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Abstract: With outbreaks of epidemics, an enormous loss of life and property has been caused. Based
on the influence of disease transmission and information propagation on the transmission charac-
teristics of infectious diseases, in this paper, a fractional-order SIR epidemic model is put forward
on a two-layer weighted network. The local stability of the disease-free equilibrium is investigated.
Moreover, a conclusion is obtained that there is no endemic equilibrium. Since the elderly and the
children have fewer social tiers, a targeted immunity control that is based on age structure is proposed.
Finally, an example is presented to demonstrate the effectiveness of the theoretical results. These
studies contribute to a more comprehensive understanding of the epidemic transmission mechanism
and play a positive guiding role in the prevention and control of some epidemics.

Keywords: fractional-order; weighted networks; SIR network models; targeted immunity; epidemic
dynamics

1. Introduction

Infectious diseases, especially the outbreak and pandemic of emerging infectious
diseases, have become a major public health problem around the world. Neither modern
science nor technology can predict when and where a new infection will occur. However,
once this occurs, it is often not possible to respond in a timely and effective manner due to a
lack of understanding of the epidemic. For example, COVID-19, at the end of 2019, with its
high infection rate and rapid onset of the cycle, has posed a huge threat to human lives and
caused immeasurable losses to the economy of China and even the entire world. Therefore,
the study of pathogenesis, the law of transmission, as well as strategies for the prevention
and treatment of infectious diseases are of great practical importance and perspective.

The network model is one of the most widely studied models in recent years. Individu-
als in a crowd are treated as nodes in the network, and the relationship between individuals
is described by edges between the nodes. The most influential research was carried out by
Pastor-Satorras and Vespignani in [1], where SIS (susceptible-infected-susceptible) and SIR
(susceptible-infected-recovered) models were studied using mean field theory. Moreover,
in order to better analyze the characteristics of disease transmission in the population,
not only the evolution of the population network was taken into account but also the
transmission of information about the disease. Recently, some researchers [2–5] have
extended the dynamics of transmission of infectious disease to a multi-layer network,
which led to a deeper study of mathematical epidemiology. Kan et al. [6] introduced a
self-consciousness variable and found that the infection threshold and the infected density
are influenced by the consciousness network, the topology of the disease network, and the
effective transmission rate. In addition, some scientists proposed a transmission model
of infectious diseases in a multi-layer coupling network from a new perspective in [7–9].
The transmission probability among the set of possible node states and the influence of
network topology on the transmission threshold were analyzed in a multi-layer network.
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In [10], the awareness of infection risk was incorporated into the Volz–Miller SIR epidemic
model, to study the effect of awareness on disease dynamics.

As the above research progressed, it became clear that the strength of the relationship
between people can seriously affect the transmission of the epidemic. Edge weights
indicate the familiarity or intimacy of interactive individuals. The larger the weight of
the edge between two nodes is, the easier the susceptible can be infected and the quicker
the unknown individual can acquire the disease message. In [11–14], some methods for
estimating disease transmission along the edges in weighted networks were presented. A
modified epidemic SIS model with a birth–death process and nonlinear infectivity in an
adaptive and weighted contact network was proposed in [15]. The model indicated that
the intimacy or familiarity between two related individuals would decrease as the disease
progresses. To estimate the epidemic threshold and epidemic size on networks with general
degree and weight distributions, a new edge-weight-based compartmental approach was
developed in [16]. It was found in [17] that the weight exponent can contribute to the
transmission of the epidemic by increasing the basic reproduction number, and the effect of
the internal rate of infectiousness on the prevalence of the epidemic was greater than the
effect of the rate of cross-infection for various network structures.

It can be found that the weight of the network has a great influence on the spread
of disease. However, these studies did not put forward a control strategy to control the
disease from the perspective of network weights. Therefore, in order for the transmission
process to represent a realistic system, in this paper, we build a model of the epidemic
on a weighted two-layer network and evaluate the impact of network weights on disease
transmission, and try to propose an effective control method based on the network weights.

Since the fractional-order epidemic model is an extension of the integer-order epidemic
model and it is more advantageous to describe processes that have memory and heritability,
many scientists [18–20] have used fractional order differential equations to analyze the
dynamics of transmission of infectious diseases. Based on the basic reproduction number
and Lyapunov’s theory of stability, Zafar et al. [21] analyzed the stability of the equilibrium
point of a fractional-order HIV/AIDS model and the control of its spread. Rostamy et al. [22]
discussed the existence of multiple equilibrium points in the SIR model and showed that
choosing appropriate fractional order parameters can extend the stable region of the
equilibrium points. In [23], a mathematical model consisting of a system of nonlinear
fractional order differential equations was presented, in which bats were considered as the
origin of the virus that spread the disease into the human population. A fractional-order
SIR model, which employs the Caputo fractional derivative and incorporates infectious and
noninfectious abandonment dynamics, was discussed in [24]. Furthermore, fractional-order
SIR systems in the context of COVID-19 were built [25,26], especially, a novel modified
predictor-corrector method was proposed to capture the nature of the obtained solution
for a suitable nonlinear fractional dynamical system with different arbitrary orders [27].
However, few studies [28,29] have analyzed the specific influence of fractional order
on transmission dynamics. Therefore, quantifying the effect of fractional order on the
transmission threshold for a specific model is a significant supplement to the dynamics of
infectious diseases.

In addition, for fractional-order infectious disease models, some researchers have
proposed vaccination control strategies to prevent the spread of the disease. If the im-
munity control objects are different, the control effect will be different. Age-targeted
immunity [30,31], internet-information-driven immunity [32–34], and dynamic immunity
of human behavior [35] are common control methods. A few studies [36–38] have shown
that people with low immunity are more likely to be infected and are less treatable. From
the perspective of a complex network, people with low immunity are the nodes with
low weights in the network. Therefore, the implementation of vaccination control for the
nodes whose weight is less than a certain threshold can play a great role in controlling the
spread of infectious diseases. Based on the fractional-order epidemic model on a two-layer
weighted network, a targeted immunity control strategy is proposed for nodes whose
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weight is less than a certain value, which can not only suppress the spread of the epidemics
but also save the cost of control.

The paper is organized as follows. In Section 2, we propose a fractional-order SIR
model for two-layer weighted networks. In Section 3, the stability of the disease-free
equilibrium and endemic equilibrium on weighted networks are analyzed separately. In
Section 4, a linear vaccine control based on age structure is presented to inoculate the nodes
whose weights are less than a certain value. Numerical confirmation of the theoretical
predictions is provided in Section 5. Some conclusions are made in Section 6.

2. Model Description

The nodes of the disease network can be divided into three categories: susceptible
nodes S, infected nodes I, and recovery nodes R. The law of transmