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Abstract: In the present article, we study a class of Kirchhoff-type equations driven by the (p(x), q(x))-
Laplacian. Due to the lack of a variational structure, ellipticity, and monotonicity, the well-known
variational methods are not applicable. With the help of the Galerkin method and Brezis theorem, we
obtain the existence of finite-dimensional approximate solutions and weak solutions. One of the main
difficulties and innovations of the present article is that we consider competing (p(x), q(x))-Laplacian,
convective terms, and logarithmic nonlinearity with variable exponents, another one is the weaker
assumptions on nonlocal term Mυ(x) and nonlinear term g.
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1. Introduction

The purpose of the present article is to investigate the following (p(x), q(x))-Kirchhoff-
type equations involving logarithmic nonlinearity and convection terms:

−Mp(x)

(
δp(x)(η)

)
∆p(x)η − µMq(x)

(
δq(x)(η)

)
∆q(x)η

= λ|η|r(x)−2η ln |η|+ g(x, η,∇η), in Ω,

η|∂Ω = 0,

(1)

where r(x) ∈ C+(Ω), µ, λ are real parameters, and Ω is an open bounded domain in RN

with a smooth boundary.
Here, ∆γ(x) is a γ(x)-Laplace operator, defined by

∆γ(x)η = div(|∇η|γ(x)−2∇η) =
N

∑
i=1

(
|∇η|γ(x)−2 ∂η

∂xi

)
, γ(x) ∈

{
p(x), q(x)

}
, (2)

for all x ∈ Ω and η ∈ C∞
0 (RN), and denote

δs(x)(η) =
∫

Ω

1
s(x)
|∇η|s(x)dx, s(x) ∈

{
p(x), q(x)

}
. (3)

From now on, we briefly state some major features of problem (1). One of the signifi-
cant characteristics of the problem (1) is the presence of double non-local Kirchhoff terms,
which were introduced in [1] as follows:
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ρ
∂2η(x)

∂t2 −
(

p0

h
+

E
2L

∫ L

0

∣∣∣∣∂η(x)
∂t

∣∣∣∣2dx

)
∂2η(x)

∂x2 = 0, (4)

where parameters ρ, p0, h, E, and L are real positive constants. Equation (4) is a nonlocal

problem, which contains a nonlocal coefficient p0
h + E

2L
∫ L

0

∣∣∣ ∂η(x)
∂t

∣∣∣2dx, and has a wide range
of applications and research in physical systems, such as non-homogeneous Kirchhoff-type
equations in RN [2], nonlocal Kirchhoff equations of elliptic type [3], Kirchhoff–Schrödinger
type equations [4], p(x)-Laplacian Dirichlet problem [5,6], Kirchhoff–Choquard equations
involving variable-order [7,8], fractional p(·)-Kirchhoff type problem in RN [9], Kirchhoff-
type equations involving the fractional p1(x)&p2(x)-Laplace operator [10], fractional p(x, ·)-
Kirchhoff-type problems in RN [11], and fractional Sobolev space and applications to
nonlocal variational problems [12]. For more Kirchhoff-type problems, we also mention
that [13] studied a class of Kirchhoff nonlocal fractional equations and obtained the existence
of three solutions, Ref. [14] discussed a class of p-Kirchhoff equations via the fountain
theorem and dual fountain theorem, and Ref. [15] researched the existence of non-negative
solutions for a Kirchhoff type problem driven by a non-local integro-differential operator.

Let Mi : R+
0 → R+ and p(x), q(x) : RN → (1,+∞) be continuous functions, which

satisfy the following conditions:

Hm: There are some constants mυ(x) = mυ(x)(ι) > 0(υ(x) ∈ {p(x), q(x)}) for all ι > 0
such that

Mυ(x)(t) ≥ mυ(x), for any t > ι.

Hpq: The conditions that we impose on p(x), q(x) are as follows:

1 < p− := inf
x∈Ω

p(x) ≤ p+ := sup
x∈Ω

p(x) < +∞,

1 < q− := inf
x∈Ω

q(x) ≤ q+ := sup
x∈Ω

q(x) < +∞.

Another significant characteristic of the problem (1) is the presence of double operators,
which comes from the following system

ηt = div[Dη∇η] + c(x, η), (5)

where Dη = |∇η|p−2 + |∇η|q−2 and c(x, η) is a polynomial of η. System (5) had a wide
range of applications in the field of physics and related sciences, for example, on the
stationary solutions of generalized reaction diffusion equations [16], elliptic problems with
critical growth in RN [17], nontrivial solutions to nonlinear elliptic equation in RN [18],
and fractional Choquard problems with variable order [19]. The function η in (5) describes
a concentration, and the first term corresponds to the diffusion with a (generally non-
constant) diffusion coefficient Dη, whereas the second one is the reaction and relates to
source and loss processes. Typically, in chemical and biological applications, the reaction
term c(x, η) in (5) has a polynomial form with respect to the concentration η.

When Mυ(x) = 1(υ(x) ∈ {p(x), q(x)}) and µ = 1, Chung et al. in [20] devoted to the
study of equations involving both p1(x)-Laplacian and p2(x)-Laplacian

(−∆)s
p1(·)

η(x) + (−∆)s
p2(·)

η(x) + |η(x)|q(x)−2η(x)

= λV1(x)|η(x)|r1(x)−2η(x)− λV2(x)|η(x)|r2(x)−2η(x), x ∈ Ω,

η(x) = 0, x ∈ ∂Ω,

(6)
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where p1, p2, q, r1, and r2 are different continuous functions, while V1, V2 are suitable
weights. Equation (6) considered the local double Laplace operators, whose results differed
from those of the single Laplace operator.

When Mυ(x) = 1(υ(x) ∈ {p(x), q(x)}) and µ = −1, we mention that Motreanu in [21]
considered Dirichlet problems with competing operators{

−∆pη(x) + ∆qη(x) = g(x, η(x),∇η(x)), in Ω,

η(x) = 0, on ∂Ω,
(7)

where Ω ⊂ RN is a bounded domain. Equation (7) includes the sum −∆p + ∆q of the
negative p-Laplacian ∆p and of the q-Laplacian ∆q, due to competition between −∆p and
∆q, and the operator −∆p + ∆q has a different behavior in comparison to the operator
−∆p + ∆q. Moreover, the ellipticity and monotonicity property of the operator −∆p + ∆q
are lost.

The third significant characteristic of the problem (1) is the presence of convection
term g(x, η,∇η), depending on the function η and on its gradient ∇η, which makes the
problem (1) non-variational, plays an important role in science and technology fields, and is
widely used to describe physical phenomena. For example, due to convection and diffusion
processes, particles or energy are converted and transferred inside physical systems. For
the work related to this topic, we cite the interesting work [21–24] and their references.

The work in [25] focused on the p-Kirchhoff-type equations with gradient dependence
in the reaction that is{

−M
(∫

Ω |∇η(x)|pdx
)
∆pη(x) = g(x, η(x),∇η(x)), in Ω,

η(x) = 0, on ∂Ω,
(8)

where Ω ⊂ RN is a bounded domain with a smooth boundary. The existence of solutions
for the problem (8) was obtained by utilizing Galerkin’s approach.

