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Abstract: The fractional massive Thirring model is a coupled system of nonlinear PDEs emerging 

in the study of the complex ultrashort pulse propagation analysis of nonlinear wave functions. This 

article considers the NFMT model in terms of a modified Riemann–Liouville fractional derivative. 

The novel travelling wave solutions of the considered model are investigated by employing an ef-

fective analytic approach based on a complex fractional transformation and Jacobi elliptic functions. 

The extended Jacobi elliptic function method is a systematic tool for restoring many of the well-

known results of complex fractional systems by identifying suitable options for arbitrary elliptic 

functions. To understand the physical characteristics of NFMT, the 3D graphical representations of 

the obtained propagation wave solutions for some free physical parameters are randomly drawn 

for a different order of the fractional derivatives. The results indicate that the proposed method is 

reliable, simple, and powerful enough to handle more complicated nonlinear fractional partial dif-

ferential equations in quantum mechanics. 

Keywords: fractional massive Thirring model; Jacobi expansion method; nonlinear partial  

differential equation; travelling wave solution; quantum field theory 

 

1. Introduction 

Physics can be typically classified into two branches: classical and modern physics. 

Modern physics can be distinguished by considering spatiotemporal requirements for 

joint interaction, whereas, in classical physics, we can consider time and space separately 

because they are independent and absolute. Furthermore, classical physics usually deals 

with the macroscopic scale, while modern physics deals with microscopic or sub-micro-

scopic scales. Although classical physics has different applications in science and engi-

neering, modern physics can be considered a revolution in applied physics, as it can elu-

cidate many essential phenomena, such as black body radiation, photoelectric effect, 

Compton’s effect and stability of atoms that cannot be explained from a classical physics 

point of view. However, modern physics focuses on quantum mechanics and the theory 

of relativity; quantum mechanics considers the physical quantities restricted to be discrete 

values, where the thinking of the probability is dominant instead of certain measure-

ments, which is represented mathematically by the Schrödinger wave equation. The the-

ory of relativity studies the physical quantities moving at a speed near the speed of light, 
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the time dilation, and the dimensions contraction started to be important concepts, and 

Einstein’s mass-energy equation makes a revolution in the science [1–4]. 

The contemporary revolution in theoretical and applied physics combines quantum 

mechanics with the theory of relativity in a multi-body system, which establishes quan-

tum field theory. Quantum field equations represent a general form of the Schrödinger 

wave equation, where the wavefunction is generalized to an infinite-dimensional space of 

field configurations [2]. Motivated by this, in this work, we consider the massive Thirring 

model (MTM) as an important application of the quantum field theory, which was derived 

by W. Thirring in 1958 [3]. Thereafter, many theoretical and applied studies of such a 

complex system were conducted. For example, but not limited to, Kondo 1995 studied the 

bosonization and duality of the MTM with a four-fermion interaction of the current type 

[4], and the Thirring model was also considered in a separate work as a gauge theory [5]. 

In 2018, Joshi et al. introduced an integrable semi-discretization of the MTM for the first 

time in laboratory coordinates [6]. 

Nevertheless, to find out an alternative methodology for the Schrodinger equation, 

Dirac discovered the integral path approach, similar to Lagrangian’s least-action principle 

technique in classical mechanics; this approach was developed by Feynman to create 

Feynman diagrams. Feynman diagrams were modified to Wiener’s path integral, which 

is equivalent to the Brownian path integral in classical mechanics. Recently, the Levy flight 

random process has been introduced to understand difficult classical and quantum phys-

ics phenomena, where the Levy index � is introduced. Now, the consequences of the path 

integral for the Levy flight paths’ studies are an essential issue in fractional quantum me-

chanics and consequently in fractional quantum field theory [7]. Examining research to 

obtain novel and additional exact traveling-wave solutions for fractional models is pros-

pering. Indeed, this is not an easy task and is one of the pivotal challenging problems in 

mathematics and physics. Hence, resorting to sophisticated analytical and digital methods 

is inevitable. In this direction, many effective and accurate analytical methods for solving 

these equations have been considered thus far, for example, the Bäcklund transformation 

method, the Riccati sub-equation method, the extended tanh-function method, the G’/G-

expansion method, the Kudryashov method [8–11] and so forth. 

The analysis in this paper highlights the complex behavior of nonlinear wavefunc-

tion, which is notably dependent on the genetic properties and temporal memory that can 

be explored with great skill using fractional calculus.  

