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Abstract: Since November 2019, each country in the world has been affected by COVID-19, which has
claimed more than four million lives. As an infectious disease, COVID-19 has a stronger transmission
power and faster propagation speed. In fact, environmental noise is an inevitable important factor
in the real world. This paper mainly gives a new random infectious disease system under infection
rate environmental noise. We give the existence and uniqueness of the solution of the system and
discuss the ergodic stationary distribution and the extinction conditions of the system. The probability
density function of the stochastic system is studied. Some digital simulations are used to demonstrate
the probability density function and the extinction of the system.

Keywords: stochastic epidemic model; threshold dynamics; infection rate; extinction; ergodic
stationary distribution

1. Introduction

So far, infectious diseases have become one of the important factors endangering
human health. Medical research shows that there are three outcomes of any infectious
disease: the first is that the infectious virus is eliminated by human drugs; the second is
that the virus exists only in a small area, such as Ebola, SARS (severe acute respiratory
syndrome), and so on; the third is the long-term coexistence of viruses and humans, such
as influenza, AIDS (acquired immunodeficiency syndrome), and so on [1].

In order to describe the dynamic behavior of the epidemic, mathematical modeling is
considered to be an important tool [2]. According to the occurrence, transmission, and de-
velopment law of infectious disease in the population, Mathematicians and ecologists have
established several epidemic models to study and control various epidemics [3–5]. The
authors gave the dynamics and stationary distribution of the hepatitis E model. Meanwhile,
the authors obtained the optimal control analysis and the Atangana–Baleanu derivative
for the dynamical analysis of the hepatitis E model in [6]. Through the qualitative analysis
and numerical simulation of the dynamic behavior of the infectious disease model [7],
the authors gave an exact expression of the probability density function of the stochastic
model SVI (susceptible, vaccinated, infectious) around the unique endemic equilibrium of
the deterministic system by solving the corresponding Fokker–Planck equation, which is
guaranteed by a new critical value Rs

0 in [8], and other models, such as SIR (susceptible, in-
fectious, recovered), SIRS (susceptible, infectious, recovered, susceptible), SEIR (susceptible,
exposed, infectious, recovered), etc. [9,10].

Since November 2019, the world has been enveloped in COVID-19 (coronavirus dis-
ease 2019). As a contagious virus, COVID-19 is highly infectious [11]. Since April 2021,
only half a year, the number of newly confirmed cases in the world has increased by
100 million [12]. At the same time, Griffin B.D., etc. [13], found that the new coronavirus
could infect and spread among North American deer rats, which has increased the diffi-
culty in controlling COVID-19. Many countries are working hard to prevent the spread of
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COVID-19. Mathematicians use simulated mathematical models to predict the future be-
havior of coronavirus disease transmission in 2019. So far, several typical 2019 coronavirus
disease transmission models have been proposed and are being used in some decisions.
Recently, people have grasped valuable inferences through mathematical modeling and
obtained in-depth understanding of the novel coronavirus (COVID-19) [14]. A. Atangana
confirmed the effect of lockdown as a possible adequate measure to help flatten the curve
of deaths and infections with the epidemic model as follows: [15]:

dS(t) = [Λ− βS(t)D(t)
N − (δ + µ)S(t) + ηR(t)]dt,

dC(t) = [( βS(t)D(t)
N + δS(t)− (β + µ + π)C(t)]dt,

dI(t) = [δ(1− θ)S(t) + πC(t)− (τ + µ + σ)I(t)]dt,
dR(t) = [βC(t) + τ I(t)− (µ + η)R(t)]dt,
dD(t) = [σI(t)]dt,

(1)

where the parameters are in Table 1.

Table 1. The definitions of the parameters.

Parameter Definitions

S(t) The susceptible class
I(t) Infected people
C(t) Carriers (dead corpse)
R(t) Recovered persons
D(t) Total number of deaths
µ Rate of natural death recruitment rate into S(t)
θ Probability of an S(t) class to join C(t) class
σ Death rate induced by COVID-19
β Recovery rate of C(t) class
δ Force of infection of class S(t)
τ Recovery rate of I(t) class
π Rate at which an C(t) class is recovered
η Rate at which treated persons become C(t) class

