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Abstract: This paper investigates the pricing formula for barrier options where the underlying asset
is driven by the sub-mixed fractional Brownian motion with jump. By applying the corresponding
Itô’s formula, the B-S type PDE is derived by a self-financing strategy. Furthermore, the explicit
pricing formula for barrier options is obtained through converting the PDE to the Cauchy problem.
Numerical experiments are conducted to test the impact of the barrier price, the Hurst index, the
jump intensity and the volatility on the value of barrier option, respectively.
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1. Introduction

Barrier option is a path-dependent exotic option, whose value depends not only on
the price of the underlying asset, but also on whether the price of the underlying asset
touches the preset barrier price within the effective execution period of the option. For
its cheaper premiums against the corresponding vanilla options, barrier options can be
seen everywhere in global exchanges and over-the-counter markets. Many companies use
various barrier options to hedge risks. In addition, the studies on barrier option pricing
can also promote the research of many structured financial products, such as convertible
bonds, bank-triggered financial products and so on. For the above reasons, the pricing of
barrier options has always been a topical issue [1–4]. If the option right terminates (starts)
when the underlying asset price touches the given barrier price, it is called a knock-out (in)
kind; it is called a down (up) option, if the initial underlying asset price is above (below)
the barrier price [5]. Therefore, single-barrier options which this paper discusses include
eight types: down (up)-and-out (in) call (put) options.

In 1973, Merton [6] gave the closed solution of down-and-out European call options.
Later, Reiner and Rubinstein [7] extended the pricing formulas of other European barrier op-
tions in 1991. However, these studies are under the Black–Scholes model [8] (the B-S model)
which assumes the underlying asset price follows the logarithmic normal distribution.
However, in recent years the self-similarity and long-range dependence has been found
in the financial asset through numbers of the financial empirical studies [9,10], which is
inconsistent with the B-S model. Then, Necula [11] studied the extended B-S model, where
the assets price is driven by the fractional Brownian motion (fBm) instead of the Brownian
motion. The fBm was first proposed by Kolmogorov [12], which exhibits self-similarity and
long-range dependence. Since then, a volume of research on option-pricing models with
fBm have been conducted, such as [13–15].

However, the fBm is neither a Markov process nor a semi-martingale, except degen-
erating into the Brownian motion. Although we can use Wick-self-financing strategies to
analyze the fBm [16,17], Björk and Hult [18] found the application of the fBm has little
economic sense, which limited its applicability in financial market. Therefore, other pro-
cesses are proposed to describe the fluctuation of financial assets, such as the sub-fractional
Brownian motion (sub-fBm) [19] and the sub-mixed fractional Brownian motion (sub-mixed
fBm) [20].
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The sub-fBm preserves most properties of the fBm, but it has the characteristics of
non-stationary second-order moment increment and faster convergence [21]. Moreover,
the sub-mixed fBm is a combination of the Brownian motion and the sub-fBm. When
the Hurst index H ∈ [0.75, 1), the sub-mixed fBm becomes a semi martingale, which is
equivalent to the Brownian motion [22]. At the same time, inspired by Merton [23] and
other recent research [24–26], this paper introduces the jump diffusion process to describe
the jump points of asset price caused by unsystematic risk factors, which is usually ignored
in the pricing of barrier options. The purpose of this paper is to obtain the pricing formula
of barrier options where the underlying asset is driven by the sub-mixed fBm and the
compensated Poisson process.

The remainder of this paper is organized as follows: In Section 2, some necessary
preliminary knowledge about the sub-fBm will be presented. In Section 3, we obtain the
corresponding Itô’s formula of the asset price driven by the sub-mixed fBm with jump , and
give the expressions for underlying asset price. In Section 4, the Black–Scholes PDE and the
closed-form solution for barrier options are obtained. In Section 5, numerical experiments
are carried out to study the influences of several parameters on barrier options. Section 6
gives a summary.

2. Preliminaries

Let {Ω,Ft, P} be a complete probability space with a filtration {Ft}t≥0 satisfying the
usual conditions.

Definition 1. The sub-mixed fBm ξH
t =

{
ξH

t (α, β)
}

t≥0 is a linear combination of the Brownian
motion {Bt}t≥0 and the sub-fBm

{
BH

t
}

t≥0, which can be expressed as:

ξH
t (α, β) = αBt + βBH

t , ∀t ≥ 0,

where H is the Hurst index, α and β are positive constants, {Bt}t≥0 and
{

BH
t
}

t≥0 are independent
of each other.

Lemma 1. The sub-mixed fBm ξH
t =

{
ξH

t (α, β)
}

t≥0 has the following properties [20]:

1.
{

ξH
t (α, β)

}
t≥0 is a central Gaussian process.