In this direction, consider the following semi-discrete nonlinear massive Thirring 

model (MTM) that can be typically provided by a complex triple system of difference 

equations: 

4�
���

��
+ ���� + �� +

2�

�
(���� − ��) + ��

����� + ������ − ��(|����|� + |��|� + |����|� + |��|�)

−
��

2
��

����� + ������ = 0, 

2�

�
(���� − ��) − 2�� + |��|�(���� + ��) = 0, 

���� + �� − 2�� +
��

2
(���� − ��) = 0, 

(1)

where � denotes the discrete lattice to index iterates, � denotes the lattice-spacing pa-

rameter of aspace discretization, and the symbol � is an imaginary unit. The complex-

conjugates of �� and �� are denoted respectively by ��� and ���. The first equation re-

fers to the case of temporal evolution, while the last two difference equations refer to the 

semi-discrete massive Thirring equations constrained with the components of {��}�∈ℤ 

and {��}�∈ℤ, which can be defined in terms of {��}�∈ℤ in the temporal and spatial coor-

dinates [6]. With the continuity of � → 0, the slowly changing solutions between the lat-

tice nodes can be written as: 
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��(�) = �(� = ��, �), ��(�) = �(� = ��, �), ��(�) = �(� = ��, �), (2)

where continuous variables fulfill the following system of partial equations: 

2�
��

��
+ �

��

��
+ � + ���� − �(|�|� + |�|�) = 0, 

�
��

��
− � + |�|�� = 0, 

� − � = 0, 

(3)

which leads to an MTM system of two semi-linear equations for (�, �) ∈ ℂ� in terms of 

the variables �(�, �) = F(�, � − �) and �(�, �) = �(�, � − �) in the normalized form: 

� �
��

��
+

��

��
� + � = |�|��, 

� �
��

��
−

��

��
� + � = |�|��. 

(4)

This paper deals with the fractional version of such a system. Therefore, we consider 

the following nonlinear space–time fractional MTM system: 

� ���
�� +

��

��
� + � = |�|��, 

� ���
�� −

��

��
� + � = |�|��. 

(5)

Considerable analytical and numerical investigations of the MTM have been made 

in the literature using various techniques. The construction of the MTM using the func-

tional integral scheme within quantum field theory was discussed in [12]. The physical 

states, as well as a solution of the MTM, by means of many-body wave functions, are pre-

sented in [13]. In [14], Bethe ansatz solutions of the MTM were tested numerically by solv-

ing periodic boundary value problems. Delepine et al. [15] demonstrated that the MTM is 

equivalent to the quantum sine-Gordon model in quantum field theories at a finite tem-

perature. The white noise of the oscillator MTM was examined in [16] in terms of the 

phase–space displays. In [17], the non-thermal phase structure of the MTM was studied 

using ansatz matrix-product states. Using the N-fold Darboux transform, the rogue wave 

solutions of the MTM equations were derived in [18]. On the other side as well, the frac-

tional versions of the nonlinear complex MTM were numerically solved using advanced 

semi-analytical and approximate methods; for example, the q-HAM was applied in [19] to 

solve the fractional massive Thirring model in Caputo sense. In [20], the fractional residual 

power series method was implemented to solve a class of the fractional MTM with con-

formable derivatives. For more details regarding the numerical and analytical solutions 

of different fractional models, we refer to [21–31]. 

Almost all scientific problems can be solved using different fractional calculus tech-

niques, where one or many suitable methods can be chosen for each problem; some prob-

lems that are solved using modified Riemann–Liouville fractional calculus techniques 

were noted as incorrect conditions [32–35]. Although these cases are not related to this 

work, this note must be mentioned here. These cases do not affect the Riemann–Liouville 

fractional calculus technique, which solves a huge number of problems successfully, as do 

other methods, such as the Mittag–Leffler function, the fractional Riccati method, the frac-

tional double function method, and the fractional Y-function expansion method [36,37].  

The novelty of this paper is to explore new travelling wave solutions for fractional 

MTM equations (5) by employing an effective analytic approach based on a complex frac-

tional transformation and Jacobi elliptic functions. It is worth noting that the previous 

study of soliton for the fractional MTM equations was performed to provide an approxi-

mate solution for or study a special case of the MTM equations [4–6]. This paper intro-

duces a general case exact solution for MTM equations for the first time; this study can be 

considered as a strong motivation to provide the obtained results.  

