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Abstract: In this article, the new iterative transform method is applied to evaluate the time-fractional
Cahn–Allen model solution. In this technique, Elzaki transformation is a mixture of the new iteration
technique. Two problems are studied to demonstrate and confirm the accuracy of the proposed
technique. The current technique’s mathematical analysis showed that the method is simple to
understand and reliable. These solutions indicate that the proposed technique is advantageous and
simple to apply in science and engineering problems.
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1. Introduction

The subject of fractional calculus (FC) is part of modern calculus where the fractional-
order derivative of the function can be used to calculate various long time dynamics and
other useful information of the targeted phenomena. The applications of fractional calculus
are observed in numerous disciplines such as manipulating ideas of dynamical systems,
electrical community optics and signal processing can be effectively modeled by means of
linear or nonlinear fractional differential equations (FDEs).

The investigation of fractional order integrals and derivatives is an interesting study
of fractional calculus. It has increased the broad consideration of scientists in the last two
centuries. It has uncommon implementations in differing areas of engineering and medical
science. In this specific situation, Riemann and Liouville were the pioneers who gave the
ideas of fractional derivatives and integrals [1]. From these definitions, scientists began
to think and characterized fractional equations, which are expansions and speculations of
Riemann–Liouville ideas. Over time, many new interesting models have been formulated
in the field of fractional calculus [2,3]. For instance, Caputo gave an improved formula in
the area of fractional calculus.

Nonlinear partial differential equations play a significant and upgraded role in demon-
strating various physical appearances identified with fluid mechanics, plasma physics,
solid-state physics, population dynamics, chemical kinetics, nonlinear optics, soliton theory,
protein chemistry, etc. These nonlinear models, like their scientific arrangements, arouse a
lot of interest in appropriate disciplines. Nonlinear models play a crucial role in a variety
of phenomena in many of the domains of applied science listed above [4–7].

The fractional partial differential equations (FPDEs) are the most suitable class of FDEs
to model various complex phenomena of applied sciences. The important models repre-
sented by FPDEs include ground water float and El Nino–Southern oscillation mannequin.
The improved mathematical models of FPDEs are of much importance to analyze natural
processes. Therefore, researchers have attempted to solve these models numerically or
analytically to explore the correct dynamics of the suggested phenomena [8,9].
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Being influenced by ongoing research in this area, we find out about the fractional
order Cahn–Allen equation (FCA), which is a very necessary mathematical model written
as follows:

Dα
ηφ(ε, η)− φrr(ε, η) + φ3(ε, η)− φ(ε, η) = 0, ε > 0, 0 < ρ ≤ 1, φ(ε, 0) = f (ε). (1)

In exceptional cases when α = 1, the fractional order Cahn–Allen equation is changed
into the classical Cahn–Allen equation. Yasar and Giresunlu [10] utilized the homotopy
analysis method to accumulate the fractional order analytical solution of Cahn–Allen
equation. The time-fractional Cahn–Allen equation was studied in [11] by the fractional
sub-equation method for finding an approximate solution of the S-H equation. The (G′/G)-
expansion method was used by Yasar et al. for finding a series solution of the spacetime
Cahn–Allen equation in [12]. The Haar wavelet method [13] was utilized by Hariharan
and Kannan to find a numerical solution of the Cahn–Allen equation. Solitary and periodic
wave solutions for the Cahn–Allen equation were found by Tascan and Bekir in [14]. The
modified handy equation technique is applied to gain new actual choices of the Cahn–
Allen equation and the received consequences are moreover in agreement with Tariq and
Akram’s penalties [15]. The double exp-function method was applied by Bekir [16] to the
Cahn–Allen equation for finding one-soliton and two-soliton solutions. Three techniques
are studied for the time-fractional order Cahn–Allen equation by Guner et al. in [17].