2. When t = 0, ξH
0 (α, β) = αB0 + βBH

0 = 0.
3. ∀t, s ≥ 0, the covariance of ξH

t (α, β) and ξH
s (α, β) is

Cov
(

ξH
t (α, β), ξH

s (α, β)
)
= α2(t ∧ s) +

β2

2

(
t2H + s2H − |t− s|2H

)
,

where t ∧ s = 1
2 (t + s− |t− s|).

4. ∀t ≥ 0, E
((

ξH
t (α, β)

)2
)
= α2t + β2(2− 22H−1)t2H .

3. Asset Pricing Model

In this paper, we adopt the classical financial stochastic analysis theory and make
some extensions for the B-S model. Furthermore, the following assumptions are hold:

1. There are two kinds of assets in the financial market: risk-free assets (bonds) and risky
assets (stocks).

2. The stock price St is driven by the sub-mixed fBm with jump:

dSt = (µ− q)Stdt + StdξH
t (α, β) + γStdJt

= (µ− q)Stdt + αStdBt + βStdBH
t + γStdJt,

(1)
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where µ is the instantaneous expected return rate of the stock; q is the stock dividend
rate; α, β and γ represent the volatility of stock price; {Jt}t≥0 is a compensated Poisson
process with intensity λ. {Bt}t≥0,

{
BH

t
}

t≥0 and {Jt}t≥0 are independent of each other.
3. The return of risk-free assets in time period t is

dMt = rMtdt, (2)

where constant r is the risk-free interest rate.
4. All assets can be traded freely and continuously without transaction costs and taxes.
5. There is no arbitrage opportunity in the market.
6. Short selling is not limited.
7. The option can be exercised only at the maturity time.

Remark 1. It is worth mentioning that there are some limitations when the B-S type model is
applied, which are detailed in references [27–30]. In this paper, we focus on the classical setting of
B-S model and will not elaborate too much here. If possible, further research can be carried out in
the future.

Theorem 1. Assume that Yt = ξH
t (α, β) + γJt with the initial value zero, and f (t, Yt) is second-

order differentiable. Then, the Itô’s formula of the sub-mixed fBm with jump can be expressed
as follows:

f (t, Yt) = f (0, 0) +
∫ t

0

[
∂ f
∂s
− λγ

∂ f
∂Y

]
ds +

∫ t

0

[
α2

2
+
(

2− 22H−1
)

Hβ2s2H−1
]

∂2 f
∂Y2 ds

+ α
∫ t

0

∂ f
∂Y

dBs + β
∫ t

0

∂ f
∂Y

dBH
s + ∑

s≤t
[ f (s, Ys)− f (s−, Ys−)]

= f (0, 0) +
∫ t

0

{
∂ f
∂s

+

[
α2

2
+

λγ2

2
+
(

2− 22H−1
)

Hβ2s2H−1
]

∂2 f
∂Y2

}
ds

+ α
∫ t

0

∂ f
∂Y

dBs + β
∫ t

0

∂ f
∂Y

dBH
s + γ

∫ t

0

∂ f
∂Y

dJs.

Proof. According to the sub-mixed fBm Itô’s formula [20] and the jump process analysis
method [31], we have

f (t, Yt) = f (0, 0) +
∫ t

0

∂ f
∂s

ds +
∫ t

0

∂ f
∂S

dYc
s +

1
2

∫ t

0

∂2 f
∂S2 (dYc

s )
2 + ∑

s≤t
[ f (s, Ys)− f (s−, Ys−)]

= f (0, 0) +
∫ t

0

[
∂ f
∂s
− λγ

∂ f
∂Y

]
ds +

∫ t

0

[
α2

2
+
(

2− 22H−1
)

Hβ2s2H−1
]

∂2 f
∂Y2 ds

+ α
∫ t

0

∂ f
∂Y

dBs + β
∫ t

0

∂ f
∂Y

dBH
s + ∑

s≤t
[ f (s, Ys)− f (s−, Ys−)]. (3)

The following identities are used:

dYc
t = αdBt + βdBH

t − λγdt,

(dYc
t )

2 =
[
α2 + 2

(
2− 22H−1

)
Hβ2t2H−1

]
dt

and Yc
t = αBt + βBH

t − λγt is the continuous part of Yt.
If g(x) is second order differentiable. Given that Poisson process {Nt}t≥0 with intensity

λ has the second-order moment increments < dNt, dNt >= λdt, by generalized Itô’s
formula we obtain

∑
s≤t

[g(Ns)− g(Ns−)] =
∫ t

0

∂g
∂N

dNs +
λ

2

∫ t

0

∂2g
∂N2 ds.
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Combining Yt = ξH
t (α, β) + γJt = αBt + βBH

t + γNt − λγt, we arrive at

∑
s≤t

[ f (s, Ys)− f (s, Ys−)] = γ
∫ t

0

∂ f
∂Y

dNs +
λγ2

2

∫ t

0

∂2 f
∂Y2 ds. (4)

Substitute (4) back to (3), which yields

f (t, Yt) = f (0, 0) +
∫ t

0

{
∂ f
∂s

+

[
α2

2
+

λγ2

2
+
(

2− 22H−1
)

Hβ2s2H−1
]

∂2 f
∂Y2

}
ds

+ α
∫ t

0

∂ f
∂Y

dBs + β
∫ t

0

∂ f
∂Y

dBH
s + γ

∫ t

0

∂ f
∂Y

dJs.