One more reference on convection is Vetro [26], which was devoted to the study of the
following p(x)-Kirchhoff-type equation:

−∆K
p(x)η(x) = g(x, η(x),∇η(x)), in Ω, η|∂Ω = 0. (9)

The existence of weak solutions and generalized solutions for the problem (9) with
gradient dependence was obtained via applying a topological method.

The nonlinearity g : Ω×R×RN → R is a Carathéodory function, satisfying

Hg1 : There exist some constants c < 1, d > 0 and a function α ∈ [1, p−) such that

g(x, v, ν)v ≤ c|ν|p(x) + d(|v|α(x) + 1), for a.e. x ∈ Ω and all (v, ν) ∈ R×RN .

Hg2 : There exists a positive function φ(x) ∈ Lp′(x)(Ω) and some positive constants a and b
such that

|g(x, v, ν)| ≤ h(x) + a|v|φ(x) + b|ν|
ψ(x)
p′(x) , for a.e. x ∈ Ω and all (v, ν) ∈ R×RN .

where φ(x) ∈ C(Ω), ψ(x) ∈ C(Ω) such that 0 < φ− ≤ φ+ < p− − 1,
(

ψ
p′

)+
<

p− − 1.

The last significant characteristic of the problem (1) is the presence of logarithmic
nonlinearity. The interest in studying problems with logarithmic nonlinearity is motivated
not only by the purpose of describing mathematical and physical phenomena but also by
their application in realistic models. For instance, in the biological population, we use the
function η(x) to represent the density of the population, and the logarithmic nonlinear
term |η|r(x)−2η ln |η| to denote external influencing factors.
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Many scholars make efforts to investigate logarithmic nonlinearity, and, indeed, some
important results were obtained; for example, see [27–30]. Peculiarly, Xiang et al. in [31]
considered the following equation:{

M([η]
p
s,p)(−∆)s

pη = h(x)|η|θp−2η ln |η|+ λ|η|q−2η, x ∈ Ω,

η(x) = 0, x ∈ RN \Ω,
(10)

where M([η]
p
s,p) = [η]

p(θ−1)
s,p and h(x) is a sign-changing function. The existence of least

energy solutions (10) was obtained by utilizing the Nehari manifold method.
Until now, there have been few papers to handle the equations involving logarithmic

nonlinearity with variable exponents. Recently, Boudjeriou in [32] studied the following
initial value problem:

ηt(x)− ∆p(x)η(x) = |η(x)|s(x)−2η(x) log(|η(x)|), in Ω, t > 0,

η(x) = 0, in ∂Ω, t > 0,

η(x, 0) = η0(x), in Ω.

(11)

The weak solutions of Equation (11) were obtained under suitable conditions. More-
over, Zeng et al. in [33] were devoted to the study of equations with logarithmic nonlinearity
and variable exponents by applying the logarithmic inequality.

Motivated by the previous and aforementioned cited works, there is no result for the
Kirchhoff-type equations, which combine with variable exponents, competing (p(x), q(x))-
Laplacian, logarithmic nonlinearity, and convection terms; therefore, we will investigate
the existence of solutions for these kinds of equations, which are different from the work
of [25,26,31,32]. Under weaker conditions on the nonlocal term Mυ(x) and the nonlinearities
g, we prove the existence of finite-dimensional approximate solutions by using the Galerkin
method and obtain the existence of weak solutions with the help of the Brezis theorem.
One of the main difficulties and innovations of the present article is that we consider
competing (p(x), q(x))-Laplacian, convective term, and logarithmic nonlinearity with
variable exponents; another one is the weaker assumptions on nonlocal term Mυ(x) and
nonlinear term g.

The present article is divided into six sections. Aside from Section 1, we have Section 2
given some preliminary notions and results about Lebesgue spaces and Sobolev spaces,
and proved some technical lemmas. The finite-dimensional approximate solutions are
obtained in Section 3. Section 4 discusses the existence of weak solutions by applying the
Brezis theorem, and we give two examples of application of our theorems in Section 5 and
present conclusions in Section 6.

2. Preliminary Results and Some Technical Lemmas

In this section, we briefly review some basic knowledge of generalized Lebesgue
spaces and Sobolev spaces with variable exponents, and then give two technical lemmas.

For any real-valued function H defined on a domain Ω, we denote

C+(Ω) :=

{
H(x) ∈ C(Ω,R) : 1 < H− := inf

x∈Ω
H(x) ≤ H(x) ≤ H+ := sup

x∈Ω
H(x) < +∞

}
.

Letting ϑ(x) ∈ C+(Ω), we define the generalized Lebesgue spaces with variable expo-
nents as

Lϑ(x)(Ω) :=
{

η : η is a measurable function and
∫

Ω
|η|ϑ(x)dx < ∞

}
,

provided with the Luxemburg norm
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‖η‖ϑ(x) = ‖η‖Lϑ(x)(Ω) := inf

{
χ > 0 :

∫
Ω

∣∣∣∣ ηχ
∣∣∣∣ϑ(x)

dx ≤ 1

}
;

then, (Lϑ(x)(Ω), ‖ · ‖ϑ(x)) is a separable and reflexive Banach spaces; see [34,35].

Lemma 1 (see [35]). Let ϑ(x) be the conjugate exponent of ϑ̃(x) ∈ C+(Ω), that is,

1
ϑ(x)

+
1

ϑ̃(x)
= 1, for all x ∈ Ω.

Assume that η ∈ Lϑ(x)(Ω) and ξ ∈ Lϑ̃(x)(Ω); then,∣∣∣ ∫
Ω

ηξdx
∣∣∣ ≤ ( 1

ϑ−
+

1
ϑ̃−

)
‖η‖ϑ(x)‖ξ‖ϑ̃(x) ≤ 2‖η‖ϑ(x)‖ξ‖ϑ̃(x).

Proposition 1 (see [36]). The modular of Lϑ(x)(Ω), which is the mapping ρϑ(x) : Lϑ(x)(Ω)→ R,
is defined by

ρϑ(x)(η) :=
∫

Ω
|η|ϑ(x)dx.

Assume that ηn, η ∈ Lϑ(x)(Ω); then, the following properties hold:

(1) ‖η‖ϑ(x) > 1⇒ ‖η‖ϑ−
ϑ(x) ≤ ρϑ(x)(η) ≤ ‖η‖ϑ+

ϑ(x),

(2) ‖η‖ϑ(x) < 1⇒ ‖η‖ϑ+

ϑ(x) ≤ ρϑ(x)(η) ≤ ‖η‖ϑ−
ϑ(x),

(3) ‖η‖ϑ(x) < 1 (resp. = 1,> 1)⇔ ρϑ(x)(η) < 1 (resp. = 1,> 1),

(4) ‖ηn‖ϑ(x) → 0 (resp.→ +∞)⇔ ρϑ(x)(ηn)→ 0 (resp.→ +∞),

(5) lim
n→∞

|ηn − η|ϑ(x) = 0⇔ lim
n→∞

ρϑ(x)(ηn − η) = 0.

Now, we consider the following generalized Sobolev spaces with variable exponents

W = W1,ϑ(x)(Ω) :=
{

η ∈ Lϑ(x)(Ω) : |∇η| ∈ Lϑ(x)(Ω)
}

,

endowed with the norm
‖η‖W := ‖η‖ϑ(x) + ‖∇η‖ϑ(x);

then, (W, ‖ · ‖W) is a separable and reflexive Banach spaces, see [34].

