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Abstract: This paper proposes a three–dimensional (3D) local boundary element model based on
meshless moving least squares (MLS) method for ultrasonic wave propagation fractional order
boundary value problems of functionally graded anisotropic (FGA) fiber-reinforced plates. The
problem domain is split into several circular sub-domains. The nodal points are randomly distributed
across the examined region. Each node is the focal point of a circular sub-domain that encircles
it. The Laplace-transform approach is used to solve dynamic issues. In the local weak form of the
governing equations for the converted quantities, a unit test function is utilized. The Gauss divergence
theorem to the weak-form is used to produce local boundary-domain integral equations. A meshless
approximation is achieved using the MLS method. To find time-dependent solutions, an inverse
Laplace-transform approach is used. The effects of the fractional order parameter, functionally graded
material, anisotropy, and the time characteristic of the laser pulse are investigated. The proposed
method’s validity and performance are demonstrated for a two-dimensional problem with excellent
agreement with the finite element method.

Keywords: three dimensional; boundary element method; ultrasonic wave propagation; fractional
order boundary value problems; functionally graded materials; anisotropic fiber-reinforced plates

1. Introduction

Recently, fractional calculus has gained popularity as a method for studying the theory
and applications of arbitrary non-integer order derivatives and integrals. This mathematical
branch has recently emerged as a useful and powerful tool for mathematical modeling in a
variety of engineering, industrial, and materials-science applications [1]. Fractional-order
operators are useful in expressing the memory and heredity properties of many materials
and processes due to their nonlocal nature. According to the associated literature published
by prominent fractional calculus journals [2], the primary focus of the investigation had
shifted from traditional integer-order models to fractional-order models.

Fractional calculus is used in many fields, including hereditary solid mechanics,
fluid dynamics, viscoelasticity, heat conduction modeling and identification, biology, food
engineering, econophysics, biophysics, biochemistry, robotics and control theory, signal
and image processing, electronics, electric circuits, wave propagation, nanotechnology, and
many others [3].

Many mathematicians have contributed to the history of fractional calculus, which
begins in 1730 with Euler’s first mention of interpolating between integral orders of a
derivative. In 1812, Laplace used an integral to define a fractional derivative.

In 1819, Lacroix introduced the first fractional order derivative into calculus, expressing
the fractional order derivative law as follows

dn

dxn =
Γ(m + 1)

Γ(m− n + 1)
xm−n (1)
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Fourier defined fractional operations according to his integral representation of f (x)
in 1822, where he introduced the following generalization

du

dxu f (x) =
1

2π

∫ ∞

−∞
f (α)d(α)

∫ ∞

−∞
pu cos

[
p(x− α) +

uπ

2

]
dp (2)

where u is any arbitrary positive or negative order.
The first use of fractional operations has been established by Abel in 1823, where he

used the following formula

d
1
2

dx
1
2

k =
√

π f (x), k =
∫ x

0
(x− t)−

1
2 f (t)dt (3)

Liouville introduced the foundations of fractional calculus in 1832, where he supposed
that dv

dxv (eax) = aveax for v > 0 to derive the fractional derivative as

dvx−a

dxv = (−1)v Γ(a + v)
Γ(a)

x−a−v (4)

In 1848, Hargreave introduced the first the generalization of Leibniz’s n th derivative
of a product, as follows

Dv f (x)g(x) =
∞
∑

n=0

(
v
n

)
D(n) f (x) D(v−n)g(x),(

v
n

)
= Γ(v+1)

!n Γ(v−n+1)

(5)

where D(n), D(v−n) are ordinary differentiation and fractional operation, respectively.
In 1876, Riemann introduced his fractional integration theory based on Taylor series as

Dv f (x) =
1

Γ(v)

∫ x

c
(x− t)v−1 f (t)dt + ψ(x) (6)

in which ψ(x) is the complementary function.
Laurent defined arbitrary order integration in 1884, based on the Cauchy’s integral

law for complex-valued analytic functions as

cDv
x f (x) = cDm−ρ

x f (x) =
dm

dxm

[
1

Γ(ρ)

∫ x

c
(x− t)ρ−1 f (t)dt

]
, 0 < ρ ≤ 1, v > 0 (7)

where cDv
x represents differentiation of order v of the function f along the x-axis.

Cauchy’s fractional order derivative is denoted as [4]

f (α)+ =
∫

f (τ)
(t− τ)−α−1

Γ(−α)
dτ (8)

Caputo proposed the following fractional order derivative in 1967

Dα
∗ f (t) =

1
Γ(m− α)

∫ t

0

f (m)(τ)

(t− τ)α+1−m dτ, m− 1 < α < m, α > 0 (9)

Lancaster and Salkauskas [5] introduce the MLS method for surface construction, and
the corresponding error analysis is discussed in [6]. The MLS method provides a best
approximation in a weighted least squares sense, and it emphasizes the compacted support
of the weight function especially, so it has local characteristics. It does, however, have
some limitations, such as complex computation and the absence of the Kronecker delta
function property.
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The classical theory is written in terms of out-of-plane displacement and its derivatives,
or, as demonstrated in [7], plate rotations can be represented by an irrotational field. The
integral equation has four boundary parameters and satisfying two boundary conditions is
required to obtain a single solution. When considering a polygonal plate, it should be noted
that, in addition to the two boundary unknowns, a concentrated reaction is placed at each
corner as an additional parameter in the boundary value problem. The classical theory’s
inaccuracy turns out to be of practical interest in the edge zone of a plate and around holes
with a diameter no larger than the plate’s thickness. To overcome the above-mentioned
characteristics of the classical theory’s one-displacement dependence. Mindlin [8] and
Reissner [9] proposed similar theories based on shear deformation. Unless those theories
are designed to deal with thin or thick plates, they are commonly referred to as thick-plate
theories in numerical analysis. In the constitutive equations, curvatures are not directly
related to out-of-plane displacement derivatives, and three boundary conditions should be
satisfied in the boundary value problem rather than the two in classical theory.