Theorem 2. The stock price satisfying (1) has the following explicit solution:

St = S0 exp
{
(µ− q)t−

[(
α2

2
+

λγ2

2

)
t +
(

1− 22H−2
)

β2t2H
]
+ αBt + βBH

t + γJt

}
.

Proof. Let f (t, Yt) = S0 exp
{
(µ− q)t−

[(
α2

2 + λγ2

2

)
t +
(
1− 22H−2)β2t2H

]
+ Yt

}
.

An application of Theorem 1 yields

d f (t, Yt) =

{
∂ f
∂t

+

[
α2

2
+

λγ2

2
+
(

2− 22H−1
)

Hβ2t2H−1
]

∂2 f
∂Y2

}
dt +

∂ f
∂Y

dYt.

= (µ− q) f (t, Yt)dt + f (t, Yt)dYt

= (µ− q) f (t, Yt)dt + f (t, Yt)dξH
t (α, β) + γ f (t, Yt)dJt,

(5)

where

∂ f
∂t

=

{
(µ− q)−

[(
α2

2
+

λγ2

2

)
+
(

2− 22H−1
)

Hβ2t2H−1
]}

f (t, Yt),

∂ f
∂Y

= f (t, Yt) and
∂2 f
∂Y2 = f (t, Yt).

Comparing (1) and (5), we can deduce dSt = d f (t, Yt), where the values are the same
f (0, Y0) = S0 . Therefore,

St = f (t, Yt)

= S0 exp
{
(µ− q)t−

[(
α2

2
+

λγ2

2

)
t +
(

1− 22H−2
)

β2t2H
]
+ αBt + βBH

t + γJt

}
.

4. Pricing Formula for Barrier Options

With the explicit solution of the stock price St in hand, in this section the pricing
formula for battier options can be derived.

Theorem 3. Assuming that the underlying asset price St follows (1), then the value of contingent
claims Vt = V(t, St) satisfies the following PDE:

∂V
∂t

+ (r− q)St
∂V
∂S

+

[
α2

2
+

λγ2

2
+
(

2− 22H−1
)

Hβ2t2H−1
]

S2
t

∂2V
∂S2 − rVt = 0.
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Proof. Using the self-financing strategy θt =
(
θ1

t , θ2
t
)
, we hold a number of θ1

t bonds and
θ2

t stocks to build the wealth process, whose value at time t is

Vt = θ1
t Mt + θ2

t St. (6)

Combining (1) and (2), we obtain

dVt = θ1
t dMt + θ2

t dSt + θ2
t qStdt

=
(

rθ1
t Mt + µθ2

t St

)
dt + θ2

t St

(
αdBt + βdBH

t + γdJt

)
.

(7)

At the same time, by applying Theorems 1 and 2, we have

dVt =
∂V
∂t

dt +
∂V
∂S

dSt +
1
2

∂2V
∂S2 (dSt)

2

=

{
∂V
∂t

+ (µ− q)St
∂V
∂S

+

[
α2

2
+

λγ2

2
+
(

2− 22H−1
)

Hβ2t2H−1
]

S2
t

∂2V
∂S2

}
dt

+ St
∂V
∂S

(
αdBt + βdBH

t + γdJt

)
,

(8)

where (dSt)
2 = S2

t
[(

α2 + λγ2)+ 2
(
2− 22H−1)Hβ2t2H−1]dt.

Comparing (7) and (8), θ1
t and θ2

t are given
θ1

t = (rMt)
−1
{

∂V
∂t
− qSt

∂V
∂S

+

[
α2

2
+

λγ2

2
+
(
2− 22H−1)Hβ2t2H−1

]
S2

t
∂2V
∂S2

}
,

θ2
t =

∂V
∂S

.
(9)

From (6), we obtain

θ1
t =

Vt − θ2
t St

Mt
. (10)

Combining (9) and (10), Theorem 3 is proved.

Theorem 4. Suppose that the underlying asset price St satisfies (1), then at time t the value of
the down-and-out call option Cdo(t, St) with the fixed strike price K, the fixed barrier L and the
maturity time T is given

Cdo(t, St) =Ste−q(T−t)N(d1)− Ke−r(T−t)N(d2)

−
(

St

L

)κ(t)[ L2

St
e−q(T−t)N(d3)− Ke−r(T−t)N(d4)

]
.