However, in the real world, due to the influence of various factors, such as the envi-
ronment, a random model is constructed by random components with some distribution.
Through the addition of some white noise, these distributions may reflect the uncertainty of
the input content or random process [16]. Meanwhile, the quarantined measures play a very
important role in fighting and preventing the increase in COVID-19. The authors found
that the dynamic system with the external source was more reliable than the suspected
people travelling, and that the rate of isolation is extremely important for controlling the
increase in the cumulative confirmed people of COVID-2019 [17]. The authors in [18] put
forward the stochastic coronavirus epidemic model with the parameter disturbance by the
natural mortality rate by translating the quarantined factor as follows:

dS(t) = [Λ− βS(t)I(t)
N − µ0S(t)]dt + η1S(t)dB1(t),

dI(t) = [( βS(t)I(t)
N − (γ1 + µ1 + µ0)I(t) + σQ(t)]dt + η2 I(t)dB2(t),

dQ(t) = [γ1 I(t)− (µ0 + µ + σ)Q(t)]dt + η3Q(t)dB3(t),
(2)

where the definitions of the parameters are in Table 2 and N = S(t) + I(t) + Q(t).
In the system (2), the important role of isolation in COVID-19 is pointed out, and

the stable distribution of the model under extinction conditions is obtained. However, in
the real world, according to the COVID-19 data in Pakistan [19], the disturbance of the
infection rate coefficient plays a very important role in the spread of COVID-19. Meanwhile,
vaccination and isolation measures can also affect the infection rate. In the present paper,
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we give the stochastic coronavirus epidemic model with the stochastic disturbance of the
infection rate coefficient. The system is the following:

dS(t) = [Λ− βS(t)I(t)
N − µ0S(t)]dt− ηS(t)I(t)

N dB(t),
dI(t) = [( βS(t)I(t)

N − (γ1 + µ1 + µ0)I(t) + σQ(t)]dt + ηS(t)I(t)
N dB(t),

dQ(t) = [γ1 I(t)− (µ0 + µ + σ)Q(t)]dt,
(3)

The main composition of the present paper is as follows. The second section gives the
basic lemma and basic concepts of this paper. The existence and uniqueness of the global
positive solution of the system (3) are obtained in the third section, and the fourth section
gives the ergodic stationary distribution of the system (3). In order to better understand
the degree of control of the virus, we consider the extinction condition of the system (3) in
the fifth section. Meanwhile, in the sixth section, the probability density function of the
system (3) is given to understand the trend of the coronavirus viruses in the system (3).
In the last section, by numerical simulation, two examples give the extinction, long-term
persistence, and the probability density function with the corresponding conditions.

Table 2. The definitions of the parameters.

Parameter Definitions

S(t) The susceptible class
I(t) Infected people
Q(t) Quarantined people
N Total population
Λ Capita constant fecundity rate
β Infection rate
µ0 Infected natural mortality rate
µ1 Quarantined natural mortality rate
µ Disease-related mortality rate
γ1 The constant rate of quarantining infected
σ The quarantined rate from infected people
Bi(t), i = 1, 2, 3 Brownian motion
ηi, i = 1, 2, 3 The intensity of Bi(t)

2. Preliminaries

We give some basic conceptions as in [3,5,16,20]. Suppose (Ω, F , {Ft}t≥0,P) is a com-
plete probability space with a filtration {Ft}t≥0; we define R3

+ = {x ∈ R3 : xi > 0 for all

1 ≤ i ≤ 3} and R3
+= {x ∈ R3 : xi ≥ 0 for all 1 ≤ i ≤ 3}. In addition, if f (t) is an integral

function on t ∈ [0, ∞), we define f µ = sup{ f (t) | t ≥ 0}, f l = in f { f (t) | t ≥ 0}. In the
following, we give the Itô′s formula.

Lemma 1 ([3]). Let x(t) be an Itô′ process with the stochastic differential

dx(t) = f (t)dt + g(t)dBt, for t ≥ t0, (4)

where f ∈ L1(R+,R) and g ∈ L1(R+,R). Let V ∈ C2,1(R×R+,R). Then, V(x(t), t) is again
an Itô′ process with the stochastic differential given by

dV(x(t), t) = [Vt(x(t), t) + Vx(x(t), t) f (t) +
1
2

Vxx(x(t), t)g2(t)]dt + Vx(x(t), t)g(t)dBt a.s.