The boundary element method (BEM) has emerged as a viable numerical solution
for plate problems. Wang and Huang [10] were the first to use BEM to model orthotropic
thick plates. Meshless approaches to continuum mechanics problems have received a lot
of attention in the last decade [11]. For such plates, meshless approaches with continuous
stress approximation are more convenient [12]. The element-free Galerkin approach was
used by Krysl and Belytschko [13] to offer the first use of a meshless method to plate
problems. Their results showed excellent convergence, however, their formulation is
not applicable to shear deformable plate problems. Fahmy [14] applied BEM to three-
temperature distributions in carbon nanotube fiber-reinforced plates with inclusions.

Finding an analytical solution to a problem is extremely difficult in general; thus,
several engineering papers devoted to numerical methods have studied such problems in
various thermoelasticity topics, such as thermoelastic metal and alloy discs [15,16], gener-
alized magneto-thermoelasticity [17], and micropolar magneto-thermoviscoelasticity [18].
However, several papers have used the boundary element method in general, for exam-
ple, to solve micropolar FGA composites problems [19], Photothermal waves [20], and
magneto-thermo-viscoelasticity [21]. Because the trial and test functions can be chosen
from different functional spaces, the meshless local Petrov-Galerkin (MLPG) method [22] is
a fundamental foundation for the derivation of many meshless formulations. The method
has also been applied successfully to plate problems [23–25].

In the present paper, the local BEM based on MLS method has been successfully
applied to solve dynamic problems of FGA fiber-reinforced plates. The Laplace-transform
technique is used to solve the governing equations system of elastodynamic Reissner
bending theory. The local boundary-domain integral equations are derived by applying
the Gauss divergence theorem to the local weak-form governing equations. For each time
instant under consideration, boundary value problems must be treated using a variety of
Laplace-transform parameter values. The transformed quantities can be calculated in time
domain by using the numerical inverse Laplace transformation method.

2. Formulation of the Problem

The plane-stress constitutive equation for nonhomogeneous anisotropic plates can be
written as [26] 

σ11
σ22
σ12
σ13
σ23

 = G(x)


ε11
ε22

2ε12
2ε13
2ε23

−


γ11
γ22
0
0
0

θ(x, x3, t), (10)
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in which

G(x) =


E1
e

E1ν21
e 0 0 0

E2ν12
e

E2
e 0 0 0

0 0 G12 0 0
0 0 0 G13 0
0 0 0 0 G23

 with e = 1− ν12ν21, (11)

γij = cijklαkl (12)

The heat conduction equation of nonhomogeneous anisotropic plates can be expressed
as [20]:

ρ(x)c(x)D
∼
α
t θ(x, t) =

[
kij(x)θ,j(x, t)

]
,i + Q(x, t), (13)

in which Q(x, t) = 1−R
x0

e(−
xa
x0
)J(t), J(t) = J0 t

τ2
1

e−
t

τ1 , a = 1, 2, 3.

To investigate the pure anisotropic fiber-reinforced effect, we assumed that

Cijkluk,l =
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,

(i, j, k, m = 1, 2, 3), a ≡ (a1, a2, a3), a2
1 + a2

2 + a2
3

(14)

where the reinforcing parameters α, β and (µL − µT) introduce significantly anisotropic
behavior in the considered structure. Moreover, the isotropic behavior can be achieved
under the following condition α = β = (µL − µT) = 0 (see Table A1).

3. BEM Implementation for the Temperature Field

Based on Caputo’s finite difference scheme at ( f + 1)∆τ and f ∆τ, we can write [7]

D
∼
α
τ θ f+1 + D

∼
α
τ θ f ≈

k

∑
J=0

W∼
α,J

(
θ f+1−J(x)− θ f−J(x)

)
(15)

where

W∼
α,0 =

(∆τ)−
∼
α

Γ
(

2− ∼α
) and W∼

α,J = W∼
α,0

(
(J + 1)1−∼α − (J − 1)1−∼α

)
(16)

By using Equation (15), the fractional nonlinear heat conduction Equation (13) be-
comes [23]

W∼
α,0θ f+1(x)− λ(x)θ f+1

,ii (x)− λ,i(x)θ
f+1
,i (x) = W∼

α,0θ f (x)− λ(x)θ f
,ii (x)

−λ,i(x)θ
f
,j (x)−

f
∑

J=1
W∼

α,J

(
θ f+1−J(x)− θ f−J(x)

)
+ h f+1

m (x, t) + h f
m(x, t)

(17)

Let the analyzed domain of the studied plate be denoted by Ω with S+ and S− for the
top and bottom surfaces, respectively. It is assumed that the initial condition is

θ(x, t)|t=0 = θ(x, 0) (18)