Lemma 2 (see [34]). Assume that γ(x) ∈ C+(Ω) fulfills

1 < γ− = min
x∈Ω

γ(x) ≤ γ(x) < ϑ∗(x) =
Nϑ(x)

N − ϑ(x)
, for any x ∈ Ω.

Then, there exists Cγ = Cγ(N, ϑ, γ, Ω) > 0 such that

‖η‖γ(x) ≤ Cγ‖η‖W ,

for any η ∈W. Moreover, the embedding W ↪→ Lγ(x)(Ω) is compact.

Let W0 denote the closure of C∞
0 (Ω) in W with respect to the norm ‖η‖W0 , which is the

subspace of W. Thus, the spaces (W0, ‖ · ‖W0 ) are also separable and reflexive Banach spaces.
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Remark 1. According to the Poincaré inequality, we know that ‖∇η‖ϑ(x) and ‖η‖W0 are equiva-
lent norms in W0. From now on, we work on W0 and replace ‖η‖W0 by ‖∇η‖ϑ(x), that is,

‖η‖W0 = ‖∇η‖ϑ(x), for all η ∈W0.

Remark 2. To simplify the presentation, we will denote the norm of W0 by ‖ · ‖ instead of ‖ · ‖W0 .
W∗0 denotes the dual space of W0.

Our technique of proof is based on Galerkin methods together with the fixed point
theorem, whose proof may be found in Lions [37].

Lemma 3. Let W0 be a finite dimensional space with the norm ‖ · ‖ and let G : W0 → W∗0 be a
continuous mapping. Assume that there is a constant R > 0 such that

〈G(η), η〉 ≥ 0, for all η ∈W0 with ‖η‖ = R,

then η ∈W0 exists with ‖η‖ ≤ R satisfying G(η) = 0.

The following two Lemmas provide a useful growth estimate, related to logarithmic
nonlinear terms, which play an important role during our proof process.

Lemma 4. Assume that h(x) ∈ C+(Ω); then, we have the following estimate:

ln t ≤ 1
eh(x)

th(x) ≤ 1
eh−

th(x), for all t ∈ [1,+∞).

Proof. Let h(x) ∈ C+(Ω), and we construct the following function:

f (t) = ln t− 1
eh(x)

th(x), for all t ∈ [1,+∞).

With respect to t, just by taking a simple derivative, we deduce

f ′(t) =
1
t
− 1

e
th(x)−1, for all t ∈ [1,+∞),

and let f ′(t) = 0; then, t∗ = eh−1(x). It is obvious that t∗ is the unique maximum point of
the function f (t), so f (t) ≤ f (t∗) = 0 for all t ∈ [1,+∞). Therefore, based on the above
discussion, we can obtain the stated conclusion.

Lemma 5. Assume that, for all η ∈ W0 and h(x), r(x) ∈ C+(Ω), then the following inequality
holds: ∫

Ω
|η|r(x) ln |η|dx ≤ CΩ1 |Ω|+

1
eh−

max
{

Ch++r+‖η‖h++r+ , Ch−+r−‖η‖h−+r−
}

,

where CΩ1 , Ch++r+ , Ch−+r− are some positive constants and h(x) + r(x) ≤ h+ + r+ < 2p− <

p∗(x) = Np(x)
N−p(x) .

Proof. Let Ω1 = {x ∈ Ω : |η(x)| ≤ 1} and Ω2 = {x ∈ Ω : |η(x)| ≥ 1}; then,∫
Ω
|η|r(x) ln |η|dx =

∫
Ω1

|η|r(x) ln |η|dx +
∫

Ω2

|η|r(x) ln |η|dx.

Since |η(x)| ≤ 1, there exist Mr1 > 0 and Mr2 > 0 such that |η|r(x) < Mr1 and
ln |η| < Mr2 . By a simple calculation, we obtain
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∫
Ω1

|η|r(x) ln |η|dx < CΩ1 |Ω|, (12)

where |Ω| denotes the Lebesgue measure of Ω and CΩ1 > 0. Using Lemma 4 with h(x) +
r(x) ≤ h+ + r+ < p∗(x), we deduce∫

Ω2

|η|r(x) ln |η|dx ≤ 1
eh−

∫
Ω2

|η|r(x)+h(x)dx

≤ 1
eh−

max
{
‖η‖h++r+

h(x)+r(x), ‖η‖
h−+r−
h(x)+r(x)

}
,

in view of Lemma 2, and there exist some constants Ch++r+ > 0 and Ch−+r− > 0 such that∫
Ω2

|η|r(x) ln |η|dx ≤ 1
eh−

max
{

Ch++r+‖η‖h++r+ , Ch−+p−‖η‖h−+r−
}

. (13)

It follows from (12) and (13) that∫
Ω
|η|r(x) ln |η|dx ≤ CΩ1 |Ω|+

1
eh−

max
{

Ch++r+‖η‖h++r+ , Ch−+r−‖η‖h−+r−
}

.

This yields the stated conclusion.

3. Finite Dimensional Approximate Solutions

Since W0 is a reflexive and separable Banach space, see [34], and there exists an
orthonormal basis {e1, ..., en, ...} in W0, such that

W0 = span{e1, ..., en}.

Define Xn = span{e1, ..., en}, which means a sequence of vector Xn subspaces of
W0, satisfying

dim(Xn) < ∞ for all n ≥ 1, Xn ⊂ Xn+1 for all n ≥ 1, and
∞⋃

n=1

Xn = W0.

It is known that Xn and RN are isomorphic and, for η ∈ RN , we have a unique ξ ∈ Xn
by the identification

η → ΣN
i=1ξiei = ξ, ‖η‖ = |ξ|,

where | · | is the Euclidian norm in RN .

Theorem 1. Assume that conditions Hm, Hpq, and Hg1 are satisfied; then,

• if 2p− > p+ and p− > α+, problem (1) admits a approximate solution for all µ ≥ 0 and
λ ≤ 0,

• if 2p− > p+, p− > q+ and p− > α+, the problem (1) admits a approximate solution for all
µ < 0 and λ ≤ 0,

• if 2q− > p+ and q− > α+, problem (1) admits a approximate solution for all µ ≥ 0 and
λ ≤ 0,

• if 2p− > r+ + h+ and p− > α+, problem (1) admits a approximate solution for all µ ≥ 0
and λ > 0,

• if 2p− > r+ + h+, p− > q+ and p− > α+, problem (1) admits a approximate solution for
all µ < 0 and λ > 0,

• if 2q− > r+ + h+ and q− > α+, problem (1) admits a approximate solution for all µ ≥ 0
and λ > 0,
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that is, for all n ≥ 1 and ϕ ∈ Xn, there exists ηn ∈ Xn such that

Mp(x)

(
δp(x)(ηn)

)
〈ηn, ϕ〉p(x) + µMq(x)

(
δq(x)(ηn)

)
〈ηn, ϕ〉q(x)

= λ
∫

Ω

(
|ηn|r(x)−2ηn ln |ηn|

)
ϕdx +

∫
Ω

g(x, ηn,∇ηn)ϕdx. (14)

Proof. For all η ∈ Xn, we consider the mapping G = (G1, G2, ..., GN) : RN → R by

Gi =Mp(x)

(
δp(x)(η)

)
〈η, ei〉p(x) + µMq(x)

(
δq(x)(η)

)
〈η, ei〉q(x)

− λ
∫

Ω

(
|η|r(x)−2η ln |η|

)
eidx−

∫
Ω

g(x, η,∇η)eidx.

