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Abstract: The aim of this work is to describe the dynamics of a fractional-order coupled FitzHugh–
Nagumo neuronal model. The equilibrium states are analyzed in terms of their stability properties,
both dependently and independently of the fractional orders of the Caputo derivatives, based on
recently established theoretical results. Numerical simulations are shown to clarify and exemplify the
theoretical results.
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1. Introduction

During the last few years, an increased number of scientific papers have examined
the relevance of using fractional-order derivatives when modeling real-world phenomena.
Thus, it has been suggested that fractional-order systems are efficiently providing more
reasonable and realistic results in a substantial number of practical applications [1–5] in
comparison with their associated integer-order counterpart. This is justified by the fact
that fractional-order derivatives are provided with both memory and hereditary properties,
as [6] suggests that a possible physical meaning for the order of a fractional derivative
could be the index of memory.

It has been recently underlined [7,8] that fractional-order derivatives or differences
could be involved in mathematically modeling neuronal dynamics. Due to their ability to
introduce capacitive memory effects [9], fractional-order membrane potential dynamics
have emphasized their advantage in reproducing the electrical activity of neurons observed
from an experimental point of view. Very recently, ref. [10] proposed a novel mathematical
model of neuronal electromechanics employing fractional-order derivatives of variable
order to model multiple temporal scales, accounting for both local and nonlocal chemo-
mechanical interactions observed experimentally [11]. Several types of fractional-order
single-neuronal models have been investigated in recent years: leaky integrate-and-fire [12],
Hindmarsh–Rose [13,14], Morris–Lecar [15–17], FitzHugh–Nagumo [18] and more general
Hodgkin–Huxley models [9,19].

Coupled FitzHugh–Nagumo-type integer-order systems have recently been inves-
tigated. On a general note, a review on chimera states in neuronal networks has been
presented in [20]. In particular, several new phenomena of spiral wave chimeras have
been discovered in [21], where a two-dimensional nonlocally coupled FitzHugh–Nagumo
system with an open boundary condition was considered. Chimera patterns in several
types of two-dimensional networks of coupled neurons have been explored in [22], whereas
a system of two identical FitzHugh–Nagumo units with a mutual linear coupling in the
fast variables was investigated in [23]. Moreover, complex activities in neuronal systems
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can be better understood due to the results presented in [24], where a coupled network con-
sisting of an arbitrary number of nonidentical FitzHugh–Nagumo neurons is investigated
in terms of its stability properties and chaotic behavior. Coupled FitzHugh–Nagumo equa-
tions have also been considered in [25], whereas the firing activities of a fractional-order
FitzHugh–Rinzel bursting neuron model and its coupled dynamics have been investigated
in [26].

Regarding coupled FitzHugh–Nagumo neuronal models, ref. [27] presents novel pat-
terns in fractional-in-space nonlinear coupled FitzHugh–Nagumo models with a Riesz frac-
tional derivative; the chimera state in the network of fractional-order FitzHugh–Nagumo
neurons is investigated in [28], whereas an analytical study of a fractional-order multiple
chaotic FitzHugh–Nagumo neuron model using the multistep generalized differential
transform method is presented in [29].

The main reference works on the topic of fractional calculus and the qualitative theory
of fractional-order systems are [30–33]. A significant component in the qualitative theory
of fractional-order systems is represented by stability analysis. Recently, main results were
developed with respect to the stability properties of fractional-order systems [34,35]. Hence,
ref. [36] presents a generalization of the well-known stability theorem of Matignon [37].
Furthermore, linearization theorems for fractional-order systems are presented [38].

The aim of this work is to investigate the stability of the equilibrium states of a
fractional-order coupled FitzHugh–Nagumo neuronal model, by applying theoretical
results recently obtained in [39,40]. Both fractional-order independent results and fractional-
order dependent results are compactly enumerated, for their later applicability in the
analysis of the neuronal model mentioned above. To the best of our knowledge, this is
the first time that a complete theoretical stability analysis has been done for a coupled
FitzHugh–Nagumo neuron model with different fractional orders.