We considered the sub-domain Ωx, the MLS approximates uh(x) of u, as uh(x) =
pT(x)a(x) ∀x ∈ Ωx, where pT(x) =

[
p1(x), p2(x), . . . , pm(x)

]
is a vector of complete

monomial basis of order m, and a(x) is a vector of coefficients aj(x), (j = 1, 2 , . . . , m),
x = [x1, x2, x3]

T . In the considered 3D analysis based on the MLPG method, we have

pT(x) = [1, x1, x2, x3], linear basis m = 4,
pT(x) =

[
1, x1, x2, x3, x2

1, x2
2, x2

3, x1x2, x2x3, x3x1
]
,

quatratic basis m = 10.
(19)
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By applying the Laplace transform to Equation (13), we obtain[
kij(x)θ,j(x, s)

]
, i − ρ(x)c(x)sθ(x, s) = −F(x, s), (20)

in which
F(x, s) = Q(x, s) + θ(x, 0) (21)

where Q(x, s) = 1−R
x0

e
xa
x0

J(s), J(s) = J0
(s+τ1)

2 , s > τ1.

The local weak form of the governing Equation (20) for xa ∈ Ωa
s can be written as∫

Ωa
s

[(
kl j(x)θ,j(x, s)

)
,l
− ρ(x)c(x)sθ(x, s) + F(x, s)

]
θ∗(x)dΩ = 0, (22)

in which θ∗(x) is a weight function.
Applying the Gauss divergence theorem to Equation (22) we obtain∫

∂Ωa
s
q(x, s)θ∗(x)dΓ−

∫
Ωa

s
kl j(x)θ,j(x, s)θ∗,l(x)dΩ

−
∫

Ωa
s
ρ(x)c(x)sθ(x, s)θ∗(x)dΩ +

∫
Ωa

s
F(x, s)θ∗(x)dΩ = 0,

(23)

where ∂Ωa
s denotes the local sub-domain boundary and

q(x, s) = kl j(x)θ,j(x, s)nl(x). (24)

If a Heaviside unit step function is used as the test function, then we can write θ∗(x)
in each subdomain as follows

θ∗(x) =
{

1 at x ∈ Ωa
s

0 at x /∈ Ωa
s

(25)

Now, by using the fundamental solution of (17), the following local boundary integral
equation is derived from the local weak form (23)∫

∂Ωa
s q(x, s)dΓ−

∫
Ωa

s
ρ(x)c(x)sθ(x, s)dΩ = −

∫
Ωa

s
F(x, s)dΩ. (26)

The boundary integral formulation will be obtained if zero body heat sources are
assumed. The MLS is used to calculate the heat flux q(x, s) as follows

qh(x, s) = kijni

n

∑
a=1

φa
,j(x)θ̂

a(s). (27)

According to [26], we can write (26) as follows

n
∑

a=1

(∫
Ls+Γsp nTKPa(x)dΓ−

∫
Ωs ]ρcsφa(x)dΓ

)
θ̂a(s)

= −
∫

Γsq

∼
q̃(x, s)dΓ−

∫
Ωs R(x, s)dΩ,

(28)

Now, we consider the following notations

K =

 k11 k12 k13
k12 k22 k23
k13 k23 k33

, Pa(x) =

 φa
,1

φa
,2

φa
,3

, nT = (n1, n2, n3). (29)

By implementing numerical inverse Laplace transformation method [27], the trans-
formed quantities can be calculated in time domain.
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4. BEM Implementation for the Displacement Field

Suppose that the material parameters are graded throughout the functionally graded
fiber-reinforced plate thickness as

P(x3) = Pb + (Pt − Pb)V with V =

(
x3

h
+

1
2

)n
, (30)

where P, Pt, Pb and n are the generic property, top face property, bottom face property and
functionally graded parameter, respectively.

The bending moments Mαβ as well as the shear forces Qα are identified as M11
M22
M12

 =
∫ h/2

−h/2

 σ11
σ22
σ12

x3dx3 and
[

Q1
Q2

]
= κ

∫ h/2

−h/2

[
σ13
σ23

]
dx3, (31)

where κ = 5/6 in the Reissner plate theory.
Substituting Equation (10) into (31), we can write

Mαβ = Dαβ

(
wα,β + wβ,α

)
+ Cαβwγ,γ − Hαβ, α, β = 1, 2 (32)

Qα = Cα(wα + w3,α) (33)

where

Hαβ =
∫ h

2

− h
2

x3γαβθ(x, x3, t)dx3. (34)

In which the material parameters Dαβ and Cαβ can be written as

D11 = D1
2 (1− ν21), D22 = D2

2 (1− ν12), D12 = D21 = G12h3

12 ,
C11 = D1ν21, C22 = D2ν12, C12 = C21 = 0,
Dα = Eαh3

12e , D1ν21 = D2ν12, Cα = κhGα3,

where

Eα ≡


Eαt = Eαb, n = 0
(Eαb+Eαt)

2 , n = 1
(3Eαb+2Eαt)

5 , n = 2
,

G12 ≡


G12t = G12b, n = 0
(G12b+G12t)

2 , n = 1 ,
(3G12b+2G12t)

5 , n = 2

Gα3 ≡


Gα3t = Gα3b, n = 0
(Gα3b+Gα3t)

2 , n = 1
(2Gα3b+Gα3t)

3 , n = 2
,

(35)