Firstly, we consider the general three-dimensional stochastic differential equation

dx(t) = f (x(t), t)dt + g(x(t), t)dB(t), for t ≥ t0 (5)



Fractal Fract. 2022, 6, 245 4 of 14

with initial value x(t0) = x0 ∈ R3, where B(t) denotes three-dimensional standard Brown-
ian motion defined on the above probability space (Ω, Γ, {Γt}t≥0,P). Define the differential
operator L by Mao [3] as

L =
∂

∂t
+ Σ fi(x, t)

∂

∂xi
+

1
2

Σ[gT(x, t)g(x, t)]ij
∂2

∂xi∂xj
.

If L acts on a function V ∈ C2,1(R3 × R̄+; R̄+), where R+={x ∈ R : x ≥ 0}, then

LV(x, t) = Vt(x, t) + Vx(x, t) +
1
2

trac[gT(x, t)Vxx(x, t)g(x, t)],

where Vt =
∂V
∂t , Vx = ( ∂V

∂x1
, · · · , ∂V

∂x3
) and Vxx = ( ∂2V

∂xi∂xj
)3×3.

By Lemma 1, we obtain

dV(x(t), t) = LV(x(t), t)dt + Vx(x(t), t)g(x(t), t)dB(t).

The diffusion matrix is defined as follows:

A(x) = (aij(x)), aij =
3

∑
r=1

gi
r(x)gj

r(x), 1 ≤ i, j ≤ 3.

3. Existence and Uniqueness of the Global Positive Solution

The problem where the solution is global and positive is important in studying the
dynamical behavior of the system (3). The coefficients of the system (3) are not the linear
growth, and the solutions of the system (3) may explode at a fixed time. The main theorem
is as follows.

Theorem 2. There is a unique positive solution (S(t), I(t), Q(t)) of system (3) on t ≥ 0 by the
initial value (S(0), I(0), Q(0)) ∈ R3

+, and the solution (S(t), I(t), Q(t)) ∈ R3
+ for all t ≥ 0

almost surely (a.s.).

Proof. Based on [5], we obtain the fact that there is a unique solution (x(t), y(t), z(t), w(t))
on [0, τ0) for the reason that the coefficients of the system (3) are the locally Lipschitz
continuous, where τ0 is an explosion time. We can obtain the fact that the local solution
is global when τ0 = ∞ a.s. By the definitions in [3], we define a fundamental C2-function
U : R3

+ → R̄+, which is

U(S, I, Q) = (S(t)− 1− ln S(t)) + a(I(t)− 1− β ln I(t)) + b(Q(t)− 1− ln Q(t)), (6)

where a, b are positive constants, which will be determined in the following text. The
non-negativity of the function U can be seen from x− 1− ln x ≥ 0 for any x > 0.

Applying Itô′s formula [3], we obtain

dU(S, I, Q) = LUdt + η(S(t)−1)I(t)
N2 dB(t)− η(I(t)−1)S(t)

N2 dB(t), (7)

where
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LU = (1− 1
S )(Λ−

βSI
N − µ0S)− η2

2 ( I
N )2 + (1− 1

I )[(
βSI
N − (γ1 + µ1 + µ0)I + σQ] + η2

2 ( S
N )2

+(1− 1
Q )[γ1 I − (µ0 + µ + σ)Q]

= Λ− βSI
N − µ0S− Λ

S + βI
N + µ0 − (µ0 + µ1 + γ1)I + βSI

N + σQ− βS
N + (µ0 + µ1 + γ1)− σQ

I + γ1 I

−(µ0 + µ + σ)Q− γ1 I
Q + (µ0 + µ + σ)− η2

2 ( I
N )2 + η2

2 ( S
N )2

≤ Λ− µ0S− Λ
S + β + µ0 − (µ0 + µ1 + γ1)I + σQ + (µ0 + µ1 + γ1)− (µ0 + µ + σ)Q

− σQ
I + γ1 I − γ1 I

Q + (µ0 + µ + σ) + η2

2

≤ Λ− µ0S− Λ
S + β + µ0 + (µ0 + µ1 + γ1)− σQ

I −
γ1 I
Q + (µ0 + µ + σ) + η2

2

≤ Λ + β + 3µ0 + µ1 + γ1 + µ + σ− 2
√

µ0Λ− 2
√

σγ1 +
η2

2

= (
√

Λ−√µ0)
2 + (

√
σ−√γ1)

2 + β + 2µ0 + µ1 + µ + η2

2 ,

(8)

Then, we can obtain

LU ≤ (
√

Λ−√µ0)
2 + (

√
σ−√γ1)

2 + β + 2µ0 + µ1 + µ + η2

2 := K, (9)

where K is a positive constant. The remainder of the proof is similar to Theorem 3.1 in
Mao [5]. Hence, we omit it here.