The following identities are used: N(x) = 1√
2π

∫ x
−∞ e−

t2
2 dt, which denotes the cumulative proba-

bility of standard normal distribution;

d1 =
ln St

K +
(

r− q + α2

2 + λγ2

2

)
(T − t) +

(
1− 22H−2)β2(T2H − t2H)√

(α2 + λγ2)(T − t) + (2− 22H−1)β2(T2H − t2H)
;

d2 = d1 −
√
(α2 + λγ2)(T − t) + (2− 22H−1)β2(T2H − t2H);

d3 =
ln L2

KSt
+
(

r− q + α2

2 + λγ2

2

)
(T − t) +

(
1− 22H−2)β2(T2H − t2H)√

(α2 + λγ2)(T − t) + (2− 22H−1)β2(T2H − t2H)
;

d4 = d3 −
√
(α2 + λγ2)(T − t) + (2− 22H−1)β2(T2H − t2H);

κ(t) = 1− 2(r− q)(T − t)
(α2 + λγ2)(T − t) + (2− 22H−1)β2(T2H − t2H)

.
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Proof. Let Vt(t, St) = Cdo(t, St) = Cdo. Then according to Theorem 3, the value of the
down-and-out call option Cdo(t, St) is given by

∂Cdo
∂t

+ (r− q)St
∂Cdo
∂S

+

[
α2

2
+

λγ2

2
+
(

2− 22H−1
)

Hβ2t2H−1
]

S2
t

∂2Cdo
∂S2 − rCdo = 0,

with the initial condition Cdo(T, ST) = (ST − K)+, L < St < +∞, and the boundary
condition Cdo(t, L) = 0, 0 ≤ t ≤ T.

Let
x = ln

St

L
, Cdo(t, St) = LĈ(t, x). (11)

Then,

∂Cdo
∂t

= L
∂Ĉ
∂t

,
∂Cdo
∂S

= L
∂Ĉ
∂x

∂x
∂S

=
L
St

∂Ĉ
∂x

and
∂2Cdo
∂S2 =

L
S2

t

[
∂2Ĉ
∂x2 −

∂Ĉ
∂x

]
.

Therefore, we can deduce that

∂Ĉ
∂t

+ (r− q)
∂Ĉ
∂x

+

[
α2

2
+

λγ2

2
+
(

2− 22H−1
)

Hβ2t2H−1
](

∂2Ĉ
∂x2 −

∂Ĉ
∂x

)
− rĈ = 0,

with the initial condition Ĉ
(

T, ln
ST
L

)
=

(
ex − K

L

)+

, 0 < x < +∞, and the boundary

condition Ĉ(0, t) = 0, 0 ≤ t ≤ T.
Next, let

ω(τ, η) = Ĉ(x, t)eb(t), τ = c(t), η = x + a(t), (12)

where a(t), b(t) and c(t) are undetermined functions about t, which are first order differen-
tiable. Then, we derive

∂Ĉ
∂t

= e−b(t)
[

a′(t)
∂ω

∂η
+ c′(t)

∂ω

∂τ
− b′(t)ω

]
,

∂Ĉ
∂x

= e−b(t) ∂ω

∂η
,

∂2Ĉ
∂x2 = e−b(t) ∂2ω

∂η2

and

c′(t)
∂ω

∂τ
+ σ(t)

∂2ω

∂η2 +
[
r− q + a′(t)− σ(t)

]∂Ĉ
∂x
−
[
r + b′(t)

]
ω = 0, (13)

where σ(t) =
α2

2
+

λγ2

2
+ (2− 22H−1)Hβ2t2H−1.

In order for the solution, let
c′(t) + σ(t) = 0,
r− q + a′(t)− σ(t) = 0,
r + b′(t) = 0,
a(T) = b(T) = c(T) = 0,

(14)

to convert (13) into the heat equation.
From (14), a(t), b(t) and c(t) are given

a(t) =
∫ T

t
r− q− σ(s)ds =

(
r− q− α2

2
− λγ2

2

)
(T − t)−

(
1− 22H−2

)
β2
(

T2H − t2H
)

,

b(t) =
∫ T

t
rds = r(T − t),

c(t) =
(

α2

2
+

λγ2

2

)
(T − t) +

(
1− 22H−2)β2(T2H − t2H).

(15)
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Substitute (15) into (13), then the value of the down-and-out call option Cdo(t, St) is
given by

∂ω

∂τ
=

∂2ω

∂η2 , (16)

with the initial condition ω(0, η) = (eη − K)+, 0 < η < +∞, and the boundary condition
ω(τ, a(t)) = 0, 0 ≤ t ≤ T.

