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Abstract: This article examines a natural convection viscous unsteady fluid flowing on an oscillating
infinite inclined plate. The Newtonian heating effect, slip effect on the boundary wall, and constant
mass diffusion conditions are also considered. In order to account for extended memory effects,
the semi-analytical solution of transformed governed partial differential equations is attained with
the help of a recent and more efficient fractional definition known as Prabhakar, like a thermal
fractional derivative with Mittag-Leffler function. Fourier and Fick’s laws are also considered in the
thermal profile and concentration field solution. The essentials’ preliminaries, fractional model, and
execution approach are expansively addressed. The physical impacts of different parameters on all
governed equations are plotted and compared graphically. Additionally, the heat transfer rate, mass
diffusion rate, and skin friction are examined with different numerical techniques. Consequently,
it is noted that the variation in fractional parameters results in decaying behavior for both thermal
and momentum profiles while increasing with the passage of time. Furthermore, in comparing both
numerical schemes and existing literature, the overlapping of both curves validates the attained
solution of all governed equations.

Keywords: fractional derivative; natural convection; viscous flow; Prabhakar fractional derivative

1. Introduction

Natural convection viscous fluid flows flowing on a vertical plate are widely consid-
ered in the literature because of their massive solicitations in different fields of engineering
and ecological processes. They are also concentrated in manufacturing submissions such
as nuclear reactors, filtration methods, spaceship design, fiber insulation, geothermic
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schemes, etc. Numerous investigators have examined unsteady natural convective flows
past an oscillating and vertical plate with different thermal imposed conditions. Georgan-
topoulos [1] was the first who find a closed-form solution for natural convection impacts
on the flow of a viscous fluid along with a vertical plate. The naturalconvection flows of a
viscoelastic fluid with an accelerated plate were discussed by Raptis and Singh [2]. The
impacts of the magnetic field were also reserved for contemplation. Free convection impacts
considering an exponentially accelerated and infinite vertical plate were deliberated in [3].
Natural convection wavering flow past an infinite permeable plate and continuous suction
were considered through Soundalgekar [4]. The communication of natural convection and
the vibrating flow with vertical plate and thermal radiation can be seen in [5]. The impacts
of heat contamination on the boundary layer with a horizontal plate were examined by
Ishak [6,7]. Haq et al. [8] calculated the closed-form solutions of MHD natural convection
flow past along a vertical and oscillating plate with thermal flux in a permeable medium
with integral transforms.In [9], the authors studied the flow between two parallel plates
with the non-isothermal slip effect of a non-linear model. Different parameters with slip
coefficients in thermal profiles have also been considered. A non-uniformly heated viscous
fluid flow model flowing through a bounded domain was studied by Baranovskii et al. [10].

Natural convection flows have fascinated extensive consideration because of their
importance in many fields of science containing biomedical engineering and fluid dynamics.
It is often momentous in refrigeration, atmospheric as well as oceanic circulation, concen-
tration, spaceship structure, dehydration, filtration, ventilation of building plan, processing
of permeable materials in textile workshops, conserving systems and electronic things for
nuclear-powered plants, nuclear reactors, cooled or heated storing places, electric power
strategies, and solar collectors [11]. The natural convection mechanism happens because
of significant temperature alterations, which can impact the density of the fluid and then
source relative buoyancy of the fluid. It has abundant applications in numerous scientific
as well as industrial concerns. Natural convection in various systems, actions, and tools is
incredibly momentous in exothermal reactions tasks. It is suitable for security attention
under different circumstances, where the typical mode continues to flop and when the
procedure trusts natural convection to dispose of the designed temperature. It has unusual
significance in energy production and digital devices and systems in which such an arrange-
ment is compulsory to avoid extreme heat [12]. In the last few years, extensive analytical
and theoretical studies on natural convection have been conducted to understand several
environmental features and phenomena in considered frequent scientific circumstances.
Javaid et al. [13] deliberated the free convection flowed based on second-grade fluid and
stated that with the Grashof number and Prandtl number, the velocity for viscous fluid
was more than the velocity estimations of second-grade fluid. The electro-osmotic flow
analysis for second-grade fluids and slip conditions was effectively discoursed through
Wang et al. [14]. Closed-form solutions were found utilizing integral transform. Numerous
particular cases prevailing in the literature were also improved. The natural convection
flow of fractional incompressible and second-grade fluid along two upright plates was dis-
cussed in the radiation effect between both plates, and an analytical solution was attained
by Nisa et al. [15]. The prior studies may perceive countless research topics on the natural
convection flow models [16–22].