4. Ergodic Stationary Distribution of the Stochastic Coronavirus Epidemic Model

In this section, the existence of ergodic stationary components of the system (3) is
given. Firstly, we define R∗0 as a stochastic reproductive ratio of the system (3), such as

R∗0 =
µ0βσγ1

(µ0 +
1
2 η2)(γ1 + µ1 + µ0 +

1
2 η2)2(µ0 + µ + σ)

,

which is equal to βσγ1
(γ1+µ1+µ0)2(µ0+µ+σ)

when η = 0 [3]. The following is a known result.

Lemma 3 ([3,5]). The Markov process X(t) has a stationary distribution µ(·) if there exists a
bounded domain U ⊂ El with regular boundary Γ and

(B.1) there is a positive number M such that ∑l
i,j=1 aij(x)ξiξ j ≥ M|ξ|2, x ∈ U, ξ ∈ Rl ;

(B.2) there exists a nonnegative C2 function V such that LV is negative for any El\U. Then,

Px

{
lim

T→∞

1
T

∫ T

0
f (X(t))dt =

∫
El

f (x)µ(dx)
}
= 1,

for all x ∈ El , where f (·) is a function integrable with respect to the measure µ.

Theorem 4. When R∗0 > 1, for the solution (S(t), I(t), Q(t)) of the system (3), there exists an
ergodic unique stationary distribution.

Proof. We construct a C2-function Ṽ : R3
+ → R as follows:

Ṽ = N(t)− c1 ln S(t)− c2 ln I(t)− c3 ln Q(t).

Applying Itô′s formula [3], we obtain

LṼ = (Λ− µ0N − µ1 I − µQ) + c1[−Λ
S + βI

N + µ0 +
1
2 (η IN)2] + c2[− βS

N + (γ1 + µ1 + µ0)− σ Q
I + 1

2 (
ηS
N )2]

+c3[−γ1
I
Q + (µ0 + µ + σ)]

= c1
βI
N + [−µ0N − c1

Λ
S − c2

βS
N − c2σ Q

I − c3γ1
I
Q ] + c1(µ0 +

1
2 η2) + c2(γ1 + µ1 + µ0 +

1
2 η2)

+c3(µ0 + µ + σ) + Λ− µ1 I − µQ
≤ c1

βI
N − 5(µ0c1c2

2c3βσΛγ1)
1
5 + c1(µ0 +

1
2 η2) + c2(γ1 + µ1 + µ0 +

1
2 η2) + c3(µ0 + µ + σ) + 2Λ

≤ c1
βI
N − 5Λ[(R∗0)

1
5 − 1],

(10)



Fractal Fract. 2022, 6, 245 6 of 14

and R∗0 = µ0βσγ1
(µ0+

1
2 η2)(γ1+µ1+µ0+

1
2 η2)2(µ0+µ+σ)

. We choose c1 = Λ
µ0+

1
2 η2 , c2 = Λ

γ1+µ1+µ0+
1
2 η2 ,

c3 = Λ
µ0+µ+σ .

When R∗0 > 1, we suppose

V = MṼ − ln S(t)− ln I(t)− ln Q(t) + N(t),

and V := V(S, I, Q)−V(S0, I0, Q0).

Applying Itô′s formula to V, we obtain

LV = MLṼ − L ln S(t)− L ln I(t)− L ln Q(t) + LN(t)
= −5ΛM[(R∗0)

1
5 − 1] + c1M βI

N + (−Λ
S + βI

N + µ0 +
1
2 η2 + [− βS

N + (γ1 + µ1 + µ0)− σ Q
I −

1
2 η2]

+[−γ1
I
Q + (µ0 + µ + σ)] + Λ− µ0N − µ1 I − µQ

≤ −5ΛM[(R∗0)
1
5 − 1] + (c1M + 1)β− Λ

S − σ Q
I − γ1

I
Q −

βS
N + 3µ0 + γ1 + µ1 + µ + σ + Λ

−µ0N − µ1 I − µQ
≤ (c1M + 1)β + 3µ0 + γ1 + µ1 + µ + σ + Λ− Λ

S − σ Q
I − γ1

I
Q − µ0S− (µ1 + µ0)I − (µ + µ0)Q.