The outline of this analysis has the following sections: In Section 2, some basic defi-

nitions and characteristics of the considered fractional operator are presented. In Section 

3, the key idea of the proposed method is described. Then, in Section 4, we apply this 
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method to create new sets of exact traveling wave solutions to the fractional massive 

Thirring model. Finally, a brief conclusion is also provided. 

2. Preliminaries 

Recently, many researchers have used various fractional operators to study several 

models associated with the functions of complex variables, and they proved that these 

fractional operators are more influential than the classical ones while analyzing the natu-

ral behavior of those models. Herein, we introduce the basic definition and some proper-

ties of Jumarie’s modification of Riemann–Liouville derivative [38–41] that are very useful 

for displaying this work in a standardized way. 

Definition 1. Let �: ℝ → ℝ be a continuous function. Then, the modified Riemann–Liouville de-

rivative of the order � is as follows 

��
��(�) =

⎩
⎪
⎨

⎪
⎧

1

�(−�)

�

��
� (� − �)������(�) − �(0)���

�

�

, � < 0,        

1

�(1 − �)

�

��
� (� − �)����(�) − �(0)���

�

�

, 0 < � < 1,

��(���)(�)�
(�)

, � ≤ � < � + 1, � ≥ 1.                                 

 

In this work, if �(�) has a modified Riemann–Liouville derivative of the order �, it 

will be defined as ��
� -differentiable. Further, it is obvious that the operator ��

�  of Ju-

marie’s modification satisfies the following interesting properties:  

Theorem 1. Let ��: ℝ → ℝbe ��
� -differentiable function at a point � > 0 and ��: ℝ → ℝ be 

��
�-differentiable and defined in the range of ��. Then, we have: 

(I) If ��(�) = ��, then ��
��� =

�(���)

�(�����)
����  for � > 0. 

(II) ��
����(�)��(�)� =  ��(�)��

���(�) + ��(�)��
���(�). 

(III) ��
������(�)� =

�

���
�����(�)���

���(�) = ���
� �����(�)� �

�

��
��(�)�

�

. 

3. The Extended Jacobi Elliptic Equation Method 

This section presents the definition of Jacobi elliptic functions and reviews some im-

portant properties that we will use within the framework of this paper. Then, we intro-

duce the algorithm of the proposed method. 

3.1. The Jacobi Elliptic Functions 

The Jacobi elliptic functions are the standard forms of elliptic functions. There are 

three double periodic functions, namely the Jacobian elliptic sine function, Jacobian ellip-

tic cosine function, and Jacobian elliptic function of a third kind denoted by ��(�, �) =

��(�), ��(�, �) = ��(�) and ��(�, �) = ��(�), respectively, where � is the elliptic mod-

ulus. In the next segment, we provide the details of the derivation of these functions. To 

this end, we consider the following nonlinear partial differential equation (PDE): 

���

����
= � sin(�). (6)

By substituting the linear transformation � = �(� − ��) into PDE (6), we get the fol-

lowing nonlinear ordinary differential equation (NODE): 

���

���
=

−�

���
sin(�). (7)

Then, some simplifications lead to the following equivalent NODE: 
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�
1

2

��

��
�

�

=
−�

���
sin�

1

2
(�) + �. (8)

Letting � = 1, −�/��� = −�� and � = �/2, then Equation (8) takes the form 

��

��
= �1 − �� sin� �, (9)

which is equivalent to 

�
1

√1 − �� sin� �
�� = � ��, (10)

where the integral in Equation (10) is called the Legendre elliptic integral of the first kind. 

Now, we define 

� = �
1

�1 − �� sin� �
��

�

�

= �
1

�(1 − ��)(1 − ����)
��

� ≡��� �

�

. (11)

Provided that � = �(�) so that � = ���(�) = ��(�), which is the Jacobi elliptic sine 

function. Nevertheless, the Jacobi elliptic cosine function can be defined by letting 

� = �
1

�1 − �� cos� �
��

�

�

= �
1

�(1 − ��)(1 − ����)
��

����� ≡��� �

�

. (12)

Provided that � = ��√1 − ��� so that √1 − �� = ���(�) = ��(�). Consequently, one 

can write the following argument 

� = ��(�), �1 − �� = ��(�), �1 − ���� = ��(�). (13)

On the other side as well, Jacobi elliptic functions ��(�), ��(�) and ��(�) can be de-

fined respectively as solutions to 
��� = (2 − ��)� − 2��, 

��� = −(1 − 2��)� − 2����, 
��� = −(1 + ��)� + 2����, 

(14)

and possess the following properties in terms of their singular points: 

��(�) =
��(�)

��(�)
, ��(�) =

��(�)

��(�)
, ��(�) =

��(� )

��(�)
, 

��(�) =
�

��(�)
, ��(�) =

�

��(�)
, ��(�) =

�

��(�)
, 

��(�) =
�

��(�)
,  ��(�) =

�

��(�)
, ��(�) =

�

��(�)
. 