In the last few years, fractional calculus has been promising because of its massive
implication in different fields of engineering and applied sciences that are not present in the
fields of non-fractional calculus, which agrees with a random order of differentiation as well
as integration. Ali et al. [23,24], Nehad et al. [25], and Zafar et al. [26] exploited different
new definitions of fractional derivatives for the solutions of different Newtonian and
non-Newtonian type fluids. Imran et al. [27] utilized the AB-fractional model to excavate
out the semi-analytical solution of the Maxwell fractional model. Nadeem et al. [28]
examined the AB and CF factional model and attained an analytical solution of Casson-
type nanofluid. Various physical phenomena constructed on differential equations with
fractional calculus are immensely used for the modeling of numerous everyday life physical
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problems, as fractional calculus takes memory impacts, such as problems in relaxation,
oscillation, diffusion, fluid flow, retardation, dynamical processes, engineering processes,
where classical models cannot predict the previous state of processes [29–34].

The construction of numerous physical phenomena consequences increases the com-
plexity of partial differential equations. The calculation of solutions for such complicated
equations is significant in investigating such physical phenomena. Fractional calculus is the
critical division of mathematics that effectively reports diverse methods for the simulation
of such types of problems. The complex mathematical expressions, including the local and
non-local kernels, can be efficiently tackled through a fractional approach. The Caputo–
Fabrizio (CF) and Atangana–Baleanu (AB) methods are the most well-known apparatuses
in fractional calculus that different investigators have extensively applied in past years.
Tialk Raj Prabhakar was an Indian mathematician who proposed a novel three-parameter
fractional operator:the Mittag-Leffer function with three different fractional operators. This
Mittag-Leffer operator successfully applies conventional kernels [35]. Sulaiman et al. [36]
found the solution for Burger’s equation through diverse fractional derivatives comprising
MLF kernels. AB and CF fractional derivatives and Mittag-Leffer and exponential func-
tions were compared [37]. Singh et al. [38] studied the Cattaneo–Christov derivatives and
solved fractional diffusion equations by exploiting the Hilfer–Prabhakar operator. Samraiz
et al. [39] deliberated the (k,s)-Hilfer–Prabhakr fractional operator for diverse types of
mathematical fractional problems. In [40], Basit et al. employed the Prabhakar fractional
technique to examine the solution of second-grade fractional nanofluid, taking different
types of nanoparticles. Rehman et al. [41] studied the free convection Maxwell fluid flow
under the Newtonian heating effect using the Prabhakar fractional derivative technique
of the Mittag-Leffler function, in which they also considered Fourier and Fick’s law to
investigate the solution of thermal and concentration profiles. In [42], the authors inspected
the free convection fluid flow with generalized thermal transport and carbon nanotubes as
nanoparticles using a recent fractional derivative definition.

The main focus of current research is to study the natural convection, incompressible,
viscous, and unsteady flow on an infinite oscillating inclined plate under the influence
of an applied inclined magnetic field in the sense of the Prabhakar fractional derivative
operator. Newtonian heating influences are engaged into focus in the fractional thermal
flow model to check the thermal performance. The Prabhakar fractional derivative operator
technique with Laplace transform is followed to accomplish the fractional and numerical
simulations. To achieve the inverse of the Laplace method, two important diverse methods
T’zous method and Stehfest, are applied. In the end, the thermal results are enumerated for
different flow characters.

2. Problem Description

Suppose a natural convection, incompressible, viscous, and unsteady flow on an
infinite oscillating inclined plate under the impact of the applied inclined magnetic field
with strength Bo. As the inclined plate is in the xy-plane, therefore, all the governed
equations are functions of y and t. Initially, at t = 0, the inclined plate and fluid are both
in a constant situation with a constant temperature T∞ and concentration of C∞. With
time t > 0+, the fixed plate starts to oscillate with particular continual velocity f (t),
with f (0) = 0, and temperature and concentration levels also rise with time, as shown
in Figure 1. In light of the above conditions and neglecting the viscous dissipation and
pressure gradient, the governed partial differential equations with their physical boundary
conditions can be modeled by Boussinesp’s approximation as follows [43].
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With its dependable physical boundary conditions, as follows

v(y,0) = 0, T(y,0) = T∞, C(y,0) = C∞; y ≥ 0 (6)
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∂v(y,t)

∂y

∣∣∣∣
y=0

= Uo f (t),
∂T
∂y

∣∣∣∣
y=0

= −h
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T(0,t), C(0,t) = Cw; t > 0 (7)

v(y,t) → 0, T(y,t) → T∞, C(y,t) → C∞ as y→ ∞ (8)

where δ(y,t), J(y,t) identifies the thermal flux rate by Fourier’s law and Fick’s law, respectively.
Now, the non-dimensional governing Equations (1)–(5) and the corresponding consistent
conditions present the subsequent non-dimensional values:
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, K∗ = K

ν

g

(
h
k

)
, q∗ =

q
qo

, J∗ =
J
Jo



Fractal Fract. 2022, 6, 265 5 of 22

into the proceeding governed equations and forgetting the “*” notation. We attain the
succeeding non-dimensional formulas as

∂v(y,t)

∂t
= Re

∂2v(y,t)

∂y2 −Msin(θ1)v(y,t) + GrCos(θ2)T(y,t) + GmCos(θ2)C(y,t) (9)