For a general variation in material properties as a function of plate thickness

D11 =
∫ h

2
− h

2
x2

3E1(x3)
1−v21

e dx3, D22 =
∫ h

2
− h

2
x2

3E2(x3)
1−v12

e dx3,

D12 =
∫ h

2
− h

2
x2

3G12(x3)dx3, C11 =
∫ h

2
− h

2
x2

3E1(x3)
v21
e dx3,

C22 =
∫ h

2
− h

2
x2

3E2(x3)
v12
e dx3, Cα = κ

∫ h
2
−? h

2
Gα3(x3)dx3.

(36)

According to Reissner [28], the equations of motion can be expressed as

Mαβ,β(x, t)−Qα(x, t) = ρh3

12
..
wα(x, t),

Qα,α(x, t) + q3(x, t) = ρh
..
w3(x, t), x ∈ Ω,

(37)
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Now, the Laplace-transform can be defined as

L[ f (x, t)] = f (x, s) =
∫ ∞

0
f (x, t)e−stdt. (38)

By applying the Laplace-transform (38) to (37), we obtain

Mαβ,β(x, s)−Qα(x, s) = ρh3

12 s2wα(x, s)− Rα(x, s) , (39)

Qα,α(x, s) = ρhs2w3(x, s)− R3(x, s) , (40)

where s denotes the Laplace transform parameter and

Rα(x, s) =
ρh3

12
[
swα(x) +

.
wα(x)

]
, (41)

R3(x, s) = q3(x, s) + ρhsw3(x) + ρh
.

w3(x) (42)

where wα(x) and w3(x) are the displacement initial values and
.

wα(x) and
.

w3(x) are the
displacement initial velocities.

MLPG techniques generate the weak-form circular local sub-domains such as Ωs,
which is a small area assigned to each node within the global domain Ω. For xi ∈ Ωi

s, the
local weak form of the governing Equations (39) and (40) are as follows:∫

Ωi
s

[
Mαβ,β(x, s)−Qα(x, s)− ρh3

12 s2wα(x, s) + Rα(x, s)]
×w∗αγ(x)dΩ = 0,

(43)

∫
Ωi

s

[
Qα,α(x, s)− ρhs2w3(x, s) + R3(x, s)

]
w∗3(x)dΩ = 0, (44)

where w∗αβ(x) and w∗(x) are test functions.
According to [26], the application of Gauss divergence theorem to Equations (43) and

(44) yields ∫
∂Ωi

s
Mα(x, s)w∗αγ(x)dΓ−

∫
Ωi

s
Mαβ(x, s)w∗αγ,β(x)dΩ

−
∫

Ωi
s
Qα(x, s)w∗αγ(x)dΩ−

∫
Ωi

s

ρh3

12 s2wα(x, s)w∗αγ(x)dΩ
+
∫

Ωi
s
Rα(x, s)w∗αγ(x)dΩ = 0,

(45)

∫
∂Ωi

s
Qα(x, s)nα(x)w∗(x)dΓ−

∫
Ωi

s
Qα(x, s)w∗,α(x)dΩ

−
∫

Ωi
s
ρhs2w3(x, s)w∗(x)dΩ +

∫
Ωi

s
R3(x, s)w∗(x)dΩ = 0,

(46)

where ∂Ωi
s is the boundary of the local sub-domain and

Mα(x, s) = Mαβ(x, s)nβ(x) (47)

where the following unit step functions are chosen as the test functions in each sub-domain

w∗αγ(x) =
{

δαγ at x ∈ (Ωs ∪ ∂Ωs) ,
0 at x /∈ (Ωs ∪ ∂Ωs)

w∗(x) =
{

1 at x ∈ (Ωs ∪ ∂Ωs)
0 at x /∈ (Ωs ∪ ∂Ωs)

.
(48)
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The local weak forms (45) and (46) are then transformed into the local boundary
integral equations based on the unit step functions w∗αβ(x) and w∗(x) of each sub-domain
as follows ∫

∂Ωi
s

Mα(x, s)dΓ−
∫

Ωi
s
Qα(x, s)dΩ−

∫
Ωi

s

ρh3

12 s2wα(x, s)dΩ
+
∫

Ωi
s
Rα(x, s)dΩ = 0,

(49)

∫
∂Ωi

s
Qα(x, s)nα(x)dΓ−

∫
Ωi

s
ρhs2w3(x, s)dΩ

+
∫

Ωi
s
R3(x, s)dΩ = 0.

(50)

where the MLS approximations wα(x, s) for rotations and w3(x, s) for deflections [26].
Thus, the generalized displacements can be written as

wh(x, s) = ΦT(x) · ŵ(s) =
n

∑
a=1

φa(x)ŵa(s), (51)

Substituting from (51) into (31), we obtain

M(x, s) = N1
n
∑

a=1
Ba

1(x)w
∗a(s) + N2

n
∑

a=1
Ba

2(x)w
∗a(s)−H(x, s)

= Nα(x)
n
∑

a=1
Ba

α(x)w∗a(s)−H(x, s),
(52)

where
¯
M(x, s) =

[
M1(x, s), M2(x, s)

]T, w∗a(s) =
[
ŵa

1(s), ŵa
2(s)

]T,
¯
H(x, s) =

[
H11n1, H22n2

]T ,
and Nα(x) which are connected to n(x) on ∂Ωs can be expressed as

N1(x) =
[

n1 0 n2
0 n2 n1

]
and N2(x) =

[
C11 0
0 C22

][
n1 n1
n2 n2

]
, (53)