Daftardar-Gejji and Jafari introduced a new iterative method of analysis for analysis
of nonlinear equations in 2006 [18,19]. The first application of Laplace transformation in
an iterative technique was presented by Jafari et al. The iterative Laplace transformation
method [20] was introduced as a simple method for estimating the approximate effective
of the fractional partial differential equation scheme. The new iterative transform method
(NITM) was implemented to solve linear and nonlinear partial differential equations such as
fractional-order Fornberg Whitham equations [21], the time-fractional Zakharov Kuznetsov
equation [22], and fractional-order Fokker–Planck equations [23].

The NITM is applied to investigate fractional-order Cahn–Allen equations. The so-
lution of the problem is discuss regarding the accuracy of the current technique. The
outcomes of the fractional-order equations as well as integral-order equations are deter-
mined by applying the current technique. Other linear and nonlinear fractional-order
partial differential equations can also benefit from the same technique.

The rest of the paper is organized as follows. In Section 2, the important preliminaries
are discussed, the NITM procedure is presented in Section 3 and the generalized concept of
the NITM is given in Section 5. In Section 4, the numerical implementation of the NITM is
described and the higher accuracy of the NITM and closed contact with actual solutions of
the targeted problems are confirmed.

2. Basic Concepts

Definition 1. The Riemann–Liouville fractional operator Dγ of order γ is defined as [24–26]

Dγν(ε) =

{
dm

dεm ν(ε), γ = m;
1

Γ(m−γ)
d

dεm

∫ ε
0

ν(ψ)
(ε−ψ)γ−m+1 dψ, m− 1 < γ < m,

where m ∈ Z+, γ ∈ R+ and

D−γν(ε) =
1

Γ(γ)

∫ ε

0
(ε− ψ)γ−1ν(ψ)dψ, 0 < γ ≤ 1.

Definition 2. The fractional Riemann–Liouville integral operator Mψ is defined as [24–26]

Jγν(ε) =
1

Γ(γ)

∫ ε

0
(ε− ψ)γ−1ν(ψ)dψ, ε > 0, γ > 0.
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The operator of basic properties:

Jγεm =
Γ(m + 1)

Γ(m + γ + 1)
εm+ψ,

Dγεm =
Γ(m + 1)

Γ(m− γ + 1)
εm−ψ.

Definition 3. The Caputo fractional operator Dγ of γ is defined as [24–26]

CDγν(ε) =

{
1

Γ(m−γ)

∫ ε
0

νm(ψ)
(ε−ψ)γ−m+1 dψ, m− 1 < γ < m;

dm

dεm ν(ε), m = γ.
(2)

Definition 4.

Jγ
ε Dγ

ε g(ε) = g(ε)−
m

∑
k=0

gk(0+)
εk

k!
, f or ε > 0, and m− 1 < γ ≤ m, m ∈ N.

Dγ
ε Jγ

ε g(ε) = g(ε).

(3)

Definition 5. The fractional-order Caputo operator of Elzaki transformation is given as:

E[Dγ
ε g(ε)] = s−γE[g(ε)]−

m−1

∑
k=0

s2−γ+kg(k)(0), where m− 1 < γ < m.

3. The General Discussion of the Technique

Consider the general form of FPDEs,

Dρ
ηφ(ε, η) + Mφ(ε, η) + Nφ(ε, η) = h(ε, η), m ∈ N, m− 1 < ρ ≤ m, (4)

where M is linear and N nonlinear operators and the source term is h. With the initial
condition

φ(k)(ε, 0) = gk(ε), k = 0, 1, 2, ..., m− 1, (5)

we implement the Elzaki transformation of Equation (4) and we obtain

E[Dρ
ηφ(ε, η)] + E[Mφ(ε, η) + Nφ(ε, η)] = E[h(ε, η)]. (6)

Using the differentiation property of Elzaki transform is defined as

E[φ(ε, η)] =
m

∑
k=0

s2−ρ+kφ(k)(ε, 0) + sρE[h(ε, η)]− sρE[Mφ(ε, η) + Nφ(ε, η)]. (7)