The paper is organized as follows. Section 2 is designed for itemizing some prelimi-
naries and the fractional-order dependent and independent results. The main results of the
work are described in Section 3: the mathematical model is presented, the existence of equi-
librium states is discussed, and the stability of the equilibrium states is later analyzed, both
independent and dependent on the fractional orders of the considered neuronal model. The
results are supported by illustrative numerical simulations, revealing rich spiking behavior.
Several conclusions are drawn in Section 5.

2. Preliminaries

Let us consider the n-dimensional fractional-order system with Caputo derivatives [30,32,41]:

cDqx(t) = f (t, x) (1)

where q = (q1, q2, ..., qn) ∈ (0, 1)n and f : [0, ∞)×Rn → Rn is a continuous function on
the whole domain of definition, Lipschitz-continuous with respect to the second variable,
such that

f (t, 0) = 0 for any t ≥ 0.

The existence and uniqueness of solutions of the initial value problem associated with
system (1) is guaranteed by the previously mentioned properties of the function f [31].

For the local stability analysis of a general nonlinear system (1), we rely on the lin-
earization technique in a neighborhood of an equilibrium, which has been previously
explored in [37]. It is important to emphasize that once the linearized system is established,
stability and instability results may be obtained by analyzing the distribution of the roots
of the corresponding characteristic equation [40].

For the stability analysis undertaken in the following sections, we recall some results
recently obtained in [39,42], concerning the distribution of the roots of the following
characteristic equation:

sq1+q2 + β1sq1 + β2sq2 + γ = 0, (2)
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where sq1 and sq2 represent the principal values (first branches) of the corresponding
complex power functions [43]. For completeness, we reformulate these previous results in
the following propositions:

Proposition 1 (Fractional-order independent results).

1. All the roots of the characteristic Equation (2) are in the open left half-plane, regardless of the
fractional orders q1 and q2, if and only if the following inequalities are satisfied:

γ > 0, β1 + β2 > 0 and min{1, γ}+ min{β1, β2} > 0.

2. The characteristic Equation (2) has a root in the open right half-plane, regardless of the
fractional orders q1 and q2, if and only if either one of the following conditions is satisfied:

i. γ < 0;
ii. γ > 0 and β1 + β2 + γ + 1 ≤ 0;
iii. β1 < 0, β2 < 0 and β1β2 ≥ γ > 0.

In what follows, we assume that the fractional orders q1 and q2 are arbitrarily fixed
inside the domain

D = {(q1, q2) ∈ R2 : 0 < q1 < q2 ≤ 1}.

Moreover, as γ < 0 implies that the system is unstable, for any choice of the fractional
orders q1 and q2, we will assume that γ > 0.

As in [39,42], we define a family of smooth parametric curves in the (β1, β2)-plane by

Γ(γ, q1, q2) :

β1 = γ
q2

q1+q2 h(ω, q1, q2)

β2 = γ
q1

q1+q2 h(ω, q2, q1)
, ω > 0,

where h : (0, ∞)× D → R is given by:

h(ω, q1, q2) = ω
− q1

q1+q2 [ωρ(q1, q2 − q1)− ρ(q2, q2 − q1)]

with the function ρ defined as

ρ(a, b) =
sin aπ

2

sin bπ
2

, ∀ a ∈ [0, 1], b ∈ [−1, 0) ∪ (0, 1].

It has been previously shown in [42] that the curve Γ(γ, q1, q2) is the graph of a smooth,
decreasing, convex bijective function φγ,q1,q2 : R→ R in the (β1, β2)-plane. Moreover, the
curve Γ(γ, q1, q2) lies outside the first quadrant of the (β1, β2)-plane.

