ϕ

(n)
j

∏C
j=1
(
cj
)

m1ψ
(1)
j +···+mnψ

(n)
j

∏D(1)

j=1

(
d(1)j

)
m1δ

(1)
j

· · ·∏D(n)

j=1

(
d(n)j

)
mnδ

(n)
j

×
xm1

1
m1!
· · · xmn

n
mn!

,

(17)

where the coefficients, for all k ∈ 1, n,

θ
(k)
j
(

j ∈ 1, A
)
; ϕ

(k)
j

(
j ∈ 1, B(k)

)
; ψ

(k)
j
(

j ∈ 1, C
)
; δ

(k)
j

(
j ∈ 1, D(k)

)
are real and positive, and (a) abbreviates the array of A parameters a1, . . . , aA,

(
b(k)
)

abbreviates the array of B(k) parameters b(k)j

(
j ∈ 1, B(k)

)
for all k ∈ 1, n, with similar

interpretations for (c) and
(

d(k)
)
(k ∈ 1, n); et cetera.

One may refer to Srivastava and Daoust [41] for the specific convergence requirements
of the multiple series (17).
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2. The Generalized Mittag-Leffler Type Function (the R-Function)

The R-function, which Kumar and Kumar [42] proposed and Kumar and Purohit [43]
studied, is defined as follows:

κ
pRα,β;γ

q (z) = κ
pRα,β;γ

q
(
a1, . . . , ap; b1, . . . , bq; z

)
=

∞

∑
n=0

p
∏
j=1

(
aj
)

n

q
∏
j=1

(
bj
)

n

(γ)κn
Γ(αn + β)

zn

n!

(α, β, γ ∈ C; <(α) > max{0,<(κ)− 1}; <(κ) > 0),

(18)

where
(
aj
)

n (j ∈ 1, p) and
(
bj
)

n (j ∈ 1, q) are the Pochhammer symbols in (4).
The series (18) is defined when

bj ∈ C \Z−0
(

j ∈ 1, q
)
. (19)

If any parameter aj is a negative integer or zero, then the series (18) terminates to
become a polynomial in z.

Assuming that none of the numerator parameters is zero or a negative integer (other-
wise the question of convergence will not arise) and with the restriction given by (19), the
κ
pRα,β;γ

q series in (18)

(i) converges for |z| < ∞, if p < q + 1,
(ii) converges for |z| < 1, if p = q + 1, and
(iii) diverges for all z ∈ C \ {0} if p > q + 1.

Furthermore, if we set

ω :=
q

∑
j=1

bj −
p

∑
j=1

aj, (20)

then it is seen that the κ
pRα,β;γ

q series in (18), with p = q + 1, is

(a) absolutely convergent for |z| = 1, if <(ω) > 0,
(b) conditionally convergent for |z| = 1 (z 6= 1), if −1 < <(ω) 5 0, and
(c) divergent for |z| = 1, if <(ω) 5 −1.

Remark 1. The R-function in (18) is general enough to include, as its special cases, such functions
as (for example) the generalized Mittag-Leffler function Eγ,κ

α,β (z) introduced by Srivastava and
Tomovski [44]:

κ
1Rα,β;γ

1 (z) =
∞

∑
n=0

(γ)κn
Γ(αn + β)

zn

n!
= Eγ,κ

α,β (z) (21)

as well as the Mittag-Leffler function Eα(z) (see [1]):

1
1Rα,1;1

1 (z) =
∞

∑
n=0

zn

Γ(αn + 1)
= Eα(z). (22)

3. Bivariate Dirichlet Averages

The Dirichlet average of the generalized Mittag-Leffler type Function (18) is denoted
and defined as follows:

κ
pM

α,δ;γ
q

[(
β, β′; x, y

)](a)1,p
(b)1,q

:=
∫

E1

[
κ
pRα,δ;γ

q
(
a1, . . . , ap; b1, . . . , bq; (u ◦ z)

)]
dµβ,β′(u),

(23)

where (a)1,n and (b)1,n (n ∈ N) denote the horizontal arrays a1, . . . , an and b1, . . . , bn,
respectively; z = (x, y) ∈ R2 and min{<(β),<(β′)} > 0. In fact, it is shown that the Dirich-
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let average of the R-function (18) is stated in terms of the Riemann–Liouville fractional
integrals (16) claimed by Theorems 1 and 2.