Pre f f
∂T(y,t)

∂t
= −

∂δ(y,t)

∂y
(10)

δ(y,t) = −
∂T(y,t)

∂y
(11)

Sce f f
∂C(y,t)

∂t
= −

∂J(y,t)

∂y
− KSce f f C(y,t) (12)

J(y,t) = −
∂T(y,t)

∂y
(13)

with the following dimensionless physical conditions

v(y,0) = 0, T(y,0) = 0, C(y,0) = 0; y ≥ 0 (14)

v(0,t) − h
∂v(y,t)

∂y

∣∣∣∣
y=0

= f (t),
∂T(y,t)

∂y

∣∣∣∣
y=0

= −
(

1 + T(0,t)

)
, C(0,t) = 1 (15)

v(∞,t) → 0, T(∞,t) → 0, C(∞,t) → 0; t > 0 (16)

where

Pr =
µCp

κ
, Gr =

g(υβT) f (Tw − T∞)

ν2
o

, Sc =
ν

D
, Pre f f =

Pr
Re

, Sce f f =
Sc
Re

The Navier slip coefficient and Newtonian heating effect are also considered in the
above-mentioned physical conditions of the flowing fluid and the fluid temperature, con-
centration, and velocity will be zero at y→ ∞ . This article will discuss a generalized
mathematical model in which the memory effect and shear stress are also under consid-
eration in the sense of the Prabhakar fractional operator. The respective mathematical
preliminaries will define the basic concept of the fractional scheme and the relation of the
Prabhakar fractional technique with other fractional models.
Basic preliminaries:

The one-parametric MittagLeffler function with mathematical form as

Eα(z) =
∞

∑
n=0

zn

Γ(αn + 1)
; α, z ∈ C, Re(α) > 0

was studied by Mittag-Leffler [44]. Then after some time, Wiman [45] explored the more
generalization form of the one-parametric function, known as two-parametric Mittag-
Leffler functions with the mathematical form as follows:

Eα,β(z) =
∞

∑
n=0

zn

Γ(αn + β)
; α, z, β ∈ C, Re(α) > 0

In [46], authors introduced the three-parametric Mittag-Leffler function, which is
commonly known as the Prabhakar fractional derivative

Eγ
α,β(z) =

∞

∑
n=0

(γ)nzn

n! Γ(αn + β)
; α, β, γ, z ∈ C, Re(α) > 0
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with the basic properties

Eα(z) = E1
α,1(z), Eα,β(z) = Eγ

α,β(z), E1
1,1(z) = exp(z)

L
{

tβ−1E−γ
α,β (αtα)

}
= q−β

(
1− αq−α

)γ (17)

(Prabhakar kernel) The function

eγ
α,β(α; t) = tβ−1Eγ

α,β(αtα); t ∈ R, α, β, γ, z ∈ C

is identified as the Prabhakar kernel.
(Prabhakar Integral) The Prabhakar integral can be defined as [47,48]

Eγ
α,β,α f (t) = eγ

α,β(α; t) ∗ f (t) =
t∫

0

(t− τ)β−1Eγ
α,β

(
α(t− τ)α) f (τ)dτ

with its Laplace transform

L
{

Eγ
α,β,α f (t)

}
(q) = L

{
eγ

α,β(α; t)
}
L{ f (t)} = qαγ−β

(qα − α)γL{ f (t)} (18)

Some applicable fractional constraint cases can be encapsulated as
If β = γ = 0

L−1
{
L
{

e0
α,0(α; t)

}}
= L−1{1} = δ(t)

If β = 1, γ = 0

L−1
{
L
{

e0
α,1(α; t)

}}
= L−1

{
1
q

}
= 1

If β > 0, γ = 0

L−1
{
L
{

e0
α,β(α; t)

}}
= L−1

{
1
qβ

}
=

tβ−1

Γ(β)

when β > 0, α = 0, then the property three repeats as

L
{

eγ
α,β(0)

}
= q−β

(The regularized Prabhakar derivative) In [47,48], the regularized Prabhakar deriva-
tive is distinct as

CD
γ
α,β,αg(t) = E−γ

α,m−β,αgm(t) =
∫ t

0
(t− τ)m−β−1E−γ

α,m−β

(
α(t− τ)α)gm(τ)d(τ) (19)

Eγ
α,β(z) =

∞

∑
n=0

Γ(γ + n)zn

n!Γ(γ)Γ(αn + β)′

where CD
γ
α,β,α signifies the Prabhakar derivative operator and gm represents the mth

derivative of g(t). The Laplace transformation of generalized Prabhakar and its kernel can
be derived as

L
{

CD
γ
α,β,αg(t)

}
= L

{
e−γ

α,m−β(α; t) ∗ gm(t)
}
L{gm(t)} = qβ−m(1− αq−α

)γL{gm(t)}

L
{

e−γ
α,m−β(α; t)

}
= qβ−m(1− αq−α

)γ

The primary relations and connections with different fractional operators can be
encapsulated as follows.
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• When β ≥ 0, γ = 0, the Prabhakar derivative will transform into the Caputo derivative
CD0

α,β,αg(t) = CD
β
t g(t).