The inverse Elzaki transformation converts Equation (7) into

φ(ε, η) = E−1

[(
m

∑
k=0

s2−ρ+kφk(ε, 0) + sρE[h(ε, η)]

)]
− E−1[sρE[Mφ(ε, η) + Nφ(ε, η)]]. (8)

Through an iterative technique, we have

φ(ε, η) =
∞

∑
m=0

φm(ε, η). (9)

Further, the operator M is linear, therefore

M

(
∞

∑
m=0

φm(ε, η)

)
=

∞

∑
m=0

M[φm(ε, η)], (10)
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and the operator N is nonlinear, therefore we have the following

N

(
∞

∑
m=0

φm(ε, η)

)
= φ0(ε, η) + N

(
m

∑
k=0

φk(ε, η)

)
−M

(
m

∑
k=0

φk(ε, η)

)
. (11)

Substituting Equations (9)–(11) in Equation (8), we obtain

∞

∑
m=0

φm(ε, η) =E−1

[
sρ

(
m

∑
k=0

s2−ε+kφk(ε, 0) + E[h(ε, η)]

)]

− E−1

[
sρE

[
M

(
m

∑
k=0

φk(ε, η)

)
− N

(
m

∑
k=0

φk(ε, η)

)]]
.

(12)

Now, we apply the iterative method

φ0(ε, η) = E−1

[
sρ

(
m

∑
k=0

s2−ε+kφk(ε, 0) + sρE(h(ε, η))

)]
,

φ1(ε, η) = −E−1[sρE[M[φ0(ε, η)] + N[φ0(ε, η)]],

φm+1(ε, η) = −E−1

[
sρE

[
−M

(
m

∑
k=0

φk(ε, η)

)
− N

(
m

∑
k=0

φk(ε, η)

)]]
, m ≥ 1.

(13)

Finally, Equations (4) and (5) provide the m-term solution in series form, defined as

φ(ε, η) ∼= φ0(ε, η) + φ1(ε, η) + φ2(ε, η) + · · ·+ φm(ε, η), m = 1, 2, . . . . (14)

4. Numerical Implementation

Example 1. Consider the time-fractional Cahn–Allen model given as

Dρ
ηφ(ε, η)− φεε(ε, η) + φ3(ε, η)− φ(ε, η) = 0, r > 0, 0 < ρ ≤ 1, (15)

with initial conditions

φ(ε, 0) =
1

1 + e−
r√
2

. (16)

The exact solution of the above equation, when ρ = 1, is

φ(ε, η) =
1

1 +
(

e
−ε√

2
− 3η

2

) . (17)

First, applying the Elzaki transform in Equation (15), we obtain

E[φ(ε, η)] = s2

(
1

1 + e−
ε√
2

)
− sρE[φεε(ε, η)− φ3(ε, η) + φ(ε, η)]. (18)

Now, using the Elzaki inverse transformation, we obtain

φ(ε, η) =
1

1 + e−
ε√
2
− E−1[sρE{φεε(ε, η)− φ3(ε, η) + φ(ε, η)}]. (19)

Using the NITM, we have the following:
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φ0(ε, η) =
1

1 + e−
ε√
2

,

φ1(ε, η) = −E−1[sρE{φ0εε(ε, η)− φ3
0(ε, η) + φ0(ε, η)}] = − 3ηρ

4ρ Γ(ρ) + 4ρ cosh
(

ε√
2

)
Γ(ρ)

,

φ2(ε, η) = −E−1[sρE{φ1εε(ε, η)− φ3
1(ε, η) + φ1(ε, η)}]

φ2(ε, η) =
9

256


3ηρ

− 3ηρΓ(3ρ)

(1+cosh3
(

ε√
2

)
Γ(4ρ)

− 64e
3ε√

2 Γ(1+ρ)Γ(1+ρ)(
1+e

ε√
2
)5

Γ(1+3ρ)


Γ(1 + 3ρ)3 −

16sech2
(

ε
2
√

2

)
tanh

(
ε

2
√

2

)
Γ(1 + 2ρ)


...