Theorem 1. Let z, α, β, β′, δ, γ, κ ∈ C such that <(α) > max{0,<(κ)− 1} and
min{<(κ), <(β), <(β′)} > 0. Also let x, y ∈ R with x > y and Iβ′

0+ be the Riemann–Liouville
fractional integral given in (16). Then the Dirichlet average of the generalized Mittag-Leffler type
function (18) is given by the following formula:

κ
pM

α,δ;γ
q

[(
β, β′; x, y

)](a)1,p
(b)1,q

=
Γ(β + β′)

Γ(β)(x− y)β+β′−1

(
Iβ′

0+ f
)
(x− y), (24)

where the function f is given by

f (t) = tβ−1 κ
pRα,δ;γ

q
(
a1, . . . , ap; b1, . . . , bq; y + t

)
. (25)

Proof. With the aid of (10) to (13), by applying the R-function (18) to (23), we find that

D1 := κ
p Mα,δ;γ

q [(β, β′; x, y)]
(a)1,p
(b)1,q

= 1
B(β,β′)

∫ 1
0 uβ−1(1− u)β′−1 ∑∞

n=0
∏

p
j=1(aj)n

∏
q
j=1(bj)n

(γ)κn [y+u(x−y)]n

Γ(αn+δ) n! du.
(26)

By changing the order of integration and summation, which is verified under the
stated conditions, we get

D1 =
1

B(β, β′)

∞

∑
n=0

∏
p
j=1

(
aj
)

n

∏
q
j=1

(
bj
)

n

(γ)κn
Γ(αn + δ) n!

∫ 1

0
uβ−1(1− u)β′−1[y + u(x− y)]ndu.

Setting t := u(x− y), we find that

D1 =
Γ(β + β′)

Γ(β)Γ(β′)

∞

∑
n=0

∏
p
j=1

(
aj
)

n

∏
q
j=1

(
bj
)

n

(γ)κn
Γ(αn + δ) n!

(
1

x− y

)β+β′−1

×
∫ x−y

0
tβ−1(x− y− t)β′−1(y + t)ndt

=

(
1

x− y

)β+β′−1 Γ(β + β′)

Γ(β)

×
[

1
Γ(β′)

∫ x−y

0

{
∞

∑
n=0

∏
p
j=1

(
aj
)

n

∏
q
j=1

(
bj
)

n

(γ)κn (y + t)n

Γ(αn + δ) n!

}
tβ−1(x− y− t)β′−1dt

]
.

Then, using (16) and (18), we arrive at the desired result in (24). This completes the
proof.

We take into account the following modification to the Dirichlet average in (23):

κ,λ
p M

α,δ;γ
q

[(
β, β′; x, y

)](a)1,p
(b)1,q

=
∫

E1

(u ◦ z)λ−1
[

κ
pRα,δ;γ

q
(
a1, . . . , ap; b1, . . . , bq; (u ◦ z)γ)]dµβ,β′(u),

(27)

where λ ∈ C with <(λ) > 0 and z = (x, y).
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Theorem 2. Let z, α, β, β′, δ, γ ∈ C with min{<(β), <(β′)} > 0 and κ ∈ N. Furthermore,
let x, y ∈ R with x > y and the convergence conditions of the R-function be satisfied. Then the
following formula holds true: For <(λ) > 0,

κ,λ
p M

α,δ;γ
q

[(
β, β′; x, y

)](a)1,p
(b)1,q

=
Γ(β + β′)

Γ(β)(x− y)β+β′−1

(
Iβ′

y+g
)
(x), (28)

where the function g is given by

g(t) = tλ−1(t− y)β−1 κ
pRα,δ;γ

q
(
a1, . . . , ap; b1, . . . , bq; tγ

)
. (29)

Proof. With the aid of (10)–(13), by applying the R-function (18)–(27), we find that

D2 : = κ,λ
p M

α,δ;γ
q

[(
β, β′; x, y

)](a)1,p
(b)1,q

=
1

B(β, β′)

∫ 1

0
uβ−1(1− u)β′−1[y + u(x− y)]λ−1

×
∞

∑
n=0

∏
p
j=1

(
aj
)

n

∏
q
j=1

(
bj
)

n

(γ)κn[y + u(x− y)]nγ

n!Γ(αn + δ)
du

=
Γ(β + β′)

Γ(β)Γ(β′)

∞

∑
n=0

∏
p
j=1

(
aj
)

n

∏
q
j=1

(
bj
)

n

(γ)κn
n!Γ(αn + δ)

×
∫ 1

0
uβ−1(1− u)β′−1[y + u(x− y)]nγ+λ−1du.