• When α = β = 1, γ = −1, then the relation between Prabhakar and CF derivative will
become CD1,1, −σ

1−σ
g(t) = g′(t)− σCFDσ

t g(t).

• When β = 1, γ = −1, 0 < α < 1, then the connection between the AB derivative and
Prabhakar derivative will develop as CD−1

α,1, −σ
1−σ

g(t) = (1− α) d
dt

ABCDα
t g(t).

• When β = γ = 0, m = 0, the Prabhakar derivative will be CD0
α,0,αg(t) = g(t) with its

kernel hp(α, 0, 0, α, q) = 1.
• When β = 1, γ = 0, m = 1, the Prabhakar derivative CD0

α,1,αg(t) = g′(t) with its
kernel hp(α, 1, 0, α, q) = d

dt (g(t)). As the LT of Prabhakar, fractional operator CD
γ
α,β,α

is, consequently,

L
[

CD
γ
α,β,α h(t)

]
= L

[
hm(t) ∗ e−γ

α,m−β(α; t)
]
= L{hm(t)}L

{
e−γ

α,m−β(α; t)
}

= L{hm(t)}sβ−m(1− αs−α)
γ

(20)

We may obtain the traditional Fourier’s law by taking β = γ = 0. Moreover, be-
cause Fourier’s law of thermal conductivity primarily determines the Prabhakar fractional
derivative, Fourier and Fick’s laws in the context of the Prabhakar derivative are as follows.

δ(y,t) = −CD
−γ
α,β,α

∂T(y,t)

∂y
(21)

J(y,t) = −CD
−γ
α,β,α

∂C(y,t)

∂y
(22)

3. Solution of the Problem
3.1. Solution of the Energy Profile

Appling the LT on transformed Equations (10) and (21) and utilizing its matching
conditions for the solution of the energy profile

Pre f f qT(y,q) = qβ
(
1− αq−α

)γ ∂2T(y,q)

∂y2 (23)

∂T(y,q)

∂y

∣∣∣∣∣
y=0

= −
(

1
q
+ T(0,q)

)
, T(y,q) → 0; y→ ∞ (24)

By inserting these transmuted conditions, the solution of the thermal profile is as follows:

T(y,q) =

√
qβ(1− αq−α)γ√

Pre f f q−
√

qβ(1− αq−α)γ

e
−y
√

Pre f f q

qβ(1−αq−α)γ

q
(25)

We employ numerical approaches, namely, Stehfest and Tzou’s schemes in Tables 1 and 2,
to analyze the inversion of Equation (25).
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Table 1. Numerical analysis of temperature and velocity profile by Stehfest and Tzou’s method.

y T(y,t) by
Stehfest

T(y,t) by
Tzou’s

C(y,t) by
Stehfest

C(y,t) by
Tzou’s

v(y,t) by
Stehfest

v(y,t) by
Tzou’s

0.1 0.6524 0.6396 0.8453 0.8460 0.8039 0.7981

0.3 0.4169 0.4068 0.6029 0.6046 0.7247 0.7209

0.5 0.2658 0.2579 0.4291 0.4311 0.5643 0.5615

0.7 0.1690 0.1630 0.3046 0.3067 0.4118 0.4095

0.9 0.1071 0.1026 0.2156 0.2176 0.3007 0.2988

1.1 0.0677 0.0644 0.1521 0.1539 0.2196 0.2181

1.3 0.0426 0.0402 0.1069 0.1085 0.1605 0.1593

1.5 0.0267 0.0249 0.0749 0.0763 0.1173 0.1163

1.7 0.0167 0.0154 0.0522 0.0534 0.0858 0.0850

1.9 0.0104 0.0094 0.0362 0.0372 0.0628 0.0621

Table 2. Numerical analysis of Nusselt number, Sherwood number, and skin friction.

α Nu at t = 0.5 Nu at t = 0.7 Sh at t = 0.5 Sh at t = 0.7 Cf at t = 0.5 Cf at t = 0.7

0.1 2.4196 2.5332 1.2886 1.3048 0.9056 1.2143

0.2 2.3024 2.3874 1.3457 1.3687 0.7385 0.9344

0.3 2.2067 2.2599 1.4021 1.4384 0.6290 0.7390

0.4 2.1308 2.1502 1.4546 1.5088 0.5583 0.5994

0.5 2.0734 2.0518 1.4973 1.5739 0.5158 0.4996

0.6 2.0330 1.9831 1.5286 1.6290 0.4952 0.4305

0.7 2.0080 1.9250 1.5481 1.6711 0.4918 0.3867

0.8 1.9966 1.8831 1.5569 1.6996 0.5027 0.3648

0.9 1.9971 1.8564 1.5568 1.7154 0.5249 0.3623

Classical Solution of the Energy Field (β = γ = 0)