The following work shows that, for each n ≥ 1, problem (1) has an approximate
solution ηn in Xn, namely

Mp(x)

(
δp(x)(ηn)

)
〈ηn, ei〉p(x) + µMq(x)

(
δq(x)(ηn)

)
〈ηn, ei〉q(x)

= λ
∫

Ω

(
|ηn|r(x)−2ηn ln |ηn|

)
eidx +

∫
Ω

g(x, ηn,∇ηn)eidx. (15)

For η ∈ Xn, we have

〈G, η〉 =Mp(x)

(
δp(x)(η)

)
〈η, η〉p(x) + µMq(x)

(
δq(x)(η)

)
〈η, η〉q(x)

−
∫

Ω
|η|r(x) ln |η|dx−

∫
Ω

g(x, η,∇η)ηdx,

≥ 1
p+

(∫
Ω
|∇η|p(x)dx

)2
+

µ

q+

(∫
Ω
|∇η|p(x)dx

)2

− λ
∫

Ω

∣∣∣|η|r(x) ln |η|
∣∣∣dx−

∫
Ω
|g(x, η,∇η)η|dx.

From Hg1 and Lemma 5, we have the following estimate:

〈G, η〉 ≥ 1
p+

(∫
Ω
|∇η|p(x)dx

)2
+

µ

q+

(∫
Ω
|∇η|q(x)dx

)2

− λ

eh−
max

{
Ch++r+‖η‖h++r+ , Ch−+r−‖η‖h−+r−

}
− λCΩ1 |Ω| − c

∫
Ω
|∇η|p(x)dx− d

∫
Ω
(|η|α(x) + 1)dx.

According to Remark 1 and Lemma 2, there exist some positive constants Cα+ and
Cα− , such that

〈G, η〉 ≥ 1
p+

min
{
‖η‖2p+ , ‖η‖2p−

}
+

µ

q+
min

{
‖η‖2q+ , ‖η‖2q−

}
− λ

eh−
max

{
Ch++r+‖η‖h++r+ , Ch−+r−‖η‖h−+r−

}
− d max

{
Cα+‖η‖α+ , Cα−‖η‖α−

}
− c max

{
‖η‖p+ , ‖η‖p−

}
− (λCΩ1 + d)|Ω|.

If ‖η‖ > 1, then

〈G, η〉 ≥ 1
p+
‖η‖2p− +

µ

q+
min

{
‖η‖2q+ , ‖η‖2q−

}
− λCh++r+

eh−
‖η‖h++r+

− dCα‖η‖α+ − c‖η‖p+ − (λCΩ1 + d)|Ω|.
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Combined with the above analysis, we deduce that

Case 1: Utilizing that 2p− > p+ and p− > α+ with µ ≥ 0 and λ ≤ 0, there exists a positive
constant R, provided at a sufficiently large size, such that

〈G, η〉 ≥ 1
p+
‖η‖2p− − c‖η‖p+ − dCα‖η‖α+ − d|Ω| ≥ 0,

for all η ∈ Xn, with ‖η‖ = R.
Case 2: Utilizing that 2p− > p+, p− > q+ and p− > α+ with µ < 0 and λ ≤ 0, there exists
a positive constant R, provided at a sufficiently large size, such that

〈G, η〉 ≥ 1
p+
‖η‖2p− +

µ

q+
‖η‖2q+

− c‖η‖p+ − dCα‖η‖α+ − d|Ω| ≥ 0,

for all η ∈ Xn, with ‖η‖ = R.
Case 3: Utilizing that 2q− > p+ and q− > α+ with µ ≥ 0 and λ ≤ 0, there exists a positive
constant R, provided at a sufficiently large size, such that

〈G, η〉 ≥ µ

q+
‖η‖2q− − c‖η‖p+ − dCα‖η‖α+ − d|Ω| ≥ 0,

for all η ∈ Xn, with ‖η‖ = R.
Case 4: Utilizing that 2p− > r+ + h+ and p− > α+ with µ ≥ 0 and λ > 0, there exists a
positive constant R, provided at a sufficiently large size, such that

〈G, η〉 ≥ 1
p+
‖η‖2p− − c‖η‖p+ − dCα‖η‖α+

− λCh++r+

eh−
‖η‖h++r+ − (λCΩ1 + d)|Ω| ≥ 0,

for all η ∈ Xn, with ‖η‖ = R.
Case 5: Utilizing that 2p− > r+ + h+, p− > q+ and p− > α+ with µ < 0 and λ > 0, there
exists a positive constant R, provided at a sufficiently large size, such that

〈G, η〉 ≥ 1
p+
‖η‖2p− +

µ

q+
‖η‖2q+ − c‖η‖p+ − dCα‖η‖α+

− λCh++r+

eh−
‖η‖h++r+ − (λCΩ1 + d)|Ω| ≥ 0,

for all η ∈ Xn, with ‖η‖ = R.
Case 6: Utilizing that 2q− > r+ + h+ and q− > α+ with µ ≥ 0 and λ > 0, there exists a
positive constant R, provided at a sufficiently large size, such that

〈G, η〉 ≥ µ

q+
‖η‖2q− − c‖η‖p+ − dCα‖η‖α+

− λCh++r+

eh−
‖η‖h++r+ − (λCΩ1 + d)|Ω| ≥ 0,

for all η ∈ Xn, with ‖η‖ = R.
In the above six cases, G is continuous, so, in view of Lemma 3, problem (1) admits a

approximate solution ηn in Xn ⊂W0 with ‖ηn‖ ≤ R.

Corollary 1. Assume that the conditions of Theorem 1 are satisfied, then the sequence {ηn}n≥1
with ηn ∈ Xn constructed in Theorem 1 is bounded in W0.

Proof. If ‖ηn‖ ≤ 1 for all n ∈ N, then the sequence {ηn}n∈N is bounded in W0.
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If ‖ηn‖ > 1 for all n ∈ N, with ηn in place of ϕ in (14), we have

Mp(x)

(
δp(x)(ηn)

)
〈ηn, ηn〉p(x) + µMq(x)

(
δq(x)(ηn)

)
〈ηn, ηn〉q(x)

= λ
∫

Ω

(
|ηn|r(x)−2ηn ln |ηn|

)
ηndx +

∫
Ω

g(x, ηn,∇ηn)ηndx.

On the basis of condition Hg1 and Lemma 5, it gives

1
p+

(∫
Ω
|∇ηn|p(x)dx

)2
+

µ

q+

(∫
Ω
|∇ηn|q(x)dx

)2

≤ c
∫

Ω
|∇ηn|p(x)dx + d

∫
Ω
(|ηn|α(x) + 1)dx + λCΩ1 |Ω|

+
λ

eh−
max

{
Ch++r+‖ηn‖h++r+ , Ch−+r−‖ηn‖h−+r−

}
.