With these notations, we have the following result [39]:

Proposition 2 (Fractional-order dependent results).
Let γ > 0 and 0 < q1 < q2 ≤ 1 be arbitrarily fixed. Consider the curve Γ(γ, q1, q2) and the

function φγ,q1,q2 : R→ R defined above.

i. The characteristic Equation (2) has a pair of complex conjugated roots on the imaginary axis of
the complex plane if and only if (β1, β2) ∈ Γ(γ; q1, q2).

ii. All the roots of the characteristic Equation (2) are in the open left half-plane if and only if

β2 > φγ,q1,q2(β1).

iii. If β2 < φγ,q1,q2(β1), the characteristic Equation (2) has at least one root in the open right
half-plane.
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3. Fractional-Order Coupled FithHugh–Nagumo-Type Neuronal Model

Consider the following fractional-order coupled FitzHugh–Nagumo neuronal model,
which is a modified version of the model considered in [25], replacing the classical integer-
order derivative with fractional-order Caputo derivatives:

cDq1 v1(t) = v1(v1 − a)(1− v1)− w1 + g(v1 − v2)
cDq2 w1(t) = ε(v1 − βw1)
cDq1 v2(t) = v2(v2 − a)(1− v2)− w2 + g(v2 − v1)
cDq2 w2(t) = ε(v2 − βw2)

(3)

where v1 and v2 represent the membrane potential of the two neurons, w1 and w2 are
recovery variables, a, β, ε, g are positive constants, and q1 and q2 are the fractional orders of
the Caputo derivatives, with 0 < q1 ≤ q2 ≤ 1.

In this paper, identical neurons are considered; therefore, the fractional orders of
the Caputo derivatives in system (3) coincide for the membrane voltage equations and
for the recovery variable equations, respectively. In many previous works concerning
single-neuron models [9], q2 = 1 has been chosen for the recovery variable, while q1 ∈ (0, 1]
accounts for the incorporation of a non-ideal fractional-order capacitive element in the
membrane potential equation [44]. However, it has been pointed out in [19] that an increase
in the diversity of spike patterns and shapes is observed in a single-neuron model, when
using a power-law behaving conductance, which emphasizes the importance of considering
q2 ∈ (0, 1].

We observe that

cDq2 w1(t) = ε(v1 − βw1) = εβ

(
1
β

v1 − w1

)
= φ(αv1 − w1)

cDq2 w2(t) = ε(v2 − βw2) = εβ

(
1
β

v2 − w2

)
= φ(αv2 − w2)

where φ := εβ > 0 and α :=
1
β
> 0.

Considering the function I(vi, wi) = wi − vi(vi − a)(1− vi), with i ∈ {1, 2}, system (3)
is equivalently written as:

cDq1 v1(t) = g(v1 − v2)− I(v1, w1)
cDq1 v2(t) = g(v2 − v1)− I(v2, w2)
cDq2 w1(t) = φ(αv1 − w1)
cDq2 w2(t) = φ(αv2 − w2)

(4)

3.1. Existence of Equilibrium States

In this section, we investigate the existence of equilibrium points of the fractional-order
neuronal model (4), which are the solutions (v∗1 , v∗2 , w∗1 , w∗2) of the algebraic system:

g(v1 − v2) = I(v1, w1)

g(v2 − v1) = I(v2, w2)

αv1 = w1

αv2 = w2

which reduces to solving the following two-dimensional algebraic system:{
g(v1 − v2) = I∞(v1)

g(v2 − v1) = I∞(v2)
(5)

where I∞(vi) = I(vi, αvi) = v3
i − (1 + a)v2

i + (α + a)vi, with i ∈ {1, 2}.
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Adding the two equations of system (5), we obtain:

I∞(v1) + I∞(v2) = 0.

We distinguish the following two cases:
Case 1: v∗1 = v∗2

In this case, we have I∞(v∗1) = 0, which is equivalent to

v∗1((v
∗
1)

2 − (1 + a)v∗1 + α + a) = 0.

It follows that v∗1 = 0 of (v∗1)
2 − (a + 1)v∗1 + α + a = 0.

The discriminant of the previous quadratic equations is ∆ = (1− a)2 − 4α. Therefore,
we have the following situations:

• If 4α > (1− a)2, then system (4) has a unique equilibrium point

(v∗1 , v∗2 , w∗1 , w∗2) = (0, 0, 0, 0).

• If 4α = (1− a)2, then system (4) has two equilibrium states

(v∗1 , v∗2 , w∗1 , w∗2) ∈
{
(0, 0, 0, 0),

(
1 + a

2
,

1 + a
2

,
α(1 + a)

2
,

α(1 + a)
2

)}
.