(15)

when � → 1, the Jacobi elliptic functions turn into hyperbolic functions as follows 
��(�) → tanh �, ��(�) → sech �, ��(�) → sech �, 
��(�) → coth �, ��(�) → cosh �, ��(�) → cosh �, 

��(�) → sinh �, ��(�) → sinh �, ��(�) → 1, 

��(�) → csch �, ��(�) → csch �, ��(�) → 1. 

when � → 0, they turn into trigonometric functions as follows 
��(�) → sin �, ��(�) → cos �, ��(�) → 1, 

��(�) → csc �, ��(�) → sec �, ��(�) → 1, 

��(�) → tan �, ��(�) → sin �, ��(�) → cos �, 

��(�) → cot �, ��(�) → csc �, ��(�) → sec �. 

Furthermore, one can obtain the following identities: 
���(�) + ���(�) = 1, ���(�) = 1 − �����(�), 
���(�) − ���(�) = 1, ���(�) = 1 + �����(�), 
���(�) − ���(�) = 1, ���(�) + (1 − ��)���(�) = 1, 
���(�) − ���(�) = ��, ���(�) − (1 − ��)���(�) = 1, 
���(�) − ���(�) = 1 − ��, ���(�) − (1 − ��)���(�) = ��, 
��(���(�) − 1) − ���(�) = 1, �����(�) + (1 − ��)���(�) = 1. 

The derivatives of the Jacobi elliptic functions are as follows 
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(�� �)� = ��(�)��(�), (�� �)� = −��(�)��(�), (�� �)� = −����(�)��(�), 
(�� �)� = −��(�)��(�), (�� �)� = ��(�)��(�), (�� �)� = ����(�)��(�), 
(�� �)� = ��(�)��(�), (�� �)� = ��(�)��(�), (�� �)� = (�� − 1)��(�)��(�), 

(�� �)� = −��(�)��(�), (�� �)� = −��(�)��(�), (�� �)� = (1 − ��)��(�)��(�). 

3.2. Extended Jacobi Elliptic Function Expansion Method 

Herein, the algorithm of the extended Jacobi elliptic function expansion method will 

be illustrated to obtain the exact travelling wave solutions of NFPDEs. To this end, let us 

consider FPDE in the the following form 

���, ��
��, ��

�
�, ��

�
�, ��

���, ��
��

�, … � = 0, � ≥ 0, 0 < �, �, � < 1, (16)

where � = �(�, �, �), � is a polynomial in �, and its partial derivatives, including frac-

tional derivatives, ��
�, ��

�
 and ��

�
, are a modified Riemann–Liouville derivative of � 

with respect to the independent variables �, � and �. In the following, the main steps of 

the proposed algorithm are presented to find out the exact travelling wave solutions of 

FPDE (16): 

Step 1. Use the fractional wave transformation 

�(�, �, �) = �(�), � =
��

Γ(� + 1)
+

��

Γ(� + 1)
+

���

Γ(� + 1)
, (17)

where � is the wave velocity that will later be determined. This permits us to reduce 

FPDE (16) into the following ODE of integer order in terms of �: 

��(�, ��/��, ���/���, ���/���, … ) = 0, (18)

Step 2. Propose that Equation (18) has a solution in the following form 

�(�) = �� + ����(�) + ����(�) + ����(�) + � ��
���(�)�����

�(�) + ����(�)��(�)�,

�

���

 (19)

where � = 1,2, … , 12,  in which �  is a positive integer, ��, ��, ��, ��, and ��, ��, � =

2 ,3, … , � and are constants to be determined afterwards. The functions ��(�), ��(�) and 

��(�), � = 1,2, … ,12 can be expressed in terms of Jacobi elliptic functions (15) as follows 

��(�) =
�

����(�)
, ��(�) =

��(�)

����(�)
, ��(�) =

��(�)

����(�)
, 

��(�) =
�

����(�)
, ��(�) =

��(�)