For the classical solution of thermal profile take β = γ = 0, so

L
[
e0

α,0(α; t)
]
= 1 = δ(t)

δ(t) denotes the Dirac’s Delta distribution. Due to this, the generalized Fourier’s law
is changed into classical Fourier’s law. Additionally,

T(y,q) =
1√

Pre f f q− 1

e−y
√

Pre f f q

q
(26)

with its Laplace inverse
T(y,t) = h1(t) ∗ h2(t)

h1(t) = L−1

 1√
Pre f f q− 1

 =
1√

Pre f f

 1
√

π
√

t
+

e
t

Pre f f Er f c
[
−

√
t√

Pre f f

]
√

Pre f f



h2(t) = L−1

{
e−y
√

Pre f f q

q

}
= Er f c


√

Pre f f y

2
√

t
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3.2. Solution of the Concentration Profile

With the same methodology as used for the energy field, utilizing the LT on
Equations (12) and (22),

∂2C(y,q)

∂y2 −
Sce f f (K + q)

qβ(1− αq−α)γ C(y,q) = 0 (27)

C(y,q) =
1
q

, T(y,q) → 0; y→ ∞ (28)

Using the above conditions and after simplification, the solution of Equation (28) becomes

C(y,q) =
1
q

e
−y

√
Sce f f (K+q)

qβ(1−αq−α)γ (29)

Again, the inversion of Laplace of the above equation is examined numerically in
Tables 1 and 2.

Classical Solution of the Concentration Profile (β = γ = 0)

For the classical solution of the concentration profile, again, take β = γ = 0.
The generalized Fick’s law is changed into classical Fick’s law as a result of this.

C(y,t) =
1
2

e−
√

KSce f f y

1 + Erf

2
√

Kt−
√

Sce f f y

2
√

t

+ e2
√

KSce f f yErfc

2
√

Kt +
√

Sce f f y

2
√

t


3.3. Solution of Momentum Field

In this part, the velocity equation solution is determined using the same approach as
the energy equation solution. Using the LT technique on Equation (9) and its accompanying
conditions, we obtain

Re
∂2v(y,q)

∂y2 − qv(y,q) −Msin(θ1)v(y,q) = −GrCos(θ2)T(y,q) − GmCos(θ2)C(y,q) (30)

v(0,q) − h
∂v(y,q)

∂y

∣∣∣∣
y=0

= F(q), v(y,q) → 0; y→ ∞

Employing these conditions, the solution of the momentum equation turns out to be

v(y,q) =
1

1+h
√

1
Re (q+Msin(θ1))

Grcos(θ2)
Req

√
qβ(1−αq−α)γ

√
Pre f f q−

√
qβ(1−αq−α)γ

1+h

√
Pre f f q

qβ(1−αq−α)γ

Pre f f q

qβ(1−αq−α)γ − 1
Re (q+Msin(θ1))

+Gmcos(θ2)
Req

1+h

√
Sce f f (K+q)

qβ(1−αq−α)γ

Sce f f (K+q)

qβ(1−αq−α)γ − 1
Re (q+Msin(θ1))

+ F(q)

e−y
√

1
Re (q+Msin(θ1))

−Grcos(θ2)
Req

√
qβ(1−αq−α)γ

√
Pre f f q−

√
qβ(1−αq−α)γ

e
−y

√
Pre f f q

qβ(1−αq−α)γ

Pre f f q

qβ(1−αq−α)γ − 1
Re (q+Msin(θ1))

−Gmcos(θ2)
Req

e
−y

√√√√ Sce f f (K+q)

qβ(1−αq−α)γ

Sce f f (K+q)

qβ(1−αq−α)γ − 1
Re (q+Msin(θ1))

(31)
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Nusselt number, Sherwood number, and skin friction are as follows:

Nu = −
∂T(y,t)

∂y

∣∣∣∣
y=0

= −L−1

{
∂T(0,q)

∂y

}

Sh = −
∂C(y,t)

∂y

∣∣∣∣
y=0

= −L−1

{
∂C(0,q)

∂y

}

C f = −
∂v(y,t)

∂y

∣∣∣∣
y=0

= −L−1
{

∂v(0,q)

∂y

}
Various writers have utilized various numerical inverse methods to calculate the

Laplace inverse. Recently, Ali et al. [33], and Tiwanaet al. [49] used the Stehfest and
Tzous algorithms for the inversion of Laplace of governed equations solutions. Similarly,
Aleem et al. [50], Chu et al. [51], and Asjadet al. [52] also used different numerical tech-
niques for the solution of different hybrid nanofluid, Brinkman type nanofluid, and natural
convection flowing fluids. As a result, we additionally employed Stehfestand Tzou’s meth-
ods to quantitatively examine the temperature, concentration, and velocity profile solution.
Gaver–Stehfest and Tzou’s [53] algorithm can mathematically be inscribed as

w(ξ, t) =
ln(2)

t

N

∑
n=1

vnw
(

ξ, n
ln(2)

t

)
where N is a positive integer, and

vn = (−1)n+ N
2

min(q, N
2 )