(11)

Define

f1(S) = (c1M + 1)β + 3µ0 + γ1 + µ1 + µ + σ + Λ− Λ
S
− µ0S,

f2(I) = −σ
Q
I
− (µ1 + µ0)I,

f3(Q) = −γ1
I
Q
− (µ + µ0)Q.

We can divide R3
+ \ Dε into the following six domains:

D1 = {(S, I, Q) ∈ R3
+ : 0 < S < ε}; D2 = {(S, I, Q) ∈ R3

+ : S >
1
ε
};

D3 = {(S, I, Q) ∈ R3
+ : 0 < I < ε}; D4 = {(S, I, Q) ∈ R3

+ : I >
1
ε
};

D5 = {(S, I, Q) ∈ R3
+ : Q < ε2, I > ε}; D6 = {(S, I, Q) ∈ R3

+ : Q >
1
ε
};

Clearly, Dε =
⋃6

j=1 Dj. In the following text, we will show that LV(S, I, Q) ≤ −1 on
R3
+ \ Dε.

Case 1. If (S, I, Q) ∈ D1
⋃

D2, one can choose

M < −
µ0 +

1
2 η2

Λ
,

and
LV(S, I, Q) ≤ 3µ0 + γ1 + µ1 + µ + σ + Λ− Λ

S
− µ0S ≤ −2;

Case 2. If (S, I, Q) ∈ D3
⋃

D4,

LV(S, I, Q) ≤ (c1M + 1)β + 3µ0 + γ1 + µ1 + µ + σ + Λ + f2(I) ≤ −2;

Case 3. If (S, I, Q) ∈ D5
⋃

D6,

LV(S, I, Q) ≤ (c1M + 1)β + 3µ0 + γ1 + µ1 + µ + σ + Λ + f3(Q) ≤ −2;

therefore, for all (S, I, Q)) ∈ R3
+ \ Dε, LV(S, I, Q)) ≤ −1, which indicates that assumption

(B.2) holds.
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We can know that the system (3) is ergodic and has a unique stationary distribution.
This completes the proof.

5. Extinction of the Stochastic Coronavirus Epidemic Model

It is a very important topic to consider the dynamic behavior of the epidemic virus to
obtain the conditions for the virus to be eliminated in a long time. We mainly discuss the
extinction conditions of the system (3). According to the results in [10], we can obtain the
following lemma.

Lemma 5. For any initial value, the solution of stochastic model satisfies

lim
t→∞

ln x(t)
t
≤ 0, lim

t→∞

ln y(t)
t
≤ 0, lim

t→∞

ln z(t)
t
≤ 0, lim

t→∞

ln w(t)
t
≤ 0 a.s. (12)

lim
t→∞

x(t) + y(t) + z(t) + w(t)
t

= 0, a.s.. (13)

Moreover,

limt→0
1
t
∫ t

0 x(m)dB1(m) = 0 , limt→0
1
t
∫ t

0 y(m)dB2(m) = 0, limt→0
1
t
∫ t

0 z(m)dB3(m) = 0 a.s.. (14)

Theorem 6. Let (S(t), I(t), Q(t)) be the solution of system (3) with any initial value (S(0), I(0),
Q(0)) ∈ R3

+. If RS
0 < 1, then the solution (S(t), I(t), Q(t)) of system (3) satisfies

lim sup
t→∞

ln I(t)
t
≤ 1

µ0 + γ1 + µ1 + µ + σ
(RS

0 − 1) < 0 a.s.,

where RS
0 = β

2η2 (µ0 + γ1 + µ1 + µ + σ). Namely, the disease will be eradicated in the long term.

Proof. Applying Itô′s formula to ln I(t), we obtain

d ln I(t) = dI(t)
I(t) = ( βS

N − (γ1 + µ1 + µ0) + σ Q
I )dt− 1

2 (
ηS
N )2dt− ηS

N dB(t)

≤ [ βS
N −

1
2 (

ηS
N )2 − (γ1 + µ1 + µ0) + σ]dt− ηS

N dB(t)

≤ {− η2

2 [( S
N )2 − 2β

η2
S
N + ( β

η2 )
2 − ( β

η2 )
2]− (γ1 + µ1 + µ0) + σ}dt− ηS

N dB(t)

≤ [ β2

2η2 − (γ1 + µ1 + µ0 − σ)]dt− ηS
N dB(t).