����(�)
, ��(�) =

��(�)

����(�)
, 

��(�) =
�

����(�)
, ��(�) =

��(�)

����(�)
, ��(�) =

��(�)

����(�)
, 

��(�) =
�

����(�)
, ��(�) =

��(�)

����(�)
, ��(�) =

��(�)

����(�)
, 

��(�) =
�

����(�)
, ��(�) =

��(�)

����(�)
, ��(�) =

��(�)

����(�)
, 

��(�) =
�

����(�)
, ��(�) =

��(�)

����(�)
, ��(�) =

��(�)

����(�)
, 

��(�) =
�

����(�)
,  ��(�) =

��(�)

����(�)
, ��(�) =

��(�)

����(�)
, 

��(�) =
�

����(�)
, ��(�) =

��(�)

����(�)
, ��(�) =

��(�)

����(�)
, 

��(�) =
�

����(�)
, ��(�) =

��(�)

����(�)
, ��(�) =

��(�)

����(�)
, 

���(�) =
�

����(�)
, ���(�) =

��(�)

����(�)
, ���(�) =

��(�)

����(�)
, 

���(�) =
�

����(�)
, ���(�) =

��(�)

����(�)
, ���(�) =

��(�)

����(�)
, 

(20)
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���(�) =
�

����(�)
, ���(�) =

��(�)

����(�)
, ���(�) =

��(�)

����(�)
, 

where � is an arbitrary constant. 

Step 3. Determine the integer � in the predicted solution (19) by balancing the high-

est order nonlinear terms 

� ����
���

��� �� = (�� + 1)� + ��for ��, �� = 0,1,2, …, (21)

and the highest-order derivatives 

� �
���

����
�� = � + ��for �� = 0,1,2, …. (22)

Step 4. Substitute the predicted solution (19) back into ODE (18) to obtain an expres-

sion in terms of ����(�)����(�)����(�)(��, ��, �� = 0, 1, 2, … ) by means of reducing to a 

common denominator and setting the numerator to zero. Then, collect all terms with the 

same powers and put all the coefficients to zero leading to an over-determined system of 

nonlinear algebraic equations with respect to the unknown parameters 

�, �, ��, ��, ��, ��, and ��, ��, � = 2 ,3, … , �. 

Step 5. Solve the resulting algebraic system in Step 4 with the aid of Mathematica 

software to find out the values of �, �, ��, ��, ��, ��, and ��, ��, � = 2 ,3, … , �. 

Step 6. Substitute the obtained values in terms of �, �, ��, ��, ��, ��, and ��, �� for � =

2, 3, … , � in the predicted solution (19); new types of abundant traveling wave solutions 

are provided to FPDEs (16) involving the Jacobi elliptic functions. 

4. Solving the Space–Time Fractional MTM 

This section is designed to perform the steps of the extended Jacobi elliptic function 

expansion algorithm to construct wave solutions for the space–time fractional MTM sys-

tem (5). To perform this, we propose a complex wave transformation in the following form 

�(�, �) → ℱ(�)���, �(�, �) → �(�)���, which � = ��� + ��
��

�(���)
, � = ��� + ��

��

�(���)
, (23)

where ��, ��, �� and �� are constants to be determined afterwards. 

This transformation leads to the following results 

��
�� = ���

�ℱ

��
+ ���ℱ� ���,

��

��
= ���

�ℱ

��
+ ���ℱ� ���, |�|� = ℱ�(�), (24)

��
�� = ���

��

��
+ ����� ���,

��

��
= ���

��

��
+ ����� ���, |�|� = ��(�). (25)

By substituting assumption (23) with relations (24) and (25) together into the space–

time fractional MTM system (5), we obtain the corresponding system of nonlinear ODEs 

in the form, 

�(�� + ��)
�ℱ

��
− (�� + ��)ℱ + � − ��ℱ = 0, 

�(�� − ��)
��

��
− (�� − ��)� + ℱ − ℱ�� = 0. 

(26)

Now, by balancing the highest order nonlinear term and highest order derivatives, 

we have � = 1. Then, the formal solutions of system (26) can be expressed as 
ℱ(�) =  �� + ����(�) + ����(�) + ����(�), � = 1,2, … , 12, 

�(�) =  �� + ����(�) + ����(�) + ����(�), � = 1,2, … , 12. 
(27)

where ��, ��, � = 0,1,2,3 are constants to be determined. Let � = 1. Then, the formal so-

lutions (27) becomes 

ℱ(�) =  �� + ��

1

� + ��(�)
+ ��

��(�)

� + ��(�)
+ ��

��(�)

� + ��(�)
, 

�(�) =  �� + ��

1

� + ��(�)
+ ��

��(�)

� + ��(�)
+ ��

��(�)

� + ��(�)
. 