Moreover, Ba
α can be expressed in terms of the shape functions as

Ba
1(x) =

 2D11φa
,1 0

0 2D22φa
,2

D12φa
,2 D12φa

,1

, Ba
2(x) =

[
φa

,1 0
0 φa

,2

]
. (54)

Now, we can write [26]

Q(x, s) = C(x)
n

∑
a=1

[φa(x)w∗a(s) + Fa(x)ŵa
3(s)], (55)

where
¯
Q(x, s) =

[
Q1(x, s), Q2(x, s)

]T and

C(x) =
[

C1(x) 0
0 C2(x)

]
, Fa(x) =

[
φa

,1
φa

,2

]
. (56)

Then, insertion of the MLS-discretized force fields (52) and (55) into the local boundary
integral Equations (49) and (50) yields the discretized local integral equations (LIEs)

n
∑

a=1

[∫
Li

s+Γi
sw

Nα(x)Ba
α(x)dΓ

−
∫

Ωi
s

(
C(x) + E ρh3(x)

12 s2
)

φa(x)dΩ
]
w∗a(s)

−
n
∑

a=1
ŵa

3(s)
∫

Ωi
s
C(x)Fa(x)dΩ =

∫
Li

s+Γi
sM

H(x, s)dΓ

−
∫

Γi
sM

∼
M(x, s)dΓ−

∫
Ωi

s
R(x, s)dΩ,

(57)
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n
∑

a=1

(∫
∂Ωi

s
Cn(x)φa(x)dΓ

)
w∗a(s)

+
n
∑

a=1
ŵa

3(s)
(∫

∂Ωi
s
Cn(x)Fa(x)dΓ−

∫
Ωi

s
ρs2h(x)φa(x)dΩ

)
= −

∫
Ωi

s
R3(x, s)dΩ,

(58)

in which

E =

(
1 0
0 1

)
, Cn(x) = (n1, n2)

(
C1 0
0 C2

)
= (C1n1, C2n2). (59)

According to [26], and using (51) with Equations (57) and (58), we can write

n

∑
a=1

φa
(

xi
)

ŵa(s) =
∼
w
(

xi, s
)

for xi ∈ Γi
sw (60)

where xi is the source point located on the global boundary Γ, ∂Ωi
s is the sub-domain

boundary, Γi
sM is the global boundary part with prescribed bending moment, Γi

sw is the

global boundary part with prescribed rotations or displacements, and

∼
¯
w
(
xi, s

)
is the Laplace-

transform displacement vector.
By implementing numerical inverse Laplace transformation method [27], we obtain

fa(t) =
ln 2

t

N

∑
i=1

vi f
(

ln 2
t

i
)

(61)

where

vi = (−1)
N
2 +i

min(i, N
2 )

∑
k=[ i+1

2 ]

k
N
2 (2k)!(

N
2 − k

)
!k!(k− 1)!(i− k)!(2k− i)!

(62)

In our numerical analyses, we considered N = 10 and s = i ln 2/t (i = 1, 2 , . . . , N).

5. Numerical Results and Discussion

We consider a special case of this study for comparison purposes, to demonstrate
the accuracy, feasibility, effectiveness, and convergence of the present MLS method, so
we define the root mean square error Rew in terms of exact solution w(xi, t), numerical
solution wh(xi, t) and M nodes surrounding x as follows [29]

Rew (t) =

√√√√ 1
M

M

∑
i=1

(
w(xi, t)− wh(xi, t)

)2 (63)

where
h = sup

x∈Ω
min

1≤j≤n
‖x− xj‖2

wh(x) =
n

∑
j=1

ξ j(x)wj

In which ξ j(x) can be expressed as the linear combination of the MLS shape functions
φM

j and LRBF shape functions ψL
j

ξ j = vφM
j + (1− v)ψL

j (64)

where v is a constant that can have various values in [0, 1].
Now, we give the results of Rew with different number of collocation points (40, 80,

160) in Table 1. As shown in Table 1, as the collocation increases, the value of Rew decreases,
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and the results and error analysis agree well. We find that the approximation effect of
the present MLS method suggested in this study is the best in all cases when compared
to moving least squares and local radial basis functions (MLS-LRBF) [29] and Modified
Moving Least Squares (MMLS) [30].

Table 1. The results of the root mean square error Rew with different numbers of collocation points
(40, 80, 160).

Number of Collocations 40 80 160

Present MLS 8.5746 × 10 −5 7.2136 × 10 −5 3.9624 × 10 −5

MLS-LRBF 8.9352 × 10 −5 8.6526 × 10 −5 6.2758 × 10 −5

MMLS 9.6746 × 10 −5 9.2147 × 10 −5 6.9055 × 10 −5

In our numerical calculations, we considered an anisotropic FGM clamped plate under
a uniform impact load with a side-length a = 0.254 m, plate thicknesses h/a = 0.05, and a
Heaviside time dependence.

The material properties and geometry parameters are as follows: mass density
ρ = 7.166× 103 kg m−3. A quadratic variation of the volume fraction V is considered for
the considered plate. For the approximation of rotations and deflections in our numerical
calculations, 441 nodes with a regular distribution were used [26]. If s is the distance
between two nodes, the radius of the circular subdomain is chosen as rloc = 0.4s and the
radius of the support domain for node a is ra = 4rloc.