Case 1: Recalling that 2p− > p+ and p− > α+ with µ ≥ 0 and λ ≤ 0, and, by Lemmas 1 and 2,
we deduce

1
p+
‖ηn‖2p− ≤ c‖ηn‖p+ + dCα+‖ηn‖α+ + d|Ω|.

Case 2: Recalling that 2p− > p+, p− > q+ and p− > α+ with µ < 0 and λ ≤ 0, and by
Lemmas 1 and 2, we deduce

1
p+
‖ηn‖2p− ≤ − µ

q+
‖ηn‖2q+ + c‖ηn‖p+ + dCα+‖ηn‖α+ + d|Ω|.

Case 3: Recalling that 2q− > p+ and q− > α+ with µ ≥ 0 and λ ≤ 0, and by Lemmas 1 and 2,
we deduce

µ

q+
‖ηn‖2q− ≤ c‖ηn‖p+ + dCα‖ηn‖α+ + d|Ω|.

Case 4: Recalling that 2p− > r+ + h+ and p− > α+ with µ ≥ 0 and λ > 0, and by
Lemmas 1 and 2, we deduce

1
p+
‖ηn‖2p− ≤c‖ηn‖p+ + dCα‖ηn‖α+

+
λCh++r+

eh−
‖ηn‖h++r+ + (λCΩ1 + d)|Ω|.

Case 5: Recalling that 2p− > r+ + h+, p− > q+ and p− > α+ with µ < 0 and λ > 0, and
by Lemmas 1 and 2, we deduce

1
p+
‖ηn‖2p− ≤− µ

q+
‖ηn‖2q+ + c‖ηn‖p+ + dCα‖ηn‖α+

+
λCh++r+

eh−
‖ηn‖h++r+ + (λCΩ1 + d)|Ω|.

Case 6: Recalling that 2p− > r+ + h+ and q− > α+ with µ ≥ 0 and λ > 0, and by
Lemmas 1 and 2, we deduce

µ

q+
‖ηn‖2q− ≤c‖ηn‖p+ − dCα‖ηn‖α+

+
λCh++r+

eh−
‖ηn‖h++r+ + (λCΩ1 + d)|Ω|.

In the above six cases, we conclude that the sequence {ηn}n≥1 is bounded in W0.
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4. Existence of Weak Solutions

In this section, our interest is devoted to the existence of weak solutions for
problem (1). The following are the main results of this section.

Theorem 2. Assume that conditions Hm, Hpq, and Hg2 are satisfied, then, for all µ > 0,

• if 2p− > φ+ + 1 and 2p− > ( ψ
p′ )

+, problem (1) admits at least one weak solution with
λ ≤ 0.

• if 2p− > h+ + r+, 2p− > φ+ + 1 and 2p− > ( ψ
p′ )

+, problem (1) admits at least one weak
solution with λ > 0.

• if 2q− > φ+ + 1 and 2q− > ( ψ
p′ )

+, problem (1) admits at least one weak solution with
λ ≤ 0.

• if 2q− > h+ + r+, 2q− > φ+ + 1 and 2q− > ( ψ
p′ )

+, problem (1) admits at least one weak
solution with λ > 0.

Corollary 2. Assume that the conditions of Theorem 2 are satisfied; then, the sequence {ηn}n≥1
with ηn ∈ Xn is bounded in W0.

Proof. The proof is similar to Corollary 1, which we omit.

To prove Theorems 2, we use the Brezis theorem for pseudomonotone operators
in the separable reflexive space (see (Theorem 27.A [38]). Let us define the operator
T : W0 →W∗0 as

〈Tη, ϕ〉 =Mp(x)

(
δp(x)(η)

)
〈η, ϕ〉p(x) + µMq(x)

(
δq(x)(η)

)
〈η, ϕ〉q(x)

− λ
∫

Ω

(
|η|r(x)−2η ln |η|

)
ϕdx−

∫
Ω

g(x, η,∇η)ϕdx,

for all η, ϕ ∈W0.

Lemma 6. Assume that the conditions of Theorem 2 are satisfied; then, the operator T is bounded.

Proof. Let η ∈W0 be fixed and denote by Φη the linear functional on W0 , defined as

Φη(ϕ) =
∫

Ω
|∇η|υ(x)−2∇η∇ϕdx,

for any ϕ ∈W0 and υ(x) ∈ {p(x), q(x)}. By Hölder inequality,

|Φη(ϕ)| ≤ ‖η‖ ‖ϕ‖, for all η, ϕ ∈W0. (16)

Obviously, Φη(ϕ) is bounded. From the hypothesis Hm and Proposition 1, there exist
some constants Cυ1 , Cυ2 > 0 such that

0 < Cυ1 ≤ Mυ(x)

(
δυ(x)(η)

)
≤ Cυ2 ,

which, together with (16), there exists a constant Cυ(x) > 0 such that

|Mυ(x)

(
δυ(x)(η)

)
〈η, ϕ〉υ(x)| ≤ Cυ(x). (17)

In fact, by a simple calculation for the logarithmic nonlinear term, we deduce
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∫
Ω

∣∣∣|η|r(x)−2η ln |η|
∣∣∣ r+

r+−1 dx =
∫

Ω1

∣∣∣|η|r(x)−2η ln |η|
∣∣∣ r+

r+−1 dx +
∫

Ω2

∣∣∣|η|r(x)−2η ln |η|
∣∣∣ r+

r+−1 dx

≤CΩ1 |Ω|+
∫

Ω2

∣∣∣|η|r(x)−2η ln |η|
∣∣∣ r+

r+−1 dx.

Since r+ < p∗(x), then, by using the continuous embedding Lp∗(x)(Ω) ↪→ Lr+(Ω) and
combining Lemma 4, we deduce

∫
Ω

∣∣∣|η|r(x)−2η ln |η|
∣∣∣ r+

r+−1 dx ≤ CΩ1 |Ω|+
∫

Ω
|η|r+dx

≤ CΩ1 |Ω|+ CΩ2‖η‖p∗(x). (18)

where CΩ2 > 0. Notice that the relation (18) implies that∥∥∥|η|r(x)−1 ln |η|
∥∥∥

L
r+

r+−1 (Ω)
≤ C r+

r+−1
,

where C r+
r+−1

> 0. Using the Hölder inequality and taking into account the embeddings, for

any ϕ ∈W0 with ‖ϕ‖ ≤ 1,∣∣∣ ∫
Ω

ϕ|η|r(x)−2η ln |η|dx
∣∣∣ ≤ ‖ϕ‖Lr+ (Ω)

∥∥∥|η|r(x)−2η ln |η|
∥∥∥

L
r+

r+−1 (Ω)
≤ C r+

r+−1
. (19)

From hypothesis G1 and Jensen’s inequality, for all η ∈ X, we have∫
Ω
|g(x, η,∇η)|p′(x)dx

≤
∫

Ω

[
|h(x)|+ |a|η|φ(x)|+ |b|∇η|

ψ(x)
p′(x) |

]p′(x)
dx

≤3(q
′)+−1

[ ∫
Ω
|h(x)|p′(x)dx +

∫
Ω
|a|η|φ(x)|p′(x)dx +

∫
Ω
|b|∇η|

ψ(x)
p′(x) |p′(x)dx

]
≤Cp′

[ ∫
Ω
|h(x)|p′(x)dx +

∫
Ω
|η|p′(x)φ(x)dx +

∫
Ω
|∇η|ψ(x)dx

]
, (20)

where Cp′ = 3(q
′)+−1 max

{
1, a(p′)− , a(p′)+ , b(p′)− , b(p′)+}. It follows from (20) and Proposition 1

that we have∫
Ω
|g(x, η,∇η)|p′(x)dx ≤Cp′

[
3 + |h|(p′)+

p′ + |η|(p′φ)+

p′φ + ‖η‖ψ+
]

≤Cp′
[
3 + |h|(p′)+

p′ + C(p′φ)+

p′φ ‖η‖(p′φ)+

p′φ + ‖η‖ψ+
]
.