(28)
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Substitute the solutions from (28) into the system from (26), and separate the real and 

imaginary parts so that the denominators are canceled in both parts. Then, collect the co-

efficients of ����(�)����(�)����(�)(��, ��, �� = 0, 1, 2,3), and set each coefficient to zero. 

Consequently, two sets of over-determined algebraic equations are constructed in terms 

of �, ��, ��, ��, ��, � �, � �, � = 0,1,2,3 . The obtained sets of these algebraic equations are 

solved via the computer software of Mathematica, so that the resulting form of the imag-

inary part yields 

�� = �� or �� = −��. (29)

and the resulting form of the real part yields the following solution families: 

Family I: When �� = �� = 0, let ��, ��, ��, �� and �� be arbitrary constants. Then, we 

get the following cases for ��, �� and ��: 

Case 1: 

�� =
−��

��
� − (�� + ��)

,     �� =
�����

� − (�� + ��)�

��
� + (�� + ��)

,     �� =
−2��(�� + ��)

���
� − (�� + ��)�

�. (30)

Case 2: 

�� =
−��

��
� − (�� + ��)

,     �� = 2�����
� − (�� + ��)�,     �� =

��

���
� − (�� + ��)�

. (31)

Case 3:  

�� =
−��

��
� − (�� + ��)

,     �� = −�����
� − (�� + ��)�,     �� =

−2��

���
� − (�� + ��)�

. (32)

Case 4:  

�� =
−��

��
� − (�� + ��)

,     �� =
�����

� − (�� + ��)�
�

2(�� + ��)
,     �� =

�����
� + (�� + ��)�

���
� − (�� + ��)�

� . (33)

By substituting the results above into (28) and combining with (23), we can obtain 

four exact solutions ��(�, �) and ��(�, �), � = 1,2,3,4, for the space–time fractional MTM 

system (5) in the forms of Jacobi elliptic functions. For example, some graphical represen-

tations of these solutions are presented in the following figures. Figure 1 shows the 3D 

plots of |��(�, �)|� and |��(�, �)|� at some parameters that were chosen randomly, �� =

�� = 1, �� = �� = 1,  �� = 0.6,  �� = −2,  �� = 0.8, � = 1  and � = 0,  in the intervals 0 ≤

� ≤ 20  and 0 ≤ � ≤ 10  at different values of the fractional derivative such that � =

1 and � = 0.75. While Figure 2 presents 3D plots of the real and imaginary parts of the 

periodic wave solutions ��(�, �)  and ��(�, �)  in (�, �) ∈ [0,20] × [0,10]  with �� = �� =

1, �� = �� = 1, �� = 0.2, �� = −1, �� = 0.5  and � = � = 1  for the fractional order � =

0.85. From these figures, it is observed that the propagation of the periodic wave forms 

propagation along the space direction over time by maintaining its shape and amplitude. 

The fractional order affects only the velocity of propagation. 

 

  
(a) (b) 
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(c) (d) 

Figure 1. The 3D plots of |��(�, �)|�  and |��(�, �)|�  with the parameters �� = �� = 1, �� = �� =

1, �� = 0.6, �� = −2, �� = 0.8, � = 1 and � = 0 for various � values: (a)  |��|�, � = 1,  

(b)  |��|�, � = 1, (c) |��|�, � = 0.75 and (d) |��|�, � = 0.75. 

  
(a) (b) 

  
(c) (d) 

Figure 2. The 3D plots of the real and imaginary parts of ��(�, �) and ��(�, �) with the parameters  

�� = �� = 1, �� = �� = 1, �� = 0.2, �� = −1, �� = 0.5 and� = � = 1for the fractional order � = 0.85:  

(a) ��[��(�, �)], (b) ��[��(�, �)], (c) ��[��(�, �)] and (d) ��[��(�, �)]. 