The following material parameters for anisotropic FGA fiber-reinforced plate are used
in numerical analysis:

λ0 = 5.65× 1010 N m−2, µT = 2.46× 1010 N m−2, µL = 5.66× 1010 N m−2,

β = 220.9× 1010 N m−2, ρ = 2660 kg m−3, τ1 = 0.2s and τ2 = 0.2s

where reinforcement parameters α, β and µL − µT introduce anisotropic behavior in the
considered functionally graded fiber-reinforced plates.

The domain boundary of the considered problem has been discretized into 42 bound-
ary elements and 68 internal points, as illustrated in Figure 1.
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The following material parameters for orthotropic FGM plate are used in numerical
analysis: Young’s moduli E2t =0.6895 · 1010 N

m2 , E1t = 2E2t, Poisson’s ratios ν21 = 0.15,
ν12 = 0.3, and shear modulus are G12 =G13 = G23 = E2/2(1 + ν12).
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A quadratic variation of the volume fraction V is considered with Young’s moduli on
the bottom side are: E1b = E1t/2 and E1b = 2E2b.

The following material parameters for isotropic FGM plate are used in numerical
analysis: Young’s modulus E1 =E2 = 0.6895 · 1010 N/m2, Poisson’s ratios ν21 = ν12 = 0.3,
the thermal expansion coefficients α11 = α22 = 1 · 10−5deg−1, and shear modulus are
G12 = G13 = G23 = E2

2(1+ν12)
.

We considered numerical results of three-dimensional problem in the computational
domain that consists of 40 boundary nodes and 81 internal nodes as shown in Figure 1.

Figures 2–7 display the variations of the thermal stress waves σ11, σ12, σ22, σ13, σ23
and σ33 in the functionally graded (FG) and homogeneous (H) anisotropic fiber-reinforced
plates under different values of the fractional order parameter

∼
α.
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As shown in Figure 2, the value of the thermal stress wave σ11 always increases from a
positive value. It grows until it reaches its maximum value in the 0 < x1 < 1 range. Since
then, it has been on a downward trend. Finally, it tends to zero as it moves in the direction
of wave propagation. In both FG and H anisotropic fiber-reinforced plates, the thermal
stress wave σ11 behaves similarly. As shown in Figure 2, the H reduces the maximum
value of the thermal stress wave σ11. When the fractional order parameter

∼
α is varied, the

distributions of thermal stress wave σ11 are similar.
The thermal stress wave σ12, as shown in Figure 3, has a negative value at x1 = 0 and

then has a downward trend. It moves in the form of wave propagation after a period of
rising. The thermal stress wave σ12 behaves similarly in the FG anisotropic fiber-reinforced
plate as it does in the H anisotropic fiber-reinforced plate. As shown in Figure 3, the FG
fiber-reinforced anisotropic plate increases the minimum value of the thermal stress wave
σ12. The distributions of the thermal stress wave σ12 are similar when the fractional order
parameter

∼
α is varied.

The thermal stress wave σ22 exhibits the same behavior in FG and H anisotropic
fiber-reinforced plates, as shown in Figure 4. It demonstrates that the value of the thermal
stress wave σ22 reaches a negative value early on and has a downward trend. Since then, it
has risen from the lowest to the highest point. Finally, it moves in the direction of wave
propagation. Figure 4 shows that the maximum value of the thermal stress wave σ22 in
FG anisotropic fiber-reinforced plates is greater than that in H anisotropic fiber-reinforced
plates. The distributions of the thermal stress wave σ22 are similar when the fractional
order parameter

∼
α is varied.

In the context of FG anisotropic fiber-reinforced plate, the behavior of the thermal
stress wave σ13 always goes up from a positive value, as shown in Figure 5. In the FG
anisotropic fiber-reinforced plate, the value of the thermal stress wave σ13 in the range
of 0 ≤ x1 ≤ 2.2 is the same as in the FG anisotropic fiber-reinforced plate of Figure 2.
From a positive value to its maximum value, it always increases. Then it tends to zero
and moves along with the wave. The FG anisotropic fiber-reinforced plate, as shown in
Figure 5, increases the amplitude of the thermal stress wave σ13. The distributions of the
thermal stress wave σ13 are similar when the fractional order parameter is varied.

The thermal stress wave σ23 has a negative value at x1 = 0, as shown in Figure 6.
The behavior of the thermal stress wave σ23 in the FG anisotropic fiber-reinforced plate
is identical to that shown in Figure 3. In the absence of gravity, it has a downward trend
in the range of 0 ≤ x1 ≤ 1.7. It gradually decreases after a period of rising. As shown in
Figure 6, the FG anisotropic fiber-reinforced plate increases the amplitude of the thermal
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stress wave σ23. When the fractional order parameter is changed, the distributions of the
thermal stress wave σ23 are similar.

As shown in Figure 7, the behavior of the thermal stress wave σ33 in the FG anisotropic
fiber-reinforced plate is identical to that of the FG anisotropic fiber-reinforced plate in
Figure 4. In the context of H anisotropic fiber-reinforced plate, it always decreases from a
negative value at the start. It goes down to its minimum value in the range of 0 ≤ x1 ≤ 2.9,
then up from the minimum to the maximum. Finally, as the distance x increases, it tends to
zero. As shown in Figure 7, the amplitude of the thermal stress wave σ33 is greater in the
FG anisotropic fiber-reinforced plate than in the H anisotropic fiber-reinforced plate. The
distributions of the thermal stress wave σ33 are similar when the fractional order parameter
∼
α is varied.