Then, setting t := y + u(x− y), we obtain

D2 =
Γ(β + β′)

Γ(β)Γ(β′)

∞

∑
n=0

∏
p
j=1

(
aj
)

n

∏
q
j=1

(
bj
)

n

(γ)κn
Γ(αn + δ) n!

(
1

x− y

)β+β′−1

×
∫ x

y
tnγ+λ−1(t− y)β−1(x− t)β′−1dt

=

(
1

x− y

)β+β′−1 Γ(β + β′)

Γ(β)

×
[

1
Γ(β′)

∫ x

y

{
∞

∑
n=0

∏
p
j=1

(
aj
)

n

∏
q
j=1

(
bj
)

n

(γ)κntnγ

Γ(αn + δ) n!

}
tλ−1 (t− y)β−1(x− t)β′−1dt

]
.

Finally, using (16), we are led to the desired result (28). This complete the proof.

4. Dirichlet Average Expressed in Terms of Srivastava–Daoust Function

This section discusses an alternative formulation of the modified Dirichlet averages of
the R-function.

Theorem 3. Let β, β′, δ, λ ∈ C with min{<(β),<(β′),<(λ)} > 0 and x, y, κ, α, γ ∈ R with
x > y and min{κ, α,−γ} > 0. The convergence conditions of the R-function are supposed to be
satisfied. Then the following formula holds true:

κ,λ
p M

α,δ;γ
q

[(
β, β′; x, y

)](a)1,p
(b)1,q

=
yλ−1

Γ(δ)
F1:p+1;1

0:q+2;1

( [
1− κ : −γ, 1

]
:

[
(a), γ : 1(p), κ

]
;

:
[
(b), δ, 1− κ : 1(q), α,−γ

]
;[

β : 1
]
;[

β + β′ : 1
]
;

yγ, 1− x
y

)
,

(30)
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where a(`), here and throughout this paper, abbreviates the array of ` times repetition of the same
parameter a’s, a,. . .,a, and (a) and (b) abbreviate the arrays of p and q parameters a1, . . . , ap and
b1, . . . , bq, respectively.

Proof. In view of (28) and (15), we have

D3 : = κ,λ
p M

α,δ,γ
q

[(
β, β′; x, y

)](a)1,p
(b)1,q

=
1

B(β, β′)

∫ 1

0
uβ−1(1− u)β′−1[y + u(x− y)]λ−1

×
∞

∑
n=0

∏
p
j=1

(
aj
)

n

∏
q
j=1

(
bj
)

n

(γ)κn[y + u(x− y)]nγ

n!Γ(αn + δ)
du.

Exchanging the order of integral and summation and using the generalized bino-
mial series

(1− z)−a =
∞

∑
n=0

(a)n zn

n!
(|z| < 1; a ∈ C)

and the Beta function, we obtain

D3 : =
Γ(β + β′)

Γ(β)Γ(β′)

∞

∑
n=0

∏
p
j=1

(
aj
)

n

∏
q
j=1

(
bj
)

n

(γ)κn ynγ+λ−1

n!Γ(αn + δ)

×
∫ 1

0
uβ−1(1− u)β′−1

[
1−

(
1− x

y

)
u
]nγ+λ−1

du

= yλ−1
∞

∑
n=0

∏
p
j=1

(
aj
)

n

∏
q
j=1

(
bj
)

n

(γ)κn ynγ

n!Γ(αn + δ)
2F1

(
β, 1− γn− λ;

β + β′;
1− x

y

)
.

Applying Γ(λ + ν) = Γ(λ) (λ)ν (λ, ν ∈ C) and

(1− λ− γn)r =
Γ(1− λ− γn + r)

Γ(1− λ− γn)
=

(1− λ)−γn+r

(1− λ)−γn
,

we find

D3 =
yλ−1

Γ(δ)

∞

∑
n=0

∞

∑
r=0

∏
p
j=1

(
aj
)

n(γ)κn(1− κ)−γn+r (β)r

∏
q
j=1

(
bj
)

n (δ)αn(1− κ)−γn (β + β′)r

(yγ)n
(

1− x
y

)r

n! r!
,

which, in view of (17), leads to the right-hand side of (30). This completes the proof.