∑
r=[

q+1
2 ]

r
N
2 (2r)!(

N
2 − r

)
!r! (r− 1)! (q− r)! (2r− q)!

and

w(ξ, t) =
e4.7

t

[
1
2

w
(

r,
4.7
t

)
+ Re

{
N

∑
j=1

(−1)kw
(

r,
4.7 + kπi

t

)}]

4. Results and Discussion

This paper investigates the flow of a viscous, incompressible, and unstable fluid un-
der the influence of an angled magnetic field. In order to account for extended memory
effects, a fractional model was built using the recently proposed Prabhakar fractional
function and a Mittag-Leffler kernel in the governing equations. Then, the solution
of all governed equations containing thermal, concentration, and momentum profiles
in the sense of Fourier and Fick’s laws is derived using the integral transform scheme,
namely Laplace transformation, and various inverse numerical algorithms, i.e., Stehfest
and Tzou’s algorithms are used to obtain the Laplace inverse of guided equations. Finally,
graphs 2–15 are drawn to investigate the physical impact of different constraints such
as α, β, γ, Pre f f , Sce f f , Gr, Gm, Re, M and quantitatively investigate the heat transfer
rate, mass diffusion rate, and skin friction, which are examined with different numerical
techniques in Tables 1 and 2.

Figure 2 highlights the impact of fractional constraints of the Prabhakar fractional
derivatives on the thermal profile for different time values. It can be seen that by increasing
the values of fractional parameters, the thermal profile represents the decaying behavior.
Using fractional derivatives, it is significant to check the influence of time on governed
equations. With time, the fluid temperature increases asymptotically near the plate and
has a more significant effect for large values of time. Figure 3 highlights the influence of
adequate Prandtl numbers on the thermal field of flowing fluid by fixing other constraints.
The figure shows the thermal field representing decaying behavior for adequate Prandtl
numbers. Physically, the increment in Pre f f decreases the thermal conductivity of the flow-
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ing fluid and increases the viscosity, which decreases the temperature of the flowing fluid.
The physical impact of fractional parameters and Schmidt number on the concentration of
the boundary layer of the flowing fluid is plotted in Figures 4 and 5 for different time values.
Like the thermal profile, again, the variation in fractional parameters and Schmidt number
results in a decline in the concentration profile. For large values of the Schmidt number
Sc, viscous forces overwhelm the diffusional effects. The Schmidt number represents mass
transfer via diffusion and the relative effectiveness of momentum in concentration and
speed in free convection flow regimes. As a result, momentum diffusion will effectively
counterbalance large values of Sc, since molecular diffusivity will be decelerated, and the
viscosity effects will be enhanced. As a result, with high Sc values, the concentration profile
of the boundary layer is reduced.
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The effects of fractional parameters on the momentum profile of the flowing fluid are
highlighted in Figure 6. It can be seen that the fluid velocity decreases by increasing the
value of fractional constraints and increases near the plate with increasing the value oftime
and reaches its maximum point; it slowly decreases along the y-axis and reaches zero for
higher values of y. The fluid velocity increases near the plate, and the boundary thickness
increases with the enhancement in the values of time t. Physically, the increment in the
values of factional constraints relates to the thickness of the momentum and thermal profiles.
The variation in the values of fractional parameters reduces the thickness of the boundary
layer of flowing fluids, due to which the thermal and momentum field shows a decrement
trend for this parameter. Figure 7 explains the influence of adequate Prandtl numbers on
the momentum profile of the flowing fluid. Again, the momentum field represents decaying
behavior with the increment in the value of Prandtl numbers. Physically, the enhancement
in the Prandtl numbers means the increment in the viscosity of the fluid and decrement
in the thermal conductivity of the flowing fluid, which results in decay in the momentum
field of the fluid flow. The variation in velocity profile due to the heat Grashof number and
mass Grashof number can be seen in Figures 8 and 9, respectively. Due to the increment in
the Grashof number, the buoyancy effect also increases, which increases the thickness of the
boundary layer of the fluid, so by varying the values of both parameters, the fluid velocity
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also increases and shows a unique maximum point near the plate, varying the value of
time. In addition, the velocity increases with higher time values and the highest finding
near the plate. The fluid motion slows down asymptotically as y increases, satisfying the
boundary conditions. Figures 10 and 11 are plotted to see the influence of Sce f f and Re for
the velocity profile for different values of the time. An increment in the Schmidt number
means a decrease in the molecular diffusion of the boundary layer, which decreases the
momentum profile.

Fractal Fract.2022, 6, x FOR PEER REVIEW 11 of 22 
 

 

  

 
 

Figure 2. Variation in temperature due to fractional constraints at (a)  𝑡 = 0.5   (b)  𝑡 = 0.7  (c)  𝑡 =0.9. 