• If 4α < (1− a)2, then system (4) has three equilibrium states

(v∗1 , v∗2 , w∗1 , w∗2) ∈ {(0, 0, 0, 0), ( f (a, ∆), f (a, ∆), α f (a, ∆), α f (a, ∆))},

where f (a, ∆) =
1 + a±

√
∆

2
.

Case 2: v∗1 6= v∗2
The equilibrium states (v∗1 , v∗2 , w∗1 , w∗2) = (v∗1 , v∗2 , αv∗1 , αv∗2) of system (4), with v∗1 6= v∗2 ,

are the solutions of the algebraic system{
g(v1 − v2) = I∞(v1)

g(v2 − v1) = I∞(v2)

which is equivalent to the system{
g(v1 − v2) = v3

1 − (1 + a)v2
1 + (α + a)v1

g(v2 − v1) = v3
2 − (1 + a)v2

2 + (α + a)v2
.

Subtracting the equations of the previous system, we obtain

2g(v1 − v2) = v3
1 − v3

2 − (1 + a)(v2
1 − v2

2) + (α + a)(v1 − v2)

which, as we consider asymmetric equilibria, is equivalent to

2g = v2
1 + v1v2 + v2

2 − (1 + a)(v1 + v2) + α + a. (6)

Moreover, as I∞(v1) + I∞(v2) = 0, it follows that

v3
1 + v3

2 − (1 + a)(v2
1 + v2

2) + (α + a)(v1 + v2) = 0. (7)

Denoting s = v1 + v2 and p = v1 · v2, Equation (6) is equivalent to

p = s2 − (1 + a)s + α + a− 2g (8)
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whereas Equation (7) becomes

s3 − 3sp− (1 + a)(s2 − 2p) + (α + a)s = 0. (9)

Combining the previous two relations, it results that

s3 − 2(1 + a)s2 + (α + 3a− 3g + a2 + 1)s− (1 + a)(α + a− 2g) = 0. (10)

As we search for real distinct values of v1 and v2, which are the roots of the quadratic
equation v2 − sv + p = 0, the inequality s2 > 4p must also be satisfied, or equivalently,
from relation (8):

3
4

s2 − (1 + a)s + α + a− 2g < 0. (11)

Therefore, determining the asymmetrical equilibrium states reduces to solving the
cubic Equation (10), subject to the constraint (11). Hence, depending on the values of the
parameters a, α and g, we may obtain zero to three pairs of asymmetrical equilibrium states
of the form (v∗1 , v∗2 , αv∗1 , αv∗2) and (v∗2 , v∗1 , αv∗2 , αv∗1).

Remark 1. In Figure 1, one can deduce the number of equilibrium states of system (4) depending on
the parameters of the system a, α and for fixed values of the parameter g. For values of the parameters
a, α belonging to the green region, the system has three equilibrium states. If the parameters are
situated in the lighter green region, the system has a total of five equilibrium states. In the orange
region, the system has a total of seven equilibrium states, and in the red region, there is a total of
nine equilibrium states of system (4).
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Figure 1. Number of equilibrium states in the parametric plane (a, α) for different values of the
parameter g ∈ {±0.2,±0.6,±1}.
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3.2. Stability of Equilibrium States

In order to establish the stability of the equilibrium states previously determined,
consider the Jacobian matrix associated with system (4) at an arbitrary equilibrium point
(v∗1 , v∗2 , w∗1 , w∗2):

J =


α + g− I′∞(v∗1) −g −1 0

−g α + g− I′∞(v∗2) 0 −1
φα 0 −φ 0
0 φα 0 −φ


which can be written in the following block matrix form:

J =
(

M −I2
φαI2 −φI2

)
,

where I2 denotes a two-dimensional unit matrix and

M = M(v∗1 , v∗2) =
(

α + g− I′∞(v∗1) −g
−g α + g− I′∞(v∗2)

)
is a symmetric matrix with real eigenvalues denoted by:

µ± = µ±(v∗1 , v∗2) = g + α−
I′∞(v∗1) + I′∞(v∗2)

2
±

√
g2 +

(
I′∞(v∗1)− I′∞(v∗2)

2

)2

. (12)

The characteristic equation associated with the equilibrium (v∗1 , v∗2 , w∗1 , w∗2) is

det(J − diag(sq1 , sq1 , sq2 , sq2)) = 0, (13)

or equivalently:
det(−(φ + sq2)(M− sq1 I2) + φαI2) = 0

which can be expressed as:

det
(

M−
(

sq1 +
φα

φ + sq2

)
I2

)
= 0.