5. Multivariate Dirichlet Averages

Consider the Dirichlet average (23) and its modification (27) where (z) := (z1, . . . , zn) ∈
Cn and d1, . . . , dn are parameters. Our finding is predicated on the following basic premise
in Lemma 1 (see [22]).

Lemma 1. Let dj, rj ∈ C (j ∈ 1, n; n ∈ N) such that min
{
<
(
dj
)
,<
(
rj
)}

> −1. Furthermore,
let En−1 denote the Euclidean simplex in (12) and dµd(u) stand for the Dirichlet measure in (11).
Then the following formula holds true:

∫
En−1

ur1
1 · · · u

rn−1
n−1(1− u1 − · · · − un−1)

rn dµd(u) =
(d1)r1

· · · (dn)rn

(d1 + · · ·+ dn)r1+···+rn

(31)

(see Equation (52) [22]).
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The Lauricella function FD defined for complex parameters d = (d1, . . . , dn) ∈ Cn is
defined as follows (consult, for example, Section 1.4 in [40]):

FD(a, (d); c; z) =
∞

∑
m1,...,mn=0

(a)m1+···+mn
(d1)m1

· · · (dn)mn

(c)m1+···+mn

zm1
1 · · · z

mn
n

m1! · · ·mn!
. (32)

The series (32) converges for all variables inside unit circle max
1≤j≤n

∣∣zj
∣∣ < 1.

Here we investigate the following Dirichlet average:

κ,η
p Mα,δ;γ

q [(d); (1− z)]
(a)1,p
(b)1,q

=
∫

En−1

(1− u ◦ z)η−1
[

κ
pRα,δ;γ

q
(
a1, . . . , ap; b1, . . . , bq; (1− u ◦ z)γ)]dµd(u).

(33)

We also need the following multinomial expansion:

(1− z1 − · · · − zn)
ρ =

∞

∑
r1,...,rn=0

(−ρ)r1+···+rn

zr1
1 · · · z

rn
n

r1! · · · rn!
(|z1 + · · ·+ zn| < 1). (34)

Theorem 4. Let κ, α, γ ∈ R with min{κ, α, γ} > 0 and δ, η, dj, zj ∈ C with <(η) > 0 and
<(dj) > 0

(
j ∈ 1, n

)
. Convergence conditions of the R-function are assumed to be satisfied. Then

the following result holds true:

κ,η
p Mα,δ;γ

q [d1, . . . , dn; 1− z1, . . . , 1− zn]
(a)1,p
(b)1,q

=
1

Γ(δ)
F0:p+2;1;...;1

2:q+1;0;...;0

( :
[
(a), γ, η : 1(p), κ, γ

]
;[

η,
n
∑

j=1
dj : θ(1), θ(2)

]
:

[
(b), δ : 1(q), α

]
;

[
d1 : 1

]
; . . . ;

[
dn : 1

]
;

; . . . ; ;
1,−z1, . . . ,−zn

)
,

(35)

where (a) and (b) abbreviate the arrays of p and q parameters a1, . . . , ap and b1, . . . , bq, respec-
tively, θ(1) and θ(2) abbreviate the arrays of n + 1 parameters γ, (−1)(n) and 0, 1(n), respectively.

Proof. Considering the multivariate Dirichlet average (33), we have

D4 : = κ,η
p Mα,δ;γ

q [(d); (1− z)]
(a)1,p
(b)1,q

=
∫

En−1

(1− u ◦ z)η−1
∞

∑
n=0

∏
p
j=1

(
aj
)

n(1− u ◦ z)γn(γ)κn

∏
q
j=1

(
bj
)

nΓ(αn + δ) n!
dµd(u)

=
∞

∑
n=0

∏
p
j=1

(
aj
)

n(γ)κn

∏
q
j=1

(
bj
)

nΓ(αn + δ) n!

∫
En−1

(1− u ◦ z)γn+η−1 dµd(u).
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Applying Lemma 1 and the polynomial expansion (34), and assuming |u1z1 + · · ·+ unzn|
< 1, we arrive at

D4 =
∞

∑
n=0

∏
p
j=1

(
aj
)

n(γ)κn

∏
q
j=1

(
bj
)

nΓ(αn + δ) n!