(15)

Integrating the above formula from 0 to t on both sides, we obtain

ln I(t)− ln I(0) ≤
∫ t

0
[

β2

2η2 − (γ1 + µ1 + µ0 − σ)]ds−
∫ t

0

ηS
N

dB(t).

According to the strong law of large numbers [20], we have

lim
t→0

1
t

∫ t

0

ηS
N

dB(t) = 0 a.s..

and we can obtain

lim sup
t→∞

ln I(t)
t ≤

∫ t
0 [

β2

η4 − (γ1 + µ1 + µ0 − σ)]ds

≤ β2

η4 − (γ1 + µ1 + µ0 − σ)

= (γ1 + µ1 + µ0 − σ)( β2

η4(γ1+µ1+µ0−σ)
− 1)

< 0 a.s..

(16)

We choose RS
0 = β

2η2 (µ0 +γ1 +µ1 +µ+σ) < 1, which is equal to η > ( η2

µ0+γ1+µ1+µ+σ )
1
4 .
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Therefore, the above indicates that

lim
t→∞

I(t) = 0 a. s..

and we can obtain the fact that the viral will be eradicated, which completes the proof.

6. The Probability Density Function of the Stochastic Coronavirus Epidemic Model

Let N = S + I + Q; we can transfer system (3) into the following system:
dS(t) = [Λ− βS(t)(N(t)−S(t)−Q(t))

N − µ0S(t)]dt− ηS(t)(N(t)−S(t)−Q(t))
N dB(t)

dQ(t) = (γ1N(t)− γ1S(t)− (γ1 + µ0 + µ + σ)Q(t))dt
dN(t) = [Λ− (µ1 + µ0)N(t) + µ1S− (µ1 − µ)Q(t)]dt.

(17)

Hence, we can consider the probability density function of system (17) in place of
system (3).

Theorem 7. We consider the condition that R∗0 > 1, for any initial value (S(0), Q(0), N(0))
∈ R3

+; then, the solution (S(t), Q(t), N(t)) of system (3) with a weak kernel will have a normal
probability density function Φ(S(t), Q(t), N(t)) around (S∗, Q∗, N∗), which is given by

Φ(S(t), Q(t), N(t)) = (2π)−
3
2 | Σ |−

1
2 (S(t),Q(t),N(t))Σ−1(S(t),Q(t),N(t))T

,

where Σ is a positive definite matrix and satisfies

Σ =


a2

2(a1a2−a3)
0 − 1

2(a1a2−a3)

0 1
2(a1a2−a3)

0
− 1

2(a1a2−a3)
0 a1

2a3(a1a2−a3)

,

where a1 = γ1 + 2µ0 + µ + σ + β(N∗−2S∗−Q∗)
N∗ , a2 = (µ0 − µ1)(γ1 + 2µ0 + µ + σ)+

β(N∗−2S∗−Q∗)
N∗ (2µ0 + µ+ σ)+ γ1β(N∗−S∗)

N∗ , a3 = βS∗(N∗−S∗−Q∗)
(N∗)2 +(γ1µ+(µ0− µ1)(γ1 + µ0 +

µ + σ))(µ0 +
β(N∗−2S∗−Q∗)

N∗ ) + µ1(2γ1 + µ0 + µ + σ).

Proof. Firstly, we can obtain the linear system of system (17) at point (y1, y2, y3) =
(S∗, Q∗, N∗).

dy1 = (b11y1(t) + b12y2(t) + b13y3(t))dt− ηS∗(N∗−S∗−Q∗)
N∗ dB(t)

dy2 = (b21y1(t) + b22y2(t) + b23y3(t))dt
dy3 = (b31y1(t) + b32y2(t) + b33y3(t))dt,

(18)

where

A =

 b11 b12 b13
b21 b22 b23
b31 b32 b33

 =

 −(µ0 +
β(N∗−2S∗−Q∗)

N∗ ) βS∗
N∗ − βS∗(S∗+Q∗)

(N∗)2

−γ1 −(γ1 + µ0 + µ + σ) γ1
µ1 µ− µ1 −(µ1 + µ0)