Family II: When �� = �� = 0, let ��, ��, ��, �� and �� be arbitrary constants. Then, we 

get the following cases for ��, �� and ��: 

Case 1: 

�� =
−��

��
� − (�� + ��)

,     �� =
−��

���
� − (�� + ��)�

,     �� = 2�����
� − (�� + ��)�. (34)

Case 2: 

�� =
−��

��
� − (�� + ��)

,     �� =
−2�����

� + (�� + ��)� − ������
� + 3(�� + ��)�

���
� − (�� + ��)�

� ,      

�� =
�����

� − (�� + ��)�
�

���
� + (�� + ��)�

. 

(35)
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Case 3: 

�� =
−��

��
� − (�� + ��)

,     �� =
�������

� + 3(�� + ��)� + 2����
� + ����3��

� + 2(�� + ��)�

���
� − (�� + ��)� ����� + ����

� + (�� + ��)��
,      

�� =
−�����

� − (�� + ��)� ����� + ����
� + (�� + ��)��

���� + �(�� + ��)
. 

(36)

Case 4: 

�� =
−��

��
� − (�� + ��)

,      

�� =
−�� �����

� + ������
� + (�� + ��)� + 2����(�� + ��)�

���
� − (�� + ��)� �����

� + 2������
� − (�� + ��)� + �������

� − (�� + ��)��
,      

�� =
�����

� − (�� + ��)� �q0q1� + 2�1��q0� − (�1 + �2)�� + �������
� − (�� + ��)�

2�� ����� + ����
� + (�� + ��)�� + �������

� + (�� + ��)�
. 

(37)

Case 5: 

�� =
−��

��
� − (�� + ��)

,     �� =
2��(�� + ��)

���
� − (�� + ��)�

� ,     �� =
�����

� − (�� + ��)�

���
� + (�� + ��)�

. (38)

By substituting the results above into (28) and combining with (23), we can obtain 

five exact solutions ��(�, �) and ��(�, �), � = 5,6,7,8,9, for the space–time fractional MTM 

system (5) in the forms of Jacobi elliptic functions. For physical illustration, some graph-

ical representations of these solutions are drawn and introduced in the following figures. 

Figure 3 reveals the 3D plots of |��(�, �)|� and |��(�, �)|� with some selected parame-

ters�� = �� = −1, �� = �� = 1, �� = 0.05, �� = −0.3, �� = 2, � = 1, and � = 0 over the inter-

vals 0 ≤ � ≤ 20 and 0 ≤ � ≤ 10 for various values of � ∈ {0.75,1}. 

  
(a) (b) 

  
(c) (d) 
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Figure 3. The 3D plots of |��(�, �)|� and |��(�, �)|� with the parameters �� = �� = −1, �� = �� =

1, �� = 0.05, �� = −0.3, �� = 2, � = 1 and � = 0 for various � values: (a) |��|�, � = 1, (b) |��|�, � =

1, (c) |��|�, � = 0.75 and (d) |��|�, � = 0.75. 

Figures 4 and 5 show 3D plots of the real and imaginary parts of the periodic wave 

solutions ��(�, �), ��(�, �), ��(�, �), and ��(�, �) in (�, �) ∈ [0,20] × [0,10] with some se-

lected physical free parameters and different fractional orders. The regularity, harmony 

and compatibility of the periodic wave solutions can be observed for different � values 

in all cases. 

  
(a) (b) 

  
(c) (d) 

Figure 4. The 3D plots of the real and imaginary parts of ��(�, �) and ��(�, �) with the parameters 

�� = �� = −1, �� = �� = 1, �� = −2.5, �� = 0, �� = −1, � = 1  and � = 0for the fractional order � =

1: (a) ��[��(�, �)], (b) ��[��(�, �)], (c) ��[��(�, �)] and (d) ��[��(�, �)]. 

  
(a) (b) 

  
(c) (d) 
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Figure 5. The 3D plots of the real and imaginary parts of ��(�, �) and ��(�, �) with the parameters 

�� = �� = 0.3, �� = �� = 1, �� = 0.9, �� = 4, �� = 5/7, � = 1  and � = 0 for the fractional order � =

0.65: (a) ��[��(�, �)], (b) ��[��(�, �)], (c) ��[��(�, �)] and (d) ��[��(�, �)]. 

Family III: When �� = �� = 0, let ��, ��, ��, �� and �� be arbitrary constants. Then, 

we get the following cases for ��, �� and ��: 

Case 1: 

�� =
−��

��
� − (�� + ��)

,     

�� =
2����

� + ����3��
� + 2(�� + ��)� + �������

� + 3(�� + ��)�

���
� − (�� + ��)� ����� + ����

� + (�� + ��)��
,      

�� =
−�����

� − (�� + ��)�(���� + ����
� + (�� + ��)�

���� + �(�1 + �2)
. 