The solution of the series form is given as

φ(ε, η) = φ0(ε, η) + φ1(ε, η) + φ2(ε, η) + φ3(ε, η) + · · ·+ φn(ε, η). (20)

The analytical result is obtained as

φ(ε, η) =
1

1 + e−
ε√
2
− 3ηρ

4ρ Γ(ρ) + 4ρ cosh
(

ε√
2

)
Γ(ρ)

+
9

256


3ηρ

− 3ηρΓ(3ρ)

(1+cosh3
(

ε√
2

)
Γ(4ρ)

− 64e
3ε√

2 Γ(1+ρ)Γ(1+ρ)(
1+e

ε√
2
)5

Γ(1+3ρ)


Γ(1 + 3ρ)3 −

16sech2
(

ε
2
√

2

)
tanh

(
ε

2
√

2

)
Γ(1 + 2ρ)


· · · .

(21)

Solution for ρ = 1

φ(ε, η) =
1

e−
ε√
2 + 1

+
3η

4 cosh
(

ε√
2

)
+ 4

+
9

256
η2

3η

− η(
cosh

(
ε√
2

)
+ 1
)3 −

64e
3r√

2

3
(

e
ε√
2 + 1

)5


−8 tanh

(
ε

2
√

2

)
sech2

(
ε

2
√

2

))
.

Solution for ρ = 0.95

φ(ε, η) =
1

e−
ε√
2 + 1

+
3η0.95

3.91952 cosh
(

ε√
2

)
+ 3.91952

+

9
256

η1.9

3.18861η0.95

− 1.11801η0.95(
cosh

(
ε√
2

)
+ 1
)3 −

22.9851e
3r√

2(
e

ε√
2 + 1

)5


−8.75582 tanh

(
ε

2
√

2

)
sech2

(
ε

2
√

2

))
.
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Solution for ρ = 0.85

φ(ε, η) =
1

e−
ε√
2 + 1

+
3η0.85

3.78244 cosh
(

ε√
2

)
+ 3.78244

+

9
256

η1.7

3.548η0.85

− 1.38643η0.85(
cosh

(
ε√
2

)
+ 1
)3 −

26.6087e
3r√

2(
e

ε√
2 + 1

)5


−10.3581 tanh

(
ε

2
√

2

)
sech2

(
ε

2
√

2

))
.

Solution for ρ = 0.75

φ(ε, η) =
1

e−
ε√
2 + 1

+
3η0.75

3.67625 cosh
(

ε√
2

)
+ 3.67625

+

9
256

η1.5

3.86444t0.75

− 1.6995η0.75(
cosh

(
ε√
2

)
+ 1
)3 −

30.6724e
3r√

2(
e

ε√
2 + 1

)5


−12.036 tanh

(
ε

2
√

2

)
sech2

(
ε

2
√

2

))
.

In Figures 1 and 2, we check how accurate this method is for solving the time-fractional
Cahn–Allen equation. The approximation series solution acquired by the NITM is in very close
agreement with the precise solution. In Figure 3, the 2D surface obtained by the NITM versus the
exact solution is shown, while in Figure 4, the NITM solution of Example 1 is represented.

Figure 1. Approximate solution obtained by NITM for fractional-order Problem 1 when α = 1.
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Figure 2. Exact solution graph of Problem 1 when α = 1.

Figure 3. Comparison between approximate versus exact solution for α = 1.

Figure 4. The numerical behavior of α on φ(r, η) for different values of α.