Hence, invoking Proposition 1, we infer

|g(x, η,∇η)|p′ ≤
{

1 + Cp′ [3 + |h|
(p′)+

p′ + C(p′φ)+

p′φ ‖η‖(p′φ)+

p′φ + ‖η‖ψ+
]
} 1

(p′)− . (21)

Utilizing Lemma 1and taking into account the embeddings, for all ϕ ∈ W0 with
‖ϕ‖ ≤ 1, ∣∣∣ ∫

Ω
g(x, η,∇η)ϕdx

∣∣∣ ≤ 2|g(x, η,∇η)|p′ |ϕ|p ≤ 2|g(x, η,∇η)|p′ . (22)

Thus, it follows from these estimates (17), (19), and (22) that we easily determine the
boundedness of T.

Lemma 7. Assume that the conditions of Theorem 2 are satisfied; then, the operator T is demicontinuous.
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Proof. Assuming that ηn → η in W0, we show that Tηn → Tη in W∗0 , that is,

Mp(x)

(
δp(x)(ηn)

)
〈ηn, ϕ〉p(x) + µMq(x)

(
δq(x)(ηn)

)
〈ηn, ϕ〉q(x)

− λ
∫

Ω

(
|ηn|r(x)−2ηn ln |ηn|

)
ϕdx−

∫
Ω

g(x, ηn,∇ηn)ϕdx

→ Mp(x)

(
δp(x)(η)

)
〈η, ϕ〉p(x) + µMq(x)

(
δq(x)(η)

)
〈η, ϕ〉q(x)

− λ
∫

Ω

(
|η|r(x)−2η ln |η|

)
ϕdx−

∫
Ω

g(x, η,∇η)ϕdx. (23)

Since ηn → η in W0, up to a subsequence, we have

ηn → η and ∇ηn → ∇η, a.e. in Ω. (24)

Thus, we have

||∇ηn|υ(x)−2∇ηn|p
′(x) ≤ ‖ηn‖(1 + ‖ηn‖υ+−2

p′ ), υ ∈ {p(x), q(x)}. (25)

which imply that {|∇ηn|υ(x)−2∇ηn} are bounded in Lp′(Ω).
For υ(x) ∈ {p(x), q(x)}, we obtain

|ηn|r(x)−2ηn ln |ηn| → |η|r(x)−2η ln |η|, a.e. in Ω,

|∇ηn|υ(x)−2∇ηn → |∇η|υ(x)−2∇η, a.e. in Ω,
g(x, ηn,∇ηn)→ g(x, η,∇η), a.e. in Ω.

(26)

Moreover, the boundedness of {ηn} in W0 and (22) imply that {g(x, ηn,∇ηn)} are
bounded in Lp′(Ω), and (19) implies that {|ηn|r(x)−2ηn ln |ηn|} are bounded in Lr′(Ω).
Thanks to (17), (24), and (26), combined with Hm and Proposition 1, we obtain

Mυ(x)

(
δυ(x)(ηn)

)
〈ηn, ϕ〉υ(x) → Mυ(x)

(
δυ(x)(η)

)
〈η, ϕ〉υ(x). (27)

Now, we show that the following conclusion holds:∫
Ω

g(x, ηn,∇ηn)ϕdx →
∫

Ω
g(x, η,∇η)ϕdx. (28)

Let g(x, ηn,∇ηn), g(x, η,∇η) ∈ Lp′(Ω), and

E(N) = {x ∈: |g(x, ηn,∇ηn)− g(x, η,∇η)| ≤ 1, for all n ≥ N}.

Since meas(E(N))→meas(Ω) as N → ∞, and setting

FN =
{

ΨN ∈ Lp′′(x)(Ω) : ΨN ≡ 0 a.e. in Ω \ E(N)
}

.

First, we prove that FN is dense in Lp′′(x)(Ω). Let f ∈ Lp′′(x)(Ω) and

fN(x) =

{
f (x) ifx ∈ (E(N)),

0 ifx ∈ Ω \ (E(N)).
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Then,

$p′′(x)

(
fN(x)− f (x)

)
=
∫

E(N)
| fN(x)− f (x)|p′′(x)dx +

∫
Ω\E(N)

| fN(x)− f (x)|p′′(x)dx

=
∫

Ω\E(N)
| f (x)|p′′(x)dx

=
∫

Ω
| f (x)|p′′(x)χΩ\E(N)dx.

Taking ΦN = | f (x)|p′′(x)χΩ\E(N) for almost every x in Ω, we have

ΦN → 0 a.e. in Ω and |ΦN | ≤ | f |p
′′(x).

Utilizing the dominated convergence theorem, we infer

$p′′(x)( fN(x)− f (x))→ 0 as N → ∞,

hence fN → f in Lp′′(x)(Ω). Thus, FN is dense in Lp′′(x)(Ω).
Next, for all ϕ ∈ FN , let us show that

lim
n→∞

∫
Ω

(
g(x, ηn,∇ηn)− g(x, η,∇η)

)
ϕ(x)dx = 0. (29)

Since ϕ ≡ 0 in Ω \ E(N), it suffices to prove that∫
E(N)

(
g(x, ηn,∇ηn)− g(x, η,∇η)

)
ϕ(x)dx → 0 as n→ ∞.

Let ϕn = ϕ(g(x, ηn,∇ηn)− g(x, η,∇η)). Since |(g(x, ηn,∇ηn − g(x, η,∇η))ϕ(x)| ≤
ϕ(x) a.e. in E(N) and ϕn → 0 a.e. in Ω, thanks to the dominated convergence theorem, we
deduce ϕn → 0 in L1(Ω), which implies that (29) holds.

It follows from the density of FN in Lp′′(x)(Ω) that we deduce

lim
n→∞

∫
Ω

g(x, ηn,∇ηn)ϕ(x)dx = lim
n→∞

∫
Ω

g(x, η,∇η)ϕ(x)dx,

for all ϕ ∈ FN , which implies that (28) holds.
Using the same discussion as above, one can conclude that∫

Ω

(
|ηn|r(x)−2ηn ln |ηn|

)
ϕdx →

∫
Ω

(
|η|r(x)−2η ln |η|

)
ϕdx. (30)

As a result, it follows from (27), (28), and (30) that (23) holds, that is, the operator T is
demicontinuous.

Lemma 8. Assume that the conditions of Theorem 2 are satisfied; then, for all µ > 0, the operator
T is coercive.