Figures 8–13 display the variations of the thermal stress waves σ11, σ12, σ22, σ13, σ23 and
σ33 in the functionally graded (FG) and homogeneous (H) plates for anisotropic, orthotropic,
and isotropic materials.
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As shown in Figure 8, the thermal stress wave σ11 always rises from a positive starting
point. It grows until it reaches its maximum value. It has remained on a downward
trend since then. Finally, it moves along with the wave propagation and tends to zero. The
thermal stress wave σ11 behaves similarly in FG and H fiber-reinforced plates. As illustrated
in Figure 8, the homogeneous case reduces the maximum value of the thermal stress
wave σ11. The distributions of the thermal stress wave σ11 are similar when anisotropic,
orthotropic, and isotropic fiber-reinforced plates are considered.

As shown in Figure 9, the thermal stress wave σ12 decreases from zero at x = 0 and
coincides with the boundary condition. It decreases slightly and then rapidly in the range
of 0 ≤ x1 ≤ 1.5. Then it decreases and moves along with the wave. In both the FG and
H fiber-reinforced plates, the distributions of the thermal stress wave σ12 are similar. The
maximum value of the thermal stress wave σ12 in the H fiber-reinforced plate is lower than
in the FG fiber-reinforced plate, as shown in Figure 9. The distributions of the thermal
stress wave σ12 are similar when anisotropic, orthotropic, and isotropic fiber-reinforced
plates are considered.

As shown in Figure 10, the thermal stress wave σ22 begins with a positive value. It
begins with an upward trend and reaches its maximum value at x1 = 1.1. Finally, it
decreases and moves as the wave propagates. It behaves similarly in the H and FG fiber-
reinforced plates. As illustrated in Figure 10, the H case reduces the maximum value of the
thermal stress wave σ22. The distributions of the thermal stress wave σ22 are similar when
anisotropic, orthotropic, and isotropic fiber-reinforced plates are considered.

As shown in Figure 11, the behavior of the thermal stress wave σ13 in the FG case is
identical to that shown in Figure 8, it always rises from a positive value. It began with an
upward trend and then began to decline. Finally, as the distance x increases, it tends to
zero. As shown in Figure 11, the FG fiber-reinforced plate increases the amplitude of the
thermal stress wave σ13. The distributions of the thermal stress wave σ13 are similar when
anisotropic, orthotropic, and isotropic fiber-reinforced plates are considered.

The behavior of the thermal stress wave σ23 in the FG fiber-reinforced plate is shown
in Figure 12, and it is the same as in the FG fiber-reinforced plate shown in Figure 9. It
decreases from zero at x1 = 0 to coincide with the boundary condition. It rapidly decreases
in the range of 0 ≤ x1 ≤ 2 and then begins to rise. Finally, it decreases and moves as the
wave propagates. As shown in Figure 12, the amplitude of the thermal stress wave σ23
is greater in the FG fiber-reinforced plate than in the H fiber-reinforced plate case. The
distributions of the thermal stress wave σ23 are similar when anisotropic, orthotropic, and
isotropic fiber-reinforced plates are considered.

The behavior of the thermal stress wave σ33 in the FG fiber-reinforced plate is the
same as in the FG fiber-reinforced plate of Figure 10, as shown in Figure 13. In the H
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fiber-reinforced plate, it falls at first and reaches its lowest point at x1 = 0.7. Following
that, it rises and tends to zero as the distance x1 increases. As shown in Figure 13, the
FG fiber-reinforced plate increases the amplitude of the thermal stress wave σ33. The
distributions of the thermal stress wave σ33 are similar when anisotropic, orthotropic, and
isotropic fiber-reinforced plates are considered.

Figures 14–19 display the variations of the thermal stress waves σ11, σ12, σ22, σ13, σ23
and σ33 in the functionally graded (FG) and homogeneous (H) anisotropic fiber-reinforced
plates under different values of the time characteristic of the laser pulse τ1.
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As shown in Figure 14, the behavior of the thermal stress wave σ11 in the FG anisotropic
fiber-reinforced plate is identical to that shown in Figure 5. It reaches its peak in the range
0 ≤ x1 ≤ 2.2, and the value of the thermal stress wave σ11 continues to fall. Following
that, it tends to zero and moves in the wave propagation. As shown in Figure 14, the time
characteristic of the laser pulse influences the behavior of the thermal stress wave σ11. The
distributions of the thermal stress wave σ11 are similar when the time characteristic of the
laser pulse τ1 changes.

As shown in Figure 15, the thermal stress wave σ12 in the H anisotropic fiber-reinforced
plate has an upward trend in the range of. 0≤ x1 ≤ 1.9. When it reaches its maximum value,
it gradually decreases and tends to zero. As shown in Figure 15, the time characteristic of
the laser pulse causes the value of the thermal stress wave σ12 to increase. The distributions
of the thermal stress wave σ12 are similar when the time characteristic of the laser pulse
τ1 changes.