Example 2. Consider the time-fractional Cahn–Allen model given as

Dρ
ηφ(ε, η)− φεε(ε, η) + φ3(ε, η)− φ(ε, η) = 0, r > 0, 0 < ρ ≤ 1, (22)

with initial conditions

φ(ε, 0) =
1

1 + e
ε√
2

. (23)

The exact solution of the above equation, when ρ = 1, is

φ(ε, η) =
1

1 +
(

e
ε√
2
− 3η

2

) . (24)
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First, using the Elzaki transform in Equation (22), we obtain

E[φ(ε, η)] = s2

(
1

1 + e
ε√
2

)
− sρE[φεε(ε, η)− φ3(ε, η) + φ(ε, η)]. (25)

Now, implementing the inverse Elzaki transform, we obtain

φ(ε, η) =
1

1 + e
ε√
2
− E−1[sρE{φεε(ε, η)− φ3(ε, η) + φ(ε, η)}]. (26)

Using the NITM, we have the following:

φ0(ε, η) =
1

1 + e
ε√
2

,

φ1(ε, η) = −E−1[sρE{φ0εε(ε, η)− φ3
0(ε, η) + φ0(ε, η)}] = 3ηρ

4ρ Γ(ρ) + 4ρ cosh
(

ε√
2

)
Γ(ρ)

,

φ2(ε, η) = −E−1[sρE{φ1εε(ε, η)− φ3
1(ε, η) + φ1(ε, η)}],

φ2(ε, η) =
9η2ρ

256


3ηρ

− 3ηρΓ(3ρ)

(1+cosh3
(

ε√
2

)
Γ(4ρ)

− 64e
√

2rΓ(1+ρ)Γ(1+2ρ)(
1+e

ε√
2
)5

Γ(1+3ρ)


Γ(1 + 3ρ)3 −

16sech2
(

ε
2
√

2

)
tanh

(
ε

2
√

2

)
Γ(1 + 2ρ)


,

...

The series form solution is defined as

φ(ε, η) = φ0(ε, η) + φ1(ε, η) + φ2(ε, η) + φ3(ε, η) + · · · φn(ε, η). (27)

The analytical result is obtained as

φ(ε, η) =
9η2ρ

256
+

3ηρ

4ρΓ(ρ) cosh
(

ε√
2

)
+ 4ρΓ(a)

+
1

e
ε√
2 + 1

3ηa

− 3ηρΓ(3ρ)

Γ(4ρ)
(

cosh
(

ε√
2

)
+1
)3 −

64e
√

2rΓ(ρ+1)Γ(2ρ+1)(
e

ε√
2 +1

)5
Γ(3ρ+1)


Γ(ρ + 1)3 +

16 tanh
(

ε
2
√

2

)
sech2

(
ε

2
√

2

)
Γ(2ρ + 1)

+ · · · .

(28)

Solution for ρ = 1

φ(ε, η) =
1

e
ε√
2 + 1

+
3η

4 cosh
(

ε√
2

)
+ 4

+
9

256
η2

3η

− η(
cosh

(
ε√
2

)
+ 1
)3 −

64e
√

2ε

3
(

e
ε√
2 + 1

)5

+

8 tanh
(

ε

2
√

2

)
sech2

(
ε

2
√

2

))
.
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Solution for ρ = 0.95

φ(ε, η) =
1

e
ε√
2 + 1

+
3η0.95

3.91952 cosh
(

ε√
2

)
+ 3.91952

+
9

256
η1.9
(

3.18861η0.95

− 1.11801t0.95(
cosh

(
ε√
2

)
+ 1
)3 −

22.9851e
√

2ε(
e

ε√
2 + 1

)5

+ 8.75582 tanh
(

ε

2
√

2

)
sech2

(
ε

2
√

2

).

Solution for ρ = 0.85

φ(ε, η) =
1

e
ε√
2 + 1

+
3η0.85

3.78244 cosh
(

ε√
2

)
+ 3.78244

+
9

256
η1.7
(

3.548η0.85

− 1.38643η0.85(
cosh

(
ε√
2

)
+ 1
)3 −

26.6087e
√

2ε(
e

ε√
2 + 1

)5

+ 10.3581 tanh
(

ε

2
√

2

)
sech2

(
ε

2
√

2

).