Proof. First, for all η ∈W0, we note that

〈Tη, η〉 =Mp(x)

(
δp(x)(η)

)
〈η, η〉p(x) + µMq(x)

(
δq(x)(η)

)
〈η, η〉q(x)

− λ
∫

Ω

(
|η|r(x)−2η ln |η|

)
ηdx−

∫
Ω

g(x, η,∇η)ηdx. (31)

To estimate the first and second integral terms, we deduce
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Mp(x)

(
δp(x)(η)

)
〈η, η〉p(x) + µMq(x)

(
δq(x)(η)

)
〈η, η〉q(x)

≥ 1
p+

(∫
Ω
|∇η|p(x)dx

)2
+

µ

q+

(∫
Ω
|∇η|q(x)dx

)2

≥ 1
p+

min
{
‖η‖2p+ , ‖η‖2p−

}
+

µ

q+
min

{
‖η‖2q+ , ‖η‖2q−

}
≥ 1

p+
{
‖η‖2p− − 1

}
+

µ

q+
{
‖η‖2q− − 1

}
. (32)

To estimate the third integral term, let Ω1 = {x ∈ Ω : |η(x)| ≤ 1} and Ω2 = {x ∈ Ω :
|η(x)| ≥ 1}; then,∫

Ω
|η|r(x) ln |η|dx =

∫
Ω1

|η|r(x) ln |η|dx +
∫

Ω2

|η|r(x) ln |η|dx.

Using Lemma 4 with h(x) + r(x) ≤ h+ + r+ < p∗(x), we deduce∫
Ω2

|η|r(x) ln |η|dx ≤ 1
eh−

∫
Ω2

|η|r(x)+h(x)dx ≤ 1
eh−

(
|η|h++r+

h(x)+r(x) + 1
)

,

in view of Lemma 2, there exist some constants Ch++r+ > 0 and Ch−+r− > 0 such that∫
Ω2

|η|r(x) ln |η|dx ≤ 1
eh−

Ch++r+
(
‖η‖h++r+ + 1

)
.

This implies that

∫
Ω
|η|r(x) ln |η|dx ≤ CΩ1 |Ω|+

1
eh−

Ch++r+
(
‖η‖h++r+ + 1

)
, (33)

where |Ω| denotes the Lebesgue measure of Ω and CΩ1 > 0. This yields the stated
conclusion.

To estimate the fourth integral term, we deduce from Hg2 , the Hölder-type inequality,
and Proposition 1 that∫

Ω
g(x, η,∇η)ηdx ≤

∫
Ω

(
h(x) + a|η|φ(x) + b|∇η|

ψ(x)
p′ (x)

)
ηdx

≤|h|p′ |η|p + a
(
|η|φ

++1
φ(x)+1 + 1

)
+ b
(
‖η‖(

ψ

p′ )
+

+ 1
)
|η|p

≤Cp|h|p′‖η‖+ aCφ++1
φ(x)+1

(
‖η‖φ++1 + 1

)
+ bCp‖η‖

(
‖η‖(

ψ

p′ )
+

+ 1
)

. (34)

It follows (32), (33), and (34) that

〈Tη, η〉 ≥ 1
p+
{
‖η‖2p− − 1

}
+

µ

q+
{
‖η‖2q− − 1

}
− λCΩ1 |Ω| −

λ

eh−
Ch++r+

(
‖η‖h++r+ + 1

)
− Cp|h|p′‖η‖ − aCφ++1

φ(x)+1

(
‖η‖φ++1 + 1

)
− bCp‖η‖

(
‖η‖(

ψ

p′ )
+

+ 1
)

. (35)

Case 1: Utilizing that 2p− > φ+ + 1 and 2p− > ( ψ
p′ )

+ with λ ≤ 0, for all η ∈W0, such that

〈Tη, η〉 ≥ 1
p+
{
‖η‖2p− − 1

}
− Cp|h|p′‖η‖

− aCφ++1
φ(x)+1

(
‖η‖φ++1 + 1

)
− bCp‖η‖

(
‖η‖(

ψ

p′ )
+

+ 1
)

.
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Case 2: Utilizing that 2p− > h+ + r+, 2p− > φ+ + 1 and 2p− > ( ψ
p′ )

+ with λ > 0,
for all η ∈W0, such that

〈Tη, η〉 ≥ 1
p+
{
‖η‖2p− − 1

}
− λCΩ1 |Ω| −

λ

eh−
Ch++r+

(
‖η‖h++r+ + 1

)
− Cp|h|p′‖η‖ − aCφ++1

φ(x)+1

(
‖η‖φ++1 + 1

)
− bCp‖η‖

(
‖η‖(

ψ

p′ )
+

+ 1
)

.

Case 3: Utilizing that 2q− > φ+ + 1 and 2q− > ( ψ
p′ )

+ with λ ≤ 0, for all η ∈W0, such that

〈Tη, η〉 ≥ µ

q+
{
‖η‖2q− − 1

}
− Cp|h|p′‖η‖

− aCφ++1
φ(x)+1

(
‖η‖φ++1 + 1

)
− bCp‖η‖

(
‖η‖(

ψ

p′ )
+

+ 1
)

.

Case 4: Utilizing that 2q− > h+ + r+, 2q− > φ+ + 1 and 2q− > ( ψ
p′ )

+ with λ > 0,
for all η ∈W0, such that

〈Tη, η〉 ≥ µ

q+
{
‖η‖2q− − 1

}
− λCΩ1 |Ω| −

λ

eh−
Ch++r+

(
‖η‖h++r+ + 1

)
− Cp|h|p′‖η‖ − aCφ++1

φ(x)+1

(
‖η‖φ++1 + 1

)
− bCp‖η‖

(
‖η‖(

ψ

p′ )
+

+ 1
)

.

In the above four cases, we deduce the coerciveness of T from (35) as ‖η‖ → ∞.

Lemma 9. Assume that the conditions of Theorem 2 are satisfied, then T is an (S+)-type operator.

Proof. Let {ηn} ∈W0 be such that ηn ⇀ η in W0 as n→ ∞ and

lim sup
n→∞

〈Tηn − Tη, ηn − η〉 ≤ 0.

First, note that

〈Tηn, ηn − η〉 =Mp(x)

(
δp(x)(η)

)
〈η, ηn − η〉p(x) + µMq(x)

(
δq(x)(η)

)
〈η, ηn − η〉q(x)

− λ
∫

Ω

(
|η|r(x)−2η ln |η|

)
(ηn − η)dx−

∫
Ω

g(x, η,∇η)(ηn − η)dx. (36)

Going if necessary up to a subsequence, we suppose there exists η ∈W0 such that

ηn ⇀ η, weakly in W0,

ηn → η, strongly in Lp(x)(Ω), (37)

ηn → η, a.e. in Ω.