  

 
Figure 3. Variation in temperature due to effective Prandtl number at (a) 𝑡 = 0.5  (b) 𝑡 = 0.7 (c) 𝑡 =0.9. 

Figure 3. Variation in temperature due to effective Prandtl number at (a) t = 0.5 (b) t = 0.7 (c) t = 0.9.

Fractal Fract.2022, 6, x FOR PEER REVIEW 12 of 22 
 

 

  

 
Figure 4. Variation in concentration due to fractional constraints at (a) 𝑡 = 0.5  (b) 𝑡 = 0.7 (c) 𝑡 =0.9. 

  

 
Figure 5. Variation in concentration due to Schmidt number at (a) 𝑡 = 0.5  (b) 𝑡 = 0.7 (c) 𝑡 = 0.9. 

The effects of fractional parameters on the momentum profile of the flowing fluid 
are highlighted in Figure 6. It can be seen that the fluid velocity decreases by increasing 
the value of fractional constraints and increases near the plate with increasing the value 
oftime and reaches its maximum point;it slowly decreases along the y-axis and reaches 
zero for higher values of𝑦.The fluid velocity increases near the plate, and the boundary 
thickness increases with the enhancement in the values of time t. Physically, the incre-

Figure 4. Variation in concentration due to fractional constraints at (a) t = 0.5 (b) t = 0.7 (c) t = 0.9.



Fractal Fract. 2022, 6, 265 13 of 22

Fractal Fract.2022, 6, x FOR PEER REVIEW 12 of 22 
 

 

  

 
Figure 4. Variation in concentration due to fractional constraints at (a) 𝑡 = 0.5  (b) 𝑡 = 0.7 (c) 𝑡 =0.9. 

  

 
Figure 5. Variation in concentration due to Schmidt number at (a) 𝑡 = 0.5  (b) 𝑡 = 0.7 (c) 𝑡 = 0.9. 

The effects of fractional parameters on the momentum profile of the flowing fluid 
are highlighted in Figure 6. It can be seen that the fluid velocity decreases by increasing 
the value of fractional constraints and increases near the plate with increasing the value 
oftime and reaches its maximum point;it slowly decreases along the y-axis and reaches 
zero for higher values of𝑦.The fluid velocity increases near the plate, and the boundary 
thickness increases with the enhancement in the values of time t. Physically, the incre-

Figure 5. Variation in concentration due to Schmidt number at (a) t = 0.5 (b) t = 0.7 (c) t = 0.9.

Fractal Fract.2022, 6, x FOR PEER REVIEW 13 of 22 
 

 

ment in the values of factional constraints relates to the thickness of the momentum and 
thermal profiles. The variation in the values of fractional parameters reduces the thick-
ness of the boundary layer of flowing fluids, due to which the thermal and momentum 
field shows a decrement trend for this parameter. Figure 7 explains the influence of ad-
equate Prandtl numbers on the momentum profile of the flowing fluid. Again, the mo-
mentum field represents decaying behavior with the increment in the value of Prandtl 
numbers. Physically, the enhancement in the Prandtl numbers means the increment in 
the viscosity of the fluid and decrement in the thermal conductivity of the flowing fluid, 
which results in decay in the momentum field of the fluid flow. The variation in velocity 
profile due to the heat Grashof number and mass Grashof number can be seen in Figures 
8 and 9, respectively. Due to the increment in the Grashof number, the buoyancy effect 
also increases, which increases the thickness of the boundary layer of the fluid, so by 
varying the values of both parameters, the fluid velocity also increases and shows a 
unique maximum point near the plate, varying the value of time. In addition, the velocity 
increases with higher time values and the highest finding near the plate. The fluid motion 
slows down asymptotically as 𝑦 increases, satisfying the boundary conditions. Figures 10 
and 11 are plotted to see the influence of 𝑆𝑐 and 𝑅𝑒 for the velocity profile for different 
values of the time. An increment in the Schmidt number means a decrease in the molec-
ular diffusion of the boundary layer, which decreases the momentum profile. 

  

 

Figure 6. Variation in momentum field due to fractional constraints with 𝑃𝑟 = 1.4, 𝑆𝑐 = 1.1,𝑀 = 1.75, 𝐺𝑟 = 0.75, 𝐺𝑚 = 0.5, 𝑅𝑒 = 1.3,  𝜃 = 𝜃 = , 𝐾 = 1.4, ℎ = 0.5 at (a)  𝑡 = 0.5  (b)  𝑡 =0.7 (c) 𝑡 = 0.9. 