Solution for ρ = 0.75

φ(ε, η) =
1

e
ε√
2 + 1

+
3η0.75

3.67625 cosh
(

ε√
2

)
+ 3.67625

+
9

256
η1.5
(

3.86444η0.75

− 1.6995η0.75(
cosh

(
ε√
2

)
+ 1
)3 −

30.6724e
√

2ε(
e

ε√
2 + 1

)5

+ 12.036 tanh
(

ε

2
√

2

)
sech2

(
ε

2
√

2

).

In Figures 5 and 6, the NITM and exact solutions of Problem 2 are represented. From the
given figures, it is seen that both the actual and NITM solutions are close to each other. In Figure 7,
the 2D surface obtained by the NITM versus the exact solution is shown, while in Figure 8, the
NITM result of Example 2 is represented. Tables 1 and 2 show the comparison between the exact,
homotopy perturbation method and new iterative transform method. From the tables, we can see
that the suggested method is more accurate, and we confirm that the iterations increase the NITM
results so that they become closer to the actual solution.

Figure 5. Approximate solution obtained by NITM for fractional-order Problem 2 when α = 1.
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Figure 6. Exact solution graph of Problem 2 when α = 1.

Figure 7. Comparison between approximate versus exact solution for α = 1.

Figure 8. The numerical behavior of α on φ(r, η) for different values of α.

Table 1. Absolute errors obtained by NITM in comparison with HPM for Example 1, when ρ = 1.0.

η φ φ(ε, η) Exact HPM NITM

0.001 1 0.670093 0.670093 1.0 × 10−6 3.3 × 10−11

0.002 1 0.670425 0.670425 1.0 × 10−5 2.6 × 10−10

0.003 1 0.670756 0.670756 9.0 × 10−5 8.9 × 10−10

0.004 1 0.671087 0.671087 2.5 × 10−6 2.1 × 10−9

0.005 1 0.671418 0.671418 4.7 × 10−6 4.1 × 10−9

0.006 1 0.671749 0.671749 8.6 × 10−6 7.1 × 10−9

0.007 1 0.67208 0.67208 1.3 × 10−6 1.1 × 10−8

0.008 1 0.67241 0.67241 2.0 × 10−6 1.7 × 10−8

0.009 1 0.672741 0.672741 2.9 × 10−6 2.4 × 10−8

0.01 1 0.673071 0.673071 4.0 × 10−6 3.3 × 10−8
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Table 2. Absolute errors obtained by NITM in comparison with HPM, when ρ = 1.0.

η φ u(ε, η) Exact HPM NITM

0.001 1 0.33057 0.33057 7.6 × 10−12 4.3 × 10−12

0.002 1 0.330902 0.330902 3.8 × 10−10 3.5 × 10−11

0.003 1 0.331235 0.331235 1.1 × 10−9 1.1 × 10−10

0.004 1 0.331567 0.331567 2.6 × 10−9 2.8 × 10−10

0.005 1 0.331899 0.331899 5.0 × 10−9 5.5 × 10−10

0.006 1 0.332232 0.332232 9.7 × 10−9 9.6 × 10−10

0.007 1 0.332565 0.332565 1.5 × 10−8 1.5 × 10−9

0.008 1 0.332898 0.332898 2.0 × 10−8 2.2 × 10−9

0.009 1 0.333231 0.333231 2.9 × 10−8 2.3 × 10−9

0.01 1 0.333565 0.333565 4.0 × 10−8 4.5 × 10−9

5. Conclusions

In the current work, a novel method known as the new iterative transform method
obtains the series solution of the fractional-order Cahn–Allen equation. The acquired
solution by the current strategy was checked through different graphs and numerical
simulations. We found that there exists an excellent mutual understanding between the
derived and actual results of the problems. From the above conversation, it is demonstrated
that the current technique is more sensible and quickly convergent to the actual results of
the targeted problems.
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