Indeed, by a simple calculation for the logarithmic nonlinear term, we deduce

∫
Ω

∣∣∣|ηn|r(x)−2ηn ln |ηn|
∣∣∣ r+

r+−1 dx

=
∫

Ω1

∣∣∣|ηn|r(x)−2ηn ln |ηn|
∣∣∣ r+

r+−1 dx +
∫

Ω2

∣∣∣|ηn|r(x)−2ηn ln |ηn|
∣∣∣ r+

r+−1 dx

≤ CΩ1 |Ω|+
∫

Ω2

∣∣∣|ηn|r(x)−2ηn ln |ηn|
∣∣∣ r+

r+−1 dx.
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Since r+ < p∗(x), then, by using the continuous embedding Lp∗(x)(Ω) ↪→ Lr+(Ω) and
combining Lemma 4, we deduce

∫
Ω

∣∣∣|ηn|r(x)−2ηn ln |ηn|
∣∣∣ r+

r+−1 dx ≤ CΩ1 |Ω|+
∫

Ω
|ηn|r

+
dx

≤ CΩ1 |Ω|+ CΩ2‖ηn‖p∗(x). (38)

where CΩ2 > 0. In conjunction with Hölder’s inequality, we obtain∣∣∣∣∫Ω
(ηn − η)|ηn|r(x)−2ηn ln |ηn|dx

∣∣∣∣ ≤ ‖ηn − η‖Lr+ (Ω)

∥∥∥|ηn|r(x)−2ηn ln |ηn|
∥∥∥

L
r+

r+−1 (Ω)
. (39)

Therefore, it follows from (37), (38) and (39) that∣∣∣∣∫Ω
(ηn − η)|ηn|r(x)−2ηn ln |ηn|dx

∣∣∣∣→ 0, as n→ ∞. (40)

In the same fashion, utilizing Lemma 1, we have∣∣∣ ∫
Ω

g(x, η,∇η)(ηn − η)dx
∣∣∣ ≤ 2|g(x, η,∇η)|p′ |(ηn − η)|p.

By the boundedness of {ηn} ∈ W0 and (37), we infer from the inequality above and the
preceding estimate (21) that∣∣∣ ∫

Ω
g(x, η,∇η)(ηn − η)dx

∣∣∣→ 0, as n→ ∞. (41)

If ηn ⇀ η in W0 and lim supn→∞〈Tηn − Tη, ηn − η〉 ≤ 0, as a consequence

lim
n→∞
〈Tηn, ηn − η〉 = lim

n→∞
〈Tηn − Tη, ηn − η〉 = 0. (42)

By (40), (41), (42), and Hm, for υ ∈ {p(x), q(x)}, as n→ ∞, we deduce∫
Ω
(|∇ηn|υ(x)−2∇ηn − |∇η|υ(x)−2∇η)(∇ηn −∇η)dx → 0.

Using the following Simon inequalities

|u1 − u2|τ ≤

 cτ [(|u1|τ−2u1 − |u2|τ−2u2)(u1 − u2)]
τ
2 (|u1|τ + |u2|τ)

2−τ
τ , 1 < τ < 2,

c̃τ(|u1|τ−2u1 − |u2|τ−2u2)(u1 − u), τ ≥ 2,
(43)

for all u1, u2 ∈ RN , where cτ and c̃τ are positive constants depending only on τ, we obtain∫
Ω
|∇ηn −∇η|υ(x)dx ≤

∫
Ω
(|∇ηn|υ(x)−2∇ηn − |∇η|υ(x)−2∇η)(∇ηn −∇η)dx.

Hence,
‖ηn − η‖ → 0 as n→ ∞,

that is, if ηn ⇀ η in W0 and lim sup
n→∞

〈Tηn − Tη, ηn − η〉 ≤ 0, then ηn → η in W0. This shows

the (S+)-property of T.

Proof of Theorem 2. From Section 2, evidently, we know that W0 is a real, separable,
and reflexive Banach spaces. Moreover, it follows from Lemmas 6–9 that the operator
T satisfies all conditions of the Brezis theorem. Hence, invoking the Brezis theorem, we
obtain that Tη = 0 has at least one solution η in W0, i.e., problem (1) has at least one weak
solution η.



Fractal Fract. 2022, 6, 255 18 of 20

5. Examples

Now, we give two easy examples of application of our theorems. The first is when
Mp(x)(t) = ap + bpt, for all t ≥ 0 with ap > 0, bp ≥ 0 and Mq(x)(t) = aq + bqt, for all
t ≥ 0 with aq > 0, bq ≥ 0. In this case, problem (1) reduces to the following form.

Example 1. Consider the problem
(

ap + bpδp(x)(η)
)
(−∆p(x)η) + µ

(
aq + bqδq(x)(η)

)
(−∆q(x)η)

= λ|η|r(x)−2η ln |η|+ g(x, η,∇η), in Ω,

η|∂Ω = 0,

(44)

where Ω is an open bounded domain in RN with a smooth boundary.

It is clear that Mp(x)(t) ≥ ap > 0, for all t ≥ 0 and Mq(x)(t) ≥ aq > 0, for all t ≥ 0.
That is, the condition Hm is satisfied. Thus, the results obtained in Theorems 1 and 2 stay
true for problem (1). The problem and results are all new.

The second is when p(x), q(x), r(x), α(x) are constant, that is, p(x) = p = constant ∈
(1,+∞), q(x) = q = constant ∈ (1,+∞), r(x) = r = constant ∈ (1,+∞), α(x) = α =
constant ∈ [1, p) and Mp(x)(t) = (ap + pbpt)p−1, for all t ≥ 0 with ap > 0, bp ≥ 0 and
Mq(x)(t) = (aq + qbqt)q−1, for all t ≥ 0 with aq > 0, bq ≥ 0. In this case, problem (1)
becomes the following form.

Example 2. Consider the problem
(
ap + bp

∫
Ω |∇η|pdx

)p−1
(−∆pη) + µ

(
aq + bq

∫
Ω |∇η|qdx

)q−1
(−∆qη)

= λ|η|r−2η ln |η|+ g(x, η,∇η), in Ω,

η|∂Ω = 0,

(45)

where Ω is an open bounded domain in RN with a smooth boundary.

The function g : Ω×R×RN → R given by

g(x, v, ν) = |v|α−2v +
v

1 + v2

(
|ν|p−1 + γ(x)

)
, for all (x, v, ν) ∈ Ω×R×RN ,

with a constant α ∈ [1, p), and some γ ∈ L∞(Ω) satisfies conditions Hg1 (see [21]). For

p ∈ (1,+∞), q ∈ (1,+∞), the condition Hpq is satisfied. It is clear that Mp(x)(t) ≥ ap−1
p > 0,

for all t ≥ 0 and Mq(x)(t) ≥ aq−1
q > 0, for all t ≥ 0. That is, condition Hm is satisfied. Thus,

the results obtained in Theorem 1 stay true for problem (2). The problem and results are
also all new.

6. Conclusions

In this article, we study a kind of Kirchhoff-type elliptic problem, which combines
with a variable exponent, competing (p(x), q(x))-Laplacian, logarithmic nonlinearity, and
convection term. Due to the deficit of ellipticity, monotonicity, and variational structure,
there are no available techniques to handle problem (1). A fundamental idea of the paper
is to seek a solution to (1) as a limit of finite dimensional approximations. With the help
of the Galerkin method and Brezis theorem, we obtain the existence of finite-dimensional
approximate solutions and weak solutions, respectively. Our study extends previous
results, such as from the elliptic problem with logarithmic nonlinearity or the convection
term to (p(x), q(x))-Kirchhoff-type equations both logarithmic nonlinearity with variable
exponents and convection terms. Finally, we consider that it will be a new field to study
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such problems (1) in fractional Sobolev spaces with variable exponents and in Sobolev
spaces with variable exponents and variable fractional order.
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