Hence, we obtain that s is a root of the characteristic Equation (13) if and only if

sq1 +
φα

φ + sq2
is an eigenvalue of the matrix M. It follows that the characteristic Equation (13)

can be written as:[
sq1+q2 + φsq1 − µ−sq2 + φ(α− µ−)

]
·
[
sq1+q2 + φsq1 − µ+sq2 + φ(α− µ+)

]
= 0. (14)

Applying the theoretical results from Section 3, we obtain the following fractional-
order-independent characterizations of the asymptotic stability and instability of the equi-
librium states:

Proposition 3. Denoting

µs = min
{

1, φ,
φα

1 + φ

}
and µu = min

{
α,

φα

1 + φ
+ 1
}

,

the inequality µs < µu holds. Moreover, the equilibrium state (v∗1 , v∗2 , w∗1 , w∗2) of system (4) is:

• asymptotically stable, regardless of the fractional orders q1 and q2, if and only if µ+ < µs;
• unstable, regardless of the fractional orders q1 and q2, if and only if µ+ > µu.

Proof. The proof of the inequality µs < µu is trivial.
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On one hand, the equilibrium state (v∗1 , v∗2 , w∗1 , w∗2) is asymptotically stable, regardless
of the fractional order q1 and q2, if and only if all the roots of the characteristic Equation (14)
are in the open left half-plane, or equivalently, if and only if all the roots of both equations

sq1+q2 + φsq1 − µsq2 + φ(α− µ) = 0, with µ ∈ {µ−, µ+} (15)

have negative real parts. Considering β1 = φ > 0, β2 = −µ and γ = φ(α− µ), based on
the first statement of Proposition 1, this holds if and only if

µ < min{α, φ} and min{1, φ(α− µ)}+ min{φ,−µ} > 0,

which reduces to

µ < min
{

1, φ,
φα

1 + φ

}
= µs.

Taking into account that µ− < µ+, it is enough to require µ+ < µs.
On the other hand, the equilibrium state (v∗1 , v∗2 , w∗1 , w∗2) is unstable, regardless of the

fractional order q1 and q2, if and only if the characteristic Equation (14) has at least one root
in the open right half-plane, i.e., if either one of the equations from (15) has a root with a
positive real part. From the second statement of Proposition 1, this holds if either γ < 0, or
γ > 0 and β1 + β2 + γ + 1 ≤ 0, which translates to

µ > min
{

α,
φα

1 + φ
+ 1
}

= µu.

As µ+ > µ−, it is enough to require µ+ > µu, and the desired conclusion is obtained.

Remark 2. Proposition 3 gives necessary and sufficient conditions for the fractional-order-independent
stability and instability of the equilibrium states of system (4), formulated in terms of simple inequalities
involving the eigenvalue µ+, which incorporates information about the equilibrium state, according
to (15). It is important to remark that, based on the above result, when µ+ ∈ (µs, µu), the stability
properties of the equilibrium state depend on the fractional orders q1 and q2, as will be described in
what follows.

Proposition 4. Assume that the fractional orders (q1, q2) are arbitrarily fixed such that 0 < q1 ≤
q2 ≤ 1 and µ+ ∈ (µs, µu). There exists a unique value µ?(q1, q2) ∈ (µs, µu) such that the
equilibrium state (v∗1 , v∗2 , w∗1 , w∗2) of system (4) is asymptotically stable if µ+ < µ∗(q1, q2) and
unstable if µ+ > µ∗(q1, q2).