(39)

Case 2: 

�� =
−��

��
� − (�� + ��)

,      

�� =
−�� �����

� + ������
� + (�� + ��)� + 2����(�� + ��)�

���
� − (�� + ��)� �����

� + 2������
� − (�� + ��)� + �������

� − (�� + ��)��
,      

�� =
�����

� − (�� + ��)� �����
� + 2������

� − (�� + ��)� + �������
� − (�� + ��)��

2����
� + 2������

� + (�� + ��)� + �������
� + (�� + ��)�

. 

(40)

Case 3: 

�� =
−��

��
� − (�� + ��)

,      

�� =
� �3����

� + 2����2��
� + (�� + ��)� + �����3��

� + (�� + ��)��

���
� − (�� + ��)� �3��

� + 6����� + ���3��
� + (�� + ��)��

,      

�� =
��(3��

� + 6����� + ���3��
� + (�� + ��)�

��
. 

(41)

Case 4: 

�� =
−��

��
� − (�� + ��)

,     �� =
−��

���
� − (�� + ��)�

,     �� = 2�����
� − (�� + ��)�. (42)

Case 5: 

�� =
−��

��
� − (�� + ��)

,     �� =
−2�����

� − (�� + ��)� − ������
� + 3(�� + ��)�

���
� − (�� + ��)�

� ,      

�� =
�����

� − (�� + ��)�
�

���
� + (�� + ��)�

. 

(43)

By substituting the results above into (28) and combining with (23), we can obtain 

five exact solutions ��(�, �) and ��(�, �), � = 10, … ,14, of the fractional MTM system (5) 

in the forms of Jacobi elliptic functions. The illustrations of these acquired solutions, for 

various values of �, are depicted in Figures 6–9. 
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(a) (b) 

  
(c) (d) 

Figure 6. The 3D plots of the real and imaginary parts of ���(�, �) and ���(�, �) with the parameters 

�� = �� = 0.3, �� = �� = 1, �� = 0.9, �� = 1, �� = −0.2, � = 0.5  and � = 0  for the fractional order 

� = 0.9: (a) ��[���(�, �)], (b) ��[���(�, �)], (c) ��[���(�, �)] and (d) ��[���(�, �)]. 

  
(a) (b) 

  
(c) (d) 

Figure 7. The 3D plots of |���(�, �)|� and |���(�, �)|� with the parameters �� = �� = −3, �� = �� =

1, �� = 7, �� = 2, �� = −5, � = 0.5 and � = 0for various � values: (a) |���|�, � = 0.95,  

(b) |���|�, � = 0.95, (c) |���|�, � = 0.75 and (d) |���|�, � = 0.75. 
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(a) (b) 

  
(c) (d) 

Figure 8. The 3D plots of the real and imaginary parts of ���(�, �) and ���(�, �) with the parameters 

�� = �� = −3, �� = �� = 1, �� = 7, �� = 2, �� = −5, � = 0.5, and � = 0.1for the fractional order � =

0.8: (a) ��[���(�, �)], (b) ��[���(�, �)], (c) ��[���(�, �)], (d) ��[���(�, �)]. 

  
(a) (b) 

  
(c) (d) 

Figure 9. The 3D plots of the real and imaginary parts of ���(�, �) and ���(�, �) with the parameters 

�� = �� = 0.5, �� = �� = 1, �� = 10, �� = 0.2, �� = 1, � = 1  and � = 0.1for the fractional order � =

0.75: (a) ��[���(�, �)], (b) ��[���(�, �)], (c) ��[���(�, �)] and (d) ��[���(�, �)]. 

5. Conclusions 

In this paper, the fractional massive Thirring model has been considered in the sense 

of the modified Riemann–Liouville fractional derivative. Based on the nonlinear fractional 

complex transformation, a series of exact traveling wave solutions for this model has been 

successfully obtained in terms of Jacobi elliptic functions. With the aid of the Mathematica 

wolfram computation package, the resulting algebraic system of free parameters was 
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solved and graphical representations of some acquired solutions were performed in 3D 

plots. The proposed method provides a powerful and systematic tool for obtaining novel 

exact solutions and can be applied to deal with other governing nonlinear fractional evo-

lution equations emerging in mathematical physics. 
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