Notice that if we just consider PDE with its initial condition, the solution can be
obtained by the Poisson formula

ω(τ, η) =
1

2
√

πτ

∫ +∞

−∞
ϕ(z)e−

(η−z)2
4τ dz. (17)

To deal with the boundary condition, let G(z) = ϕ(z)e−
[a(t)−z]2

4τ when z > 0. Then we
extend G(z) to become an odd function in the whole real number field

G(z) =

 ϕ(z)e−
[a(t)−z]2

4τ , z > 0,

−ϕ(−z)e
[a(t)+z]2

4τ , z ≤ 0.

Comparing the above equation and the original initial condition in (16), we obtain
extended initial condition which contains the boundary condition

ϕ(z) =


(

ez − K
L

)+
, z > 0,

−
(

e−z − K
L

)+
e−

a(t)z
τ , z ≤ 0.

Therefore, (16) will be transformed into a Cauchy problem

∂ω

∂τ
=

∂2ω

∂η2 , (18)

with the initial condition ω(0, η) = ϕ(η), −∞ < η < +∞.
According to (17),

ω(τ, η) =
1

2
√

πτ

∫ +∞

−∞
ϕ(z)e−

(η−z)2
4τ dz

=
1

2
√

πτ

∫ +∞

ln K
L

(
ez − K

L

)
e−

(η−z)2
4τ dz− 1

2
√

πτ

∫ −ln K
L

−∞

(
e−z − K

L

)
e−

(η−z)2+4a(t)z
4τ dz

=
1

2
√

πτ

∫ +∞

ln K
L

ez− (η−z)2
4τ dz− 1

2
√

πτ

K
L

∫ +∞

ln K
L

e−
(η−z)2

4τ dz− 1
2
√

πτ

∫ +∞

ln K
L

ez− (η+z)2−4a(t)z
4τ dz

+
1

2
√

πτ

K
L

∫ +∞

ln K
L

e
(η+z)2−4a(t)z

4τ dz

=I1 + I2 + I3 + I4.

For convenience, define N(x) as follows: N(x) = 1√
2π

∫ x
−∞ e−

t2
2 dt, which represents

the cumulative probability of standard normal distribution.

For I1,

I1 =
1

2
√

πτ

∫ +∞

ln K
L

ez− (η−z)2
4τ dz = eτ+η 1

2
√

πτ

∫ +∞

ln K
L

e−
(z−η−2τ)2

4τ dz.
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Let t = z−η−2τ√
2τ

, then

I1 = eτ+η 1√
2π

∫ +∞

ln K
L −η−2τ
√

2τ

e−
t2
2 dt = eτ+η N(d1),

where d1 =
η + 2τ − ln K

L√
2τ

.

Similarly, let t = z−η√
2τ

and obtain

I2 = − 1
2
√

πτ

K
L

∫ +∞

ln K
L

e−
(η−z)2

4τ dz = −K
L

1√
2π

∫ +∞

ln K
L −η
√

2τ

e−
t2
2 dt = −K

L
N(d2),

where d2 =
η − ln K

L√
2τ

= d1 −
√

2τ.

For I3,

I3 = − 1
2
√

πτ

∫ +∞

ln K
L

ez− (η+z)2−4a(t)z
4τ dz = −e

[τ+a(t)][τ+a(t)−η]
τ

1
2
√

πτ

∫ +∞

ln K
L

e−
[z+η−2a(t)−2τ]2

4τ dz.

Let t = z+η−2a(t)−2τ√
2τ

, then

I3 = −e
[τ+a(t)][τ+a(t)−η]

τ
1√
2π

∫ +∞

ln K
L +η−2a(t)−2τ
√

2τ

e−
t2
2 dt = −e

[τ+a(t)][τ+a(t)−η]
τ N(d3),

where d3 =
2a(t) + 2τ − η − ln K

L√
2τ

.

For I4, let t = z+η−2a(t)√
2τ

, we derive

I4 =
1

2
√

πτ

K
L

∫ +∞

ln K
L

e−
(η+z)2−4a(t)z

4τ dz =
K
L

e
a(t)[a(t)−η]

τ
1

2
√

πτ

∫ +∞

ln K
L

e−
[z+η−2a(t)]2

4τ dz

= e
a(t)[a(t)−η]

τ
1√
2π

∫ +∞

ln K
L +η−2a(t)
√

2τ

K
L

e−
t2
2 dt =

K
L

e
a(t)[a(t)−η]

τ N(d4),

where, d4 =
2a(t)− η − ln K

L√
2τ

= d3 −
√

2τ.