As shown in Figure 16, the thermal stress wave σ22 decreases slightly and then rapidly
increases to its maximum value in the range of 0 ≤ x1 ≤ 1.7. Finally, it approaches zero and
moves in the wave propagation. As shown in Figure 16, the time characteristic of the laser
pulse causes the maximum value of the FG anisotropic fiber-reinforced plate of thermal
stress wave σ22 to decrease. The distributions of the thermal stress wave σ22 are similar
when the time characteristic of the laser pulse τ1 changes.

The thermal stress wave σ13, as shown in Figure 17, decreases from a positive value
in the H anisotropic fiber-reinforced plate. In the H anisotropic fiber-reinforced plate, it
decreases to its minimum value in the range of 0 ≤ x ≤ 2. Following that, it grows and
moves in the wave propagation. As shown in Figure 17, the FG anisotropic fiber-reinforced
plate increases the maximum value of the thermal stress wave σ13. The distributions of
the thermal stress wave σ13 are similar when the time characteristic of the laser pulse
τ1 changes.

As shown in Figure 18, the thermal stress wave σ23 decreases from zero to coincide
with the boundary condition. It rapidly decreases and then increases. Finally, it moves in
the direction of wave propagation. Figure 18 shows that the maximum value of the thermal
stress wave σ23 in the FG anisotropic fiber-reinforced plate is greater than that in the H
fiber-reinforced plate. The distributions of the thermal stress wave σ23 are similar when the
time characteristic of the laser pulse τ1 changes.

The behavior of the thermal stress wave σ33, as shown in Figure 19, is identical to that
shown in Figure 13. In the FG and H anisotropic fiber-reinforced plates, it has a positive
value at first. It rises and reaches its highest point at x = 0.4. Then it diminishes and
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moves in the wave propagation. As shown in Figure 19, the FG anisotropic fiber-reinforced
plate increases the maximum value of the thermal stress wave σ33. The distributions of the
thermal stress wave σ33 are similar when the time characteristic of the laser pulse τ1 takes
different values.

Table 2 shows a comparison of required computer resources for the current BEM
results, and FEM–NMM results of An et al. [31] for the modeling of ultrasonic wave
propagation fractional order boundary value problems of FGA plates.

Table 2. A comparison of the required computer resources for modeling of ultrasonic wave
propagation fractional order boundary value problems of functionally graded anisotropic fiber-
reinforced plates.

BEM FEM–NMM

Number of nodes 64 46,000

Number of elements 38 16,000

CPU time 2 160

Memory 1 140

Disc space 0 200

Accuracy of results 1 2.0

There were no published results to support the validity of the proposed technique’s
findings. Some papers, on the other hand, can be regarded as subsets of the larger study
under consideration. The variations of the special case thermal stress waves σ11, σ12,
and σ22 along the x1−axis for BEM and combined finite element method/normal mode
method (FEM–NMM) in fractional order (a = 0.6) functionally graded plates are shown in
Figures 20–22, respectively. These results show that the BEM findings agree very well with
the FEM–NMM findings of An et al. [31]. As a result, the proposed technique’s validity
was confirmed. We refer the interested readers to the references of fractional derivative of
the Riemann Zeta function [32–34], fractional derivatives in complex planes [35,36] and
fractional boundary element method [37,38].
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6. Conclusions

Some of the conclusions that can be derived from this paper are as follows:

1. A numerical BEM scheme based on MLS is applied to FGA fiber-reinforced plates
under thermoelastic loads. The Reissner–Mindlin theory, which considers shear
deformation, is used to explain the behavior.

2. The Laplace-transform is used to remove the time variable from the governing equations.
3. The domain under consideration is subdivided into small circular subdomains. The

local boundary integral equations are derived using the unit step test function.
4. The MLS scheme has been proposed for treating the domain integrals arising from

the inertial term and approximates the physical quantities.
5. Numerical results demonstrate the accuracy, feasibility, effectiveness, and convergence

of the present MLS method.
6. The boundary value problems must be solved for a variety of Laplace-transform

parameter values chosen for each time instant under consideration.
7. The primary benefit of the current technique is its generality and simplicity. The used

test function in the proposed technique is less complicated than the fundamental
solution for anisotropic fiber-reinforced plates.
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8. Numerical results demonstrate that the fractional order parameter, functionally
graded material, anisotropy, and time characteristic of the laser pulse have significant
effects on the thermal stresses of FGA fiber-reinforced plates.

9. The numerical results confirm that the proposed technique provides more benefits
than other domain discretization methods.

10. The results presented in this paper may provide interesting information for re-
searchers who are working on computer science, material science, mathematical
physics, geotechnical engineering, and geothermal engineering as well as for those work-
ing on the development of the functionally graded anisotropic fiber-reinforced plates.
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Appendix A

Table A1. Nomenclature.

εij Strain Ei Young’s moduli
λ & µT Elastic parameters Gij Shear moduli

ρ (x) Mass density J(τ) Non-Gaussian temporal profile
θ(x, t) Temperature field J0 Total energy intensity

σij Stress kij Thermal conductivity tensor
τ1 Laser pulse time characteristic n Functionally graded parameter

φM
j MLS shape functions P Generic property

ψL
j LRBF shape functions Pb Bottom face property
∼
α Fractional order parameter Pt Top face property

αkl Linear thermal expansion coefficients Q(x,t) Heat source intensity
c(x) Specific heat R Irradiated surface absorptivity
cijkl Material stiffness coefficients νij Poisson’s ratios
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