∞

∑
r1,··· ,rn=0

(1− γn− η)r1+···+rn

zr1
1 · · · z

rn
n

r1! · · · rn!

×
∫

En−1

ur1
1 · · · u

rn
n (1− u1 − · · · − un−1)

rn dµd(u)

=
∞

∑
n=0

∏
p
j=1

(
aj
)

n(γ)κn

∏
q
j=1

(
bj
)

nΓ(αn + δ) n!

×
∞

∑
r1,··· ,rn=0

(1− γn− η)r1+···+rn
(d1)r1

· · · (dn)rn

(d1 + · · ·+ dn)r1+···+rn

zr1
1 · · · z

rn
n

r1! · · · rn!
.

The n-fold inner sum (with respect to r1, · · · , rn) forms a Lauricella F(n)
D function in n

variables (see, for instance, (p. 33) [40]), we have

D4 =
∞

∑
n=0

∏
p
j=1

(
aj
)

n(γ)κn

∏
q
j=1

(
bj
)

nΓ(αn + δ) n!

× F(n)
D [1− γn− η; d1, . . . , dn; d1 + · · ·+ dn; z1, . . . , zn].

Using Γ(δ + αn) = Γ(δ) (δ)αn and

(1− γn− η)r1+···+rn
= (−1)r1+···+rn

(η)γn

(η)γn−r1− ··· −rn

,

we obtain

D4 =
1

Γ(δ)

∞

∑
n,r1,...,rn=0

(
∏

p
j=1

(
aj
)

n

)
(γ)κn(η)γn (d1)r1

· · · (dn)rn(
∏

q
j=1

(
bj
)

n

)
(δ)αn(η)γn−r1− ··· −rn

(d1 + · · ·+ dn)r1+···+rn

× (−z1)
r1 · · · (−zn)

rn

n! r1! · · · rn!
,

which, in view of (17), is easily seen to yield the expression of the right-hand side of (35).

6. Concluding Remarks

The Dirichlet and modified Dirichlet averages of the R-function in (18) (a generalized
Mittag-Leffler type function) were explored. In Theorems 1 and 2, the bivariate Dirichlet
averages of the R-function (18) were expressed in terms of the Riemann–Liouville frac-
tional integrals whose kernel functions are products of some elementary functions and
the R-function (18). In Theorem 3, the bivariate Dirichlet average of the R-function (18)
(see Theorem 2) was shown to be expressed in terms of the Srivastava–Daoust generaliza-
tion (17) of the Lauricella hypergeometric function. In Theorem 4, the multivariate Dirichlet
average of the R-function (18) was proven to be expressed in terms of the Srivastava–
Daoust generalization (17) of the Lauricella hypergeometric function. The main results in
Theorems 1–4 are believed to be useful.

The Mittag-Leffler function Eα(z) in (1), the two-parametric Mittag-Leffler function
Eα,β(z) in (2), the three-parametric Mittag-Leffler function Eγ

α,β(z) in (3), and the R-function
in (18) are obviously contained as special cases in the well-known Fox–Wright function
pΨq (see, for details, p. 21 [40]; see also p. 56 [38]). Because the R-function in (18) is of
general character, all results in Theorem 1–Theorem 4 are seen to be able to yield a large
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number of particular instances. The following corollary demonstrates just a particular
instance of Theorem 1:

Corollary 1. Let the conditions in Theorem 1 be satisfied and set p = q = 1 and aj = bj = 1
in (24). Then the Dirichlet average for the generalized Mittag-Leffler function holds true:

κ
1M

α,δ;γ
1

[(
β, β′; x, y

)]
=

Γ(β + β′)

Γ(β)(x− y)β+β′−1

{
Iβ′

0+

(
tβ−1 Eγ,κ

α,δ (y + t)
)}

(x− y), (36)

where Eγ,κ
α,δ is given in (21).

As with the H-function of the single variable in (5), the H-function of multiple variables
is generated using multiple contour integrals of the Mellin–Barnes type (see pp. 205–207,
Appendix A.1 in [5]). This article concludes with the questions posed: Like (8),

• Express (possibly) the Srivastava–Daoust generalization (17) of the Lauricella hyper-
geometric function in terms of the multivariate H-function;

• Express (possibly) the right members of Theorems 3 and 4 in terms of the multivariate
H-function.
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