Substitute (11) and (12) in them, then

I1 =
St

L
e(r−q)(T−t)N(d1);

I2 =− K
L

N(d2);

I3 =− e
(r−q)(T−t)

(
τ−ln St

L

)
τ N(d3) = −e(r−q)(T−t)+

[
1− (r−q)(T−t)

τ

]
ln St

L −ln St
L N(d3)

=− e(r−q)(T−t)
(

St

L

)1− (r−q)(T−t)
τ L

St
N(d3);

I4 =
K
L

e
[τ−(r−q)(T−t)]ln St

L
τ N(d4) =

K
L

(
St

L

)1− (r−q)(T−t)
τ

N(d4).
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By combining I1, I2, I3, and I4, we have

Cdo(t, St) =LĈ(t, x) = Le−r(T−t)ω(τ, η) = Le−r(T−t)(I1 + I2 + I3 + I4)

=Ste−q(T−t)N(d1)− Ke−r(T−t)N(d2)

−
(

St

L

)κ(t)[ L2

St
e−q(T−t)N(d3)− Ke−r(T−t)N(d4)

]
,

where κ(t) = 1− 2(r− q)(T − t)
(α2 + λγ2)(T − t) + (2− 22H−1)β2(T2H − t2H)

.

Corollary 1. Suppose that the underlying asset price St satisfies (1), then at time t the value of the
vanilla call option Cvanilla(t, St) with the fixed strike price K and the maturity time T is given

Cvanilla(t, St) = Ste−q(T−t)N(d1)− Ke−r(T−t)N(d2),

where N(x), d1 and d2 are shown in Theorem 4.

Proof. The proof process is similar to that of Theorem 4.
Let

1. x̃ = ln St
L , Cvanilla(t, St) = LC̃(t, x̃);

2. ω̃(τ̃, η̃) = C̃(t, x̃)eb(t); τ̃ = c(t); η̃ = x̃ + a(t),

where a(t), b(t) and c(t) are given in (15).
Then, the value of vanilla call option Cvanilla(t, St) can be obtained by solving the

following Cauchy problem
∂ω̃

∂τ̃
=

∂2ω̃

∂η̃2 ,

with the initial condition ω̃(0, η̃) = (eη̃ − K)+, 0 < η̃ < +∞.
The remaining calculation process can be obtained by referring to the solution process

of (18).

Corollary 2. Suppose that the underlying asset price St satisfies (1), then at time t the value of the
vanilla put option Pvanilla(t, St) at time t with the fixed strike price K and the maturity time T is

Pvanilla(t, St) = Ke−r(T−t)N(−d2)− Ste−q(T−t)N(−d1),

where N(x), d1, d2 are given in Theorem 4.

Proof. We just need change the condition to (K− ST)
+ and the rest of prove process are

similar to Corollary 1.

Theorem 5. Suppose that the underlying asset price St satisfies (1), then at time t there is the
following parity formula between the value of the down-and-out call option Cdo(t, St) and the value
of the down-and-out put option Pdo(t, St), if the options have the same fixed strike price K, the same
fixed barrier L and the same maturity time T:

Cdo(t, St) + Ke−r(T−t)

[
N(d6)−

(
St

L

)κ(t)
N(d8)

]

=Pdo(t, St) + Ste−q(T−t)

[
N(d5)−

(
St

L

)κ(t)−2
N(d7)

]
,



Fractal Fract. 2022, 6, 244 10 of 15

where N(x) = 1√
2π

∫ x
−∞ e−

t2
2 dt, which denotes the cumulative probability of standard

normal distribution;

d5 =
ln St

L +
(

r− q + α2

2 + λγ2

2

)
(T − t) +

(
1− 22H−2)β2(T2H − t2H)√

(α2 + λγ2)(T − t) + (2− 22H−1)β2(T2H − t2H)
;

d6 = d5 −
√
(α2 + λγ2)(T − t) + (2− 22H−1)β2(T2H − t2H);

d7 =
ln L

St
+
(

r− q + α2

2 + λγ2

2

)
(T − t) +

(
1− 22H−2)β2(T2H − t2H)√

(α2 + λγ2)(T − t) + (2− 22H−1)β2(T2H − t2H)
;

d8 = d7 −
√
(α2 + λγ2)(T − t) + (2− 22H−1)β2(T2H − t2H);

κ(t) = 1− 2(r− q)(T − t)
(α2 + λγ2)(T − t) + (2− 22H−1)β2(T2H − t2H)

.

Proof. Let
Wdo(t, St) = Cdo(t, St)− Pdo(t, St), (19)

which is the difference between the value of the down-and-out call option Cdo(t, St) and
the down-and-out put option Pdo(t, St) at the moment of t. Notice that Wdo(t, St) satisfies
the following PDE

∂Wdo
∂t

+ (r− q)St
∂Wdo

∂S
+

[
α2

2
+

λγ2

2
+
(

2− 22H−1
)

Hβ2t2H−1
]

S2
t

∂2Wdo
∂S2 − rWdo = 0,

with the initial condition Wdo(T, ST) = ST − K, L < St < +∞, and the boundary condi-
tion Wdo(t, L) = 0, 0 ≤ t ≤ T.