Figure 6. Variation in momentum field due to fractional constraints with Pre f f = 1.4, Sce f f = 1.1,
M = 1.75, Gr = 0.75, Gm = 0.5, Re = 1.3, θ1 = θ2 = π

4 , K = 1.4, h = 0.5 at (a) t = 0.5 (b) t = 0.7
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Pre f f = 1.4, Sce f f = 1.1, M = 1.75, Gm = 0.5, Re = 1.3, θ1 = θ2 = π

4 , K = 1.4, h = 0.5 at (a) t = 0.5
(b) t = 0.7 (c) t = 0.9.
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4 , K = 1.4, h = 0.5 at
(a) t = 0.5 (b) t = 0.7 (c) t = 0.9.
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Pre f f = 1.4, Sce f f = 1.1, M = 1.75, Gr = 0.75, Gm = 0.5, Re = 1.3, θ1 = θ2 = π

4 , K = 1.4, h = 0.5
at (a) t = 0.5 (b) t = 0.7 (c) t = 0.9.
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(a) t = 0.5 (b) t = 0.7 (c) t = 0.9.

The effects of the applied magnetic field and the angle of inclination of the applied
magnetic field are examined in Figures 12 and 13. It can be seen that with the variation of
both parameters, the momentum profile decays. Physically, the variation in the magnetic
field enhances the Lorentz force, resulting in a decrease in the momentum field, and the
maximum strength of the applied magnetic field is at the right angle, as shown in the
figures. The numerical comparison of concentration, temperature, and momentum profiles
with different numerical inversion techniques can be examined in Table 1. They are found to
be in good agreement due to the very close results of both numerical techniques. Moreover,
the numerical analysis of the heat transfer rate, mass transfer rate, and skin friction at
different times is examined in Table 2. It can be predicted that both the Nusselt number
(heat transfer rate) and skin friction decrease continuously while increasing with time.
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4 , K = 1.4, h = 0.5 at

(a) t = 0.5 (b) t = 0.7 (c) t = 0.9.

5. Validation of Attained Results

The comparison of the two numerical systems, Stehfest and Tzou’s, is examined
by drawing Figure 14a–c for all temperature, concentration, and momentum profiles.
A slight overlap of findings between the two curves validates the attained results. In
Figure 15a,b, a comparison of the solutions for temperature and velocity fields using
the Prabhakar fractional methodology is shown with the work of Imran et al. [54]. The
simulations generated by employing the Prabhakar fractional model have good accuracy
when compared to the study of Imran et al. [54].
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6. Conclusions

The Prabhakar-like thermal fractional technique is used in this study to examine the
problem of a viscous, incompressible, and unsteady fluid flowing across an oscillating
inclined plate. In order to account for extended memory effects, a recent and more efficient
fractional definition, namely the Prabhakar fractional derivative, is utilized with the Mittag-
Leffler kernel. Non-dimensional fractional governed equations are solved using the LT
approach; an integral transform method, namely the Laplace inverse of governed equations,
is computed using a variety of numerical approaches. The impact of various restrictions on
leading equations is visually and numerically investigated. The primary outputs derived
from graphical and numerical representation can be bulleted as follows:

• The impact of larger values of fractional parameter and an adequate Prandtl number
declines the profiles of temperature distributions.

• The boundary layer concentration also decays with the enhancement in fractional
parameter and Schmidt number.

• The momentum profile is an increasing function for Re, Gr, Gm ,while it decreases
with the variation in Pre f f , Sce f f , M, θ1 and Prabhakar fractional parameters.
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• Thermal profile, concentration, and momentum profiles asymptotically increase
with time.

• The overlapping of both numerical schemes validates the attained solution of all
governed equations.

• The momentum profile is maximal near the plate. It approaches its distinctive peak
values in the stream region and then decreases away along the y-axis.

• The rate of heat transfer, mass transfer, and skin friction varies with the increment in
time values.

• In the comparison of numerical techniques and with the attained results of Imran et al. [54],
the overlapping of both curves validates the attained results of this study.

• As the Prabhakar fractional derivative is the more recent definition of the fractional
derivatives technique, it has more efficient and accurate results as compared to other
fractional operators as depicted in the comparison of Imran et al. [54].
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Nomenclature

Symbol Quantity Unit
α, β, γ Prabhakar fractional constraints (−)
µ Dynamic Viscosity

(
Kgm−1s−1

)
υ Kinematic viscosity coefficient

(
m2s−1)

g Gravitational acceleration
(
ms−2)

βT Thermal expansion
(

K−1
)

ρ Density
(

Kgm−3
)

Cp Specific heat at constant pressure
(

JKg−1K−1
)

s Laplace-transformed parameter (−)
σ Electrical conductivity

(
sm−1)

k Thermal conductivity
(

Wm−2K−1
)

T(y,t) Dimensionless temperature profile (−)
v(y,t) Dimensionless momentum field (−)
C(y,t) Dimensionless concentration profile (−)
Gr Heat Grashof number (−)
Gm Mass Grashof number (−)
Pre f f Effective Prandtl number (−)
Sc Schmidt number (−)
Bo Magnetic field strength

(
NsC−1

)
M Magnetic field (−)
LT Laplace transformation (−)
Nu Nusselt number (−)
C f Skin friction (−)
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