Proof. The critical value µ∗(q1, q2) is the value for which Equation (15) has a pair of roots
s = ±iω on the imaginary axis. Hence, following Proposition 2, µ∗(q1, q2) is given by the
unique solution of the system (with the unknowns µ ∈ (µs, µu) and ω > 0)φ = [φ(α− µ)]

q2
q1+q2 h(ω, q1, q2)

−µ = [φ(α− µ)]
q1

q1+q2 h(ω, q2, q1)
(16)

As the qualitative behavior in a neighborhood of the equilibrium changes only at the critical
value µ∗(q1, q2), the rest of the proof is a consequence of Proposition 3.

Remark 3. Considering the trivial equilibrium (0, 0, 0, 0) of system (4) (or system (3)), a simple
computation shows that µ+ = g + |g| − a.

In the case of excitable coupling (g < 0), it follows that µ+ = −a < µs, and hence, the trivial
equilibrium is always asymptotically stable, for any choice of the fractional orders, or the coupling
coefficient g.

However, in the case of phase-repulsive coupling (g > 0), we have µ+ = 2g− a, and hence,
based on Propositions 3 and 4, we have:
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• if g < µs+a
2 , the trivial equilibrium state is asymptotically stable, regardless of the fractional

orders q1 and q2;
• if g > µu+a

2 , the trivial equilibrium state is unstable, regardless of the fractional orders q1
and q2;

• if g ∈
(

µs+a
2 , µu+a

2

)
, the stability of the trivial equilibrium depends on the fractional orders

q1 and q2, as seen from Proposition 4.

4. Numerical Simulations

For the numerical simulations presented in this paper, we have employed the Adams–
Bashforth–Moulton method developed for fractional-order systems in [45]. For a review of
existing numerical methods that can be successfully applied to fractional-order systems
with multiple fractional orders, we refer to [46].

4.1. Case 1: A Unique Equilibrium State

For the first set of numerical simulations, we consider the parameter values used
in [25]: a = 0.3, ε = 0.01 and β = 0.1. Hence, we have α = 10 and φ = 0.001. It can be easily
seen that for this combination of system parameters (also see Figure 1), the only equilibrium
state of system (3) is the trivial one. Moreover, the parameters given by Proposition 3 are:
µs = 0.001 and µu = 1.00999. From Remark 3, we deduce that if g < 0.1505, the trivial
equilibrium is asymptotically stable, independently of q1 and q2, while for g > 0.654995,
the trivial equilibrium is unstable, for any fractional orders q1 and q2. However, when
g ∈ (0.1505, 0.654995), the stability of the trivial equilibrium depends on the choice of
fractional orders q1 and q2.

Based on the above observations, we first consider g = 0.2, and hence, µ+ = 0.1.
Fixing the fractional order q2 = 1, we determine the critical value of the fractional order q1
by numerically solving system (16) for q1 and ω, considering µ = µ+ in this system. We
find q∗1 = 0.633408, and consequently, the trivial equilibrium is asymptotically stable from
q1 < q∗1 and unstable for q1 > q∗1 , which is in agreement with the numerical simulations
presented in Figure 2. For q1 > q∗1 , periodic oscillations are observed in system (3), and
the frequency of oscillations increases for larger values of q1. It can be conjectured that a
supercritical Hopf-type bifurcation takes place in a neighborhood of the trivial equilibrium
when q1 = q∗1 ; however, at this point, the bifurcation theory of fractional-order systems is
not well studied.

In contrast with the classical integer-order case, it may be observed from Figure 2 that
as the fractional order q1 decreases from 1 to q∗1 , single high-amplitude spikes alternate
with small-amplitude oscillations, which do not fully decay to a quiescent phase. This
remarkable difference between the integer-order and fractional-order models provides
insight into the complex dynamics exhibited by systems of coupled neurons, and justifies a
thorough further study of the different oscillatory patterns induced by the fractional orders.

4.2. Case 2: Five Coexisting Equilibrium States

For the second set of numerical simulations, we consider the following parameter
values: a = 1.5, ε = 0.032, β = 2 and g = 0.8. Hence, we have α = 0.5 and φ = 0.064. For
this combination of system parameters (also see Figure 1), five equilibrium states coexist in
system (3), given in Table 1.