By analogy with the solution procedure of (16), it can be obtained

Wdo(t, St) =Ste−q(T−t)N(d5)− Ke−r(T−t)N(d6)

−
(

St

L

)κ(t)[ L2

St
e−q(T−t)N(d7)− Ke−r(T−t)N(d8)

]
.

Combining the above equation and (19), Theorem 5 is proved.

Theorem 6. Suppose that the underlying asset price St satisfies (1), then at time t the value of
the down-and-out put option Pdo(t, St) with the fixed strike price K, the fixed barrier L and the
maturity time T is

Pdo(t, St) =Ste−q(T−t)[N(d1)− N(d5)]− Ke−r(T−t)[N(d2)− N(d6)]

−
(

St

L

)κ(t){ L2

St
e−q(T−t)[N(d3)− N(d7)]− Ke−r(T−t)[N(d4)− N(d8)]

}
,

where N(x), d1 ∼ d8 and κ(t) are given in Theorems 4 and 5.

Proof. By combining Theorems 4 and 5, Theorem 6 is easily proved.

Theorem 7. Suppose that the underlying asset price St follows Equation (1), the maturity date is T,
the fixed strike price is K and the fixed barrier is B, and then the value of the down-and-in call option
Cdi(t, St) and the value of the down-and-in put option Pdi(t, St) at time t are given, respectively:
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Cdi(t, St) =

(
St

L

)κ(t)[ L2

St
e−q(T−t)N(d3)− Ke−r(T−t)N(d4)

]
,

Pdi(t, St) =Ke−r(T−t)N(−d6)− Ste−q(T−t)N(−d5)

+

(
St

L

)K(t){ L2

St
e−q(T−t)[N(d3)− N(d7)]− Ke−r(T−t)[N(d4)− N(d8)]

}
,

where N(x), d3 ∼ d8 and κ(t) are detailed in Theorems 4 and 5.

Proof. When other conditions are the same, a portfolio with a out option and the cor-
responding in option will always be able to exercise one of their option right, which is
equivalent to a vanilla option

Vvanilla(t, St) = Vdo(t, St) + Vdi(t, St) = Vuo(t, St) + Vui(t, St),

where Vvanilla(t, St) is the European option, Vdo(t, St), Vdi(t, St), Vuo(t, St) and Vui(t, St),
respectively, denote the corresponding value of the down-and-out option, the down-and-in
option, the up-and-out option and the up-and-in option.

Therefore, Cdi(t, St) = Cvanilla(t, St)− Cdo(t, St); Pdi(t, St) = Pvanilla(t, St)− Pdo(t, St).
Using Corollary 1, Corollary 2, Theorems 4 and 6, Theorem 7 is proved.

Above all, the pricing formulas of all four types of downward barrier options have
been given. Similarly, the pricing formulas corresponding to four types of upward barrier
options can be deduced.

5. Numerical Experiment

In this section, numerical experiments are conducted to discuss the effects of the barrier
price L, the Hurst index H, the jump intensity λ and volatility α, β, γ on barrier options
by MATLAB and R language software. In this section, we just take the down-and-out call
option as an example for space constraints.

Firstly, parameters are assumed as follows:

t = 0, T = 0.5, K = 100, H = 0.75, α = β = γ = 0.4, λ = 1.

According to Theorem 4, the value of down-and-out call option Cdo(t, St) under
different barrier prices and stock prices can be obtained, which are given in Table 1. At the
same time, Figure 1 is drawn to describe the trend of option value affected by barrier price
under different stock prices.

Table 1. The value of down-and-out options for different barrier prices and stock prices.

L S0 = 120 S0 = 110 S0 = 100 S0 = 90 S0 = 80

115 6.350 – – – –
110 12.112 0.000 – – –
100 22.445 11.591 0.000 – –
95 26.969 16.541 5.534 – –
90 31.042 20.926 10.551 0.000 –
85 34.654 24.731 15.095 5.086 –
80 37.803 27.956 19.149 9.510 0.000
75 40.495 30.613 22.702 13.264 4.507
70 42.748 32.730 25.757 16.351 8.275
65 44.587 34.352 28.324 18.798 11.321
60 46.049 35.533 30.430 20.653 13.680
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Figure 1. The change curve of the value of down-and-out option for different barrier prices.

Observing Table 1 and Figure 1, it can be seen that when the stock price is fixed, the
value of down-and-out call option decreases with the growth of barrier price. When other
conditions remain unchanged, with the rising barrier price, the possibility of down-and-
out call option termination is increasing, so the option value will continue to decline. In
particular, when the barrier price increases to the initial stock price, the option will be
knocked out at once, which means it has no value any more.