,

B =

 ηS∗(N∗−S∗−Q∗)
N∗ 0 0
0 0 0
0 0 0

,

Let Y = (y1, y2, y3)
T , G = diag( ηS∗(N∗−S∗−Q∗)

N∗ , 0, 0); then,

dY = AYdt + GdB(t).
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By the Roozen [21], we can obtain the fact that the density function Φ(Y) = Φ(y1, y2, y3)
of system (18) nearby the origin point can approximate to the Fokker–Plank equation as follows:

− η2

2
∂2Φ(t)

∂y2
1

+ ∂
∂y1

[(b11y1(t) + b12y2(t) + b13y3(t))Φ(t)]

+ ∂
∂y2

[(b21y1(t) + b22y2(t) + b23y3(t))Φ(t)]
+ ∂

∂y3
[(b31y1(t) + b32y2(t) + b33y3(t))Φ(t)]

= 0.

(19)

By Gaussian distribution,

Φ(Y) = C exp {−1
2
(Y−Y∗)P(Y−Y∗)T}, (20)

where P is a real symmetric matrix that satisfies

PG2P + AT P + PA = 0. (21)

Let P−1 = Σ; then, we have

G2 + AΣ + ΣAT = 0. (22)

We know there exists a matrix

M̃ =

 1 0 0
0 1 0
0 µ1

γ1
1

,

satisfying

M̃AM̃−1 =

 −a11 a12 a13
a21 −a22 a23
a31 a32 −a33

 =

 −(µ0 +
β(N∗−2S∗−Q∗)

N∗ ) βS∗
N∗ − βS∗(S∗+Q∗)

(N∗)2

−γ1 −(γ1 + µ0 + µ + σ) γ1

0 −µ1(2γ1+µ0+µ+σ)+γ1µ
γ1

−µ0

.

Hence, we have the characteristic polynomials of A as

ϕA(λ) = λ3 + a1λ2 + a2λ + a3.

Denote

dY = d

 y1
y2
y3

 =

 −a1 −a2 −a3
1 0 0
0 1 0

 y1
y2
y3

dt,

where a1 = a11 + a22 + a33 = γ1 + 2µ0 + µ + σ + β(N∗−2S∗−Q∗)
N∗ > 0, a2 = a11a22 + a11a33 +

a22a33 + a23a32 + a12a21 = (µ0 − µ1)(γ1 + 2µ0 + µ + σ) + β(N∗−2S∗−Q∗)
N∗ (2µ0 + µ + σ) +

γ1β(N∗−S∗)
N∗ > 0, a3 = a11a22a33 + a11a23a32 + a12a21a33 + a13a21a32 = βS∗(N∗−S∗−Q∗)

(N∗)2 +

(γ1µ + (µ0 − µ1)(γ1 + µ0 + µ + σ))(µ0 +
β(N∗−2S∗−Q∗)

N∗ ) + µ1(2γ1 + µ0 + µ + σ) > 0. We
can easily obtain a1a2 − a3 > 0. Therefore, by some transformation, the standard R1 matrix
of A is unique. By the same method of the Lemma 3 in [22], we can obtain a positive matrix.

Σ =


a2

2(a1a2−a3)
0 − 1

2(a1a2−a3)

0 1
2(a1a2−a3)

0
− 1

2(a1a2−a3)
0 a1

2a3(a1a2−a3)

.

Hence, Σ is a positive definite, and we complete the proof.
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7. Examples and Numerical Simulations

In this section, we give the numerical simulation of system (3) by using the discrete
equation with the same method as [10]. The equations are as follows:

S(k + 1) = S(k) + [Λ− βS(t)I(t)
N(t) − µ0S(t)]4t− η

S(t)I(t)
N(t)

√
4tξk −

η2

2
S(t)I(t)

N(t) 4t(ξ2
k − 1),

I(k + 1) = I(k) + [( βS(t)I(t)
N − (γ1 + µ1 + µ0)I(t) + σQ(t)]4t + η

S(t)I(t)
N(t)

√
4tξk +

η2

2
S(t)I(t)

N(t) 4t(ξ2
k − 1),

Q(k + 1) = Q(k) + [γ1 I(t)− (µ0 + µ + σ)Q(t)]4t,

(23)

where the time increment 4t > 0, and ξk is a the Gaussian random variable (k =
0, 1, 2, · · · n).

Example 1. Here, in system (3), we use the environmental noise parameter as η = 0.1. In addition,
following the biological feasibility result, the values of the parameters are as shown in Table 3.

Table 3. Parameters value.

Notation Value References

Λ 0.028 [18]
β 0.2 Estimated

µ0 0.011 [18]
µ1 0.2 Estimated
γ 0.06 [18]
σ 0.3 Estimated
µ 0.5 [18]

In addition, we can choose the following real data S(0) = 355,250, I(0) = 1453, Q(0) = 51,343,
in Pakistan on 7 October 2021 [19]. Then, R∗0 = 3.208 > 1, where R∗0 is defined in Section 4. By
the results of Theorem 4, we can find that system (3) will persist for a long time by a distribution
µ(·). The numerical simulations (Figure 1) confirm this.
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Figure 1. The red lines describe the solution of system (3) and the green lines stand for the solution
of the corresponding system (2). The right pictures are the histogram of the density function for S, I,
and Q populations.
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Example 2. Here, in system (3), we use the environmental noise parameter η = 0.1. In addition,
following the biological feasibility result, the values of the parameters are as shown in Table 4.

Table 4. Parameters value.

Notation Value References

Λ 0.5 [15]
β 0.6 Estimated

µ0 0.2 [15]
µ1 0.2 Estimated
γ 0.3 [15]
σ 0.1 Estimated
µ 0.2 [15]

In addition, we can choose the following real data S(0) = 355,250, I(0) = 1453, Q(0) = 51,343,
in Pakistan on 7 October 2021 [19]. Then, R∗0 = 0.0769 < 1, where R∗0 is defined in Section 4.
We can find that system (3) will be extinct in a long time. The numerical simulations (Figure 2)
confirm this.
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1
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3
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(t
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1 1.5 2 2.5

The density functions of S(t)

0

20

40

50 100 150 200 250
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1.5

I(
t)

0 0.2 0.4 0.6 0.8 1

The density functions of I(t)

0

10

20

100 200 300 400 500

Time

0

0.5

1

Q
(t

)

0 0.2 0.4 0.6 0.8 1

The density functions of Q(t)

0

50

100

Figure 2. The red lines discribe the solution of system (3) and the green lines stand for the solution of
the corresponding system (2). The right pictures are the histogram of the density function for S, I,
and Q populations.

In fact, using the statistical data of Pakistan for September to December 2021, it can be
seen from the figure (Figures 3–5) that the control of the isolation number will affect the
disturbance of the infection rate and control the increase in the infection number. At the
same time, when the infection rate is disturbed by other factors, such as vaccine injection,
the number of deaths decreases with the decrease in the number of infections. This is
basically consistent with the research results of system (3) in this paper.
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Figure 3. The number of the daily statistics of quarantined people in Pakistan from September to
December 2021.
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Figure 4. The red curve represents the daily statistics number of infections in Pakistan from September
to December 2021.
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Figure 5. The blue curve represents the daily statistics death toll in Pakistan from September to
December 2021.
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8. Discussion

So far, the COVID-19 coronavirus disease is still one of the most serious diseases in the
world. Until today, there is no appropriate treatment. At the same time, due to the strong
transmission of the virus, with the existence of many uncertain factors (human activities,
animal activities, express delivery, etc.), it also contains a lot of randomness. With the
help of stochastic theory, we developed a model for the new 2019 coronavirus disease, and
considered studying the transmission characteristics of the disease and understanding its
transmission dynamics in the change in population and environment. The important role
of isolation measures in controlling transmission is introduced. By disturbing the infection
coefficient, the existence and positivity of Lyapunov function theory are studied. In this
paper, in order to further discuss the extinction and stable distribution, we gave a new
random infectious disease system under infection rate environmental noise. We give the
existence and uniqueness of the solution of the system and discuss the ergodic stationary
distribution and the extinction conditions of the system. The probability density function
of the stochastic system is studied. Some digital simulations are used to demonstrate
the probability density function and the extinction of system (3). Through numerical
simulation, we analyzed the above results and drew a conclusion with the support of
graphics. This work shows that random analysis is a better method used to study the
dynamics of infectious diseases, especially the new 2019 coronavirus disease.

We know that the control of infectious diseases needs to consider a variety of random
disturbance factors, and we will consider system (3) in more general random phenomena
and their persistence and extinction properties in our future research.
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