Table 1. Equilibrium states of (3) for the parameter values: a = 1.5, ε = 0.032 and β = 2.

Equilibrium (v∗
1 , v∗

2 , w∗
1 , w∗

2 ) µ+ Stability

(2.01375,−0.555812, 1.00687,−0.277906) −2.46674 asympt. stable
(−0.555812, 2.01375,−0.277906, 1.00687) −2.46674 asympt. stable
(0.38957,−0.183994, 0.194785,−0.0919969) 1.02553 unstable
(−0.183994, 0.38957,−0.0919969, 0.194785) 1.02553 unstable

(0, 0, 0, 0) 0.1 depends on q1, q2



Fractal Fract. 2022, 6, 257 10 of 13

0 500 1000 1500 2000

-0.020

-0.015

-0.010

-0.005

0.000

q1=0.6, q2=1

0 500 1000 1500 2000

-0.5

0.0

0.5

1.0

q1=0.7, q2=1

0 500 1000 1500 2000

-0.5

0.0

0.5

1.0

q1=0.8, q2=1

0 500 1000 1500 2000

-0.5

0.0

0.5

1.0

q1=0.9, q2=1

0 500 1000 1500 2000

-0.5

0.0

0.5

1.0

q1=1, q2=1

Figure 2. Evolution of the membrane potentials v1 (blue) and v2 (red) of the two neurons, for fixed
parameter values a = 0.3, ε = 0.01 and β = 0.1, coupling coefficient g = 0.2, fixed fractional order
q2 = 1 and q1 ∈ {0.6, 0.7, 0.8, 0.9, 1} (top to bottom). Initial conditions for system (3) have been chosen
in a neighborhood of the trivial equilibrium.

The parameters given by Proposition 3 are: µs = 0.0300752 and µu = 0.5. Therefore,
as µ+ < µs for the first pair of asymmetric equilibrium states, we deduce that they are
asymptotically stable, regardless of the fractional orders chosen in system (3). On the other
hand, as µ+ > µu for the second pair of asymmetric equilibrium states, it follows that
they are unstable, regardless of the fractional orders chosen in system (3). However, as
µ+ ∈ (µs, µu) for the trivial equilibrium state, from Proposition 4, the stability of the trivial
equilibrium depends on the choice of fractional orders.

For the trivial equilibrium state, fixing the fractional order q2 = 1, we determine
the critical value of the fractional order q1 by numerically solving system (16) for q1 and
ω, considering µ = µ+ = 0.1 in this system. We find q∗1 = 0.911087, and consequently,
the trivial equilibrium is asymptotically stable from q1 < q∗1 and unstable for q1 > q∗1 .
This is illustrated in Figure 3. Indeed, for q1 = 0.8, all trajectories initiated from a small
neighborhood of the trivial equilibrium converge to origin. On the hand, for q1 = 0.95, the
trajectories initiated from a small neighborhood of the trivial equilibrium converge to one
of the asymptotically stable equilibria of the first asymmetric pair from Table 1.
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Figure 3. Evolution of the membrane potential v1 for fixed parameter values a = 1.5, ε = 0.032 and
β = 2, coupling coefficient g = 0.8, fixed fractional order q2 = 1 and q1 ∈ {0.8, 0.95}, considering
multiple initial conditions for system (3) in a neighborhood of the trivial equilibrium (corresponding
solutions plotted with different colors).

5. Conclusions

Stability analysis of the equilibrium states of a fractional-order coupled FitzHugh–
Nagumo neuronal model was explored. Firstly, some preliminary results were enumerated.
Then, the mathematical model was described using fractional-order derivatives of Caputo
type. For the mathematical model, equilibrium states were determined, which were later
investigated in terms of their stability. Moreover, numerical methods were provided in
order to illustrate the theoretical results.

Directions for future research are the generalization of the present investigation to
a network on non-identical neurons, and to higher-dimensional networks of FitzHugh–
Nagumo neurons.
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