Then, in order to discuss the impact of the Hurst index H and the jump intensity λ on
the option price, a new hypothesis is proposed as follows:

t = 0, T = 0.5, K = 100, L = 70, α = β = γ = 0.4.

Take the different H, λ, and other assumptions remain unchanged to obtain the option
value under various conditions, as shown in Table 2.

Table 2. The value of down-and-out option for different Hurst index and jump intensity.

S0
H = 0.75 H = 0.85 H = 0.95

λ = 0 λ = 2 λ = 4 λ = 0 λ = 2 λ = 4 λ = 0 λ = 2 λ = 4

120 31.119 36.621 40.017 29.761 35.812 39.501 28.472 35.045 39.018
115 27.257 32.652 35.839 25.860 31.879 35.360 24.500 31.141 34.910
110 23.554 28.760 31.708 22.144 28.033 31.270 20.737 27.334 30.857
105 20.024 24.949 27.626 18.632 24.278 27.232 17.212 23.628 26.859
100 16.679 21.217 23.590 15.344 20.613 23.244 13.953 20.025 22.916
95 13.524 17.563 19.600 12.291 17.038 19.305 10.982 16.522 19.026
90 10.559 13.982 15.650 9.479 13.545 15.411 8.311 13.115 15.183
85 7.770 10.462 11.734 6.895 10.125 11.553 5.935 9.791 11.380
80 5.129 6.988 7.842 4.510 6.759 7.722 3.821 6.531 7.606
75 2.582 3.534 3.959 2.259 3.418 3.900 1.896 3.302 3.843

Figure 2 is the variation diagram of the value of down-and-out call option with the
different Hurst index and jump intensity, when S0 is fixed at 100. The relationships between
the value of down-and-out option and the Hurst index is positive. The larger the Hurst
index is, the more stable the underlying asset price is. This means the price fluctuation will
be smaller, which denotes the corresponding option value will be smaller.

At the same time, the value of down-and-out option and the jump intensity change in
the same direction. The jump intensity represents the unsystematic risk. When it increases,
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the underlying asset will has more intense fluctuations, which means higher upper limit
and invariant lower bound. Therefore, the option value will rise.

Figure 2. Plot of down-and-out option value against different Hurst index and jump intensity values.

Finally, for rigorousness, we verify the positive correlation between the volatility and
the value of down-and-out call option, where α, β, and γ are different. Assume that the
parameter selection is as follows:

t = 0, T = 0.5, K = 100, L = 70, H = 0.75, λ = 1.

Let σ̂ = (α, β, γ), and make

σ̂1 = (0.1, 0.15, 0.2); σ̂2 = (0.2, 0.25, 0.3); σ̂3 = (0.3, 0.35, 0.4); σ̂4 = (0.4, 0.45, 0.5).

According to Theorem 4, the value of down-and-out call option under different volatil-
ity can be obtained, which are shown in Table 3. The value of down-and-out call option
increases with the rise of the volatility, which is consistent with the fact.

Table 3. The value of down-and-out option against the volatility of the underlying asset.

S0
σ̂1 =

(0.1, 0.15, 0.2)
σ̂2 =

(0.2, 0.25, 0.3)
σ̂3 =

(0.3, 0.35, 0.4)
σ̂4 =

(0.4, 0.45, 0.5)

120 25.323 28.441 32.360 36.149
115 20.918 24.467 28.506 32.202
110 16.770 20.702 24.790 28.338
105 12.963 17.176 21.222 24.559
100 9.581 13.917 17.807 20.867
95 6.704 10.948 14.549 17.259
90 4.385 8.281 11.443 13.729
85 2.637 5.910 8.477 10.267
80 1.416 3.803 5.623 6.856
75 0.608 1.886 2.838 3.467

6. Conclusions

This paper investigated the barrier option pricing model in the environment of the sub-
mixed fractional Brownian motion with jump intensity. Through the self-financing strategy,
we derive the B-S type PDE of the derivatives. Then, the value of the down-and-out option
is obtained by applying transformation techniques. Meanwhile, the parity formula between
barrier call option and barrier put option can be given by a similar method. Next, using
the linear relationship between the knock-out option and the knock-in option, the value of
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the knock-in option can be deduced. In Section 5, the numerical experiment is carried out
where we take the down-and-out call option as an example. According to the results shown
in Figures 1 and 2, and Table 3, the following relationships can be found: The barrier price
and Hurst index are inversely related to the value of the down-and-out call option, while
the jump intensity and volatility are positively correlated with it. In the above numerical
experiment, the parameter values are averages. It may affect the application of the model
according to reference [32], and we will try our best to overcome this limitation in future
research. Meanwhile, the Asian barrier options can also be considered to extend the model
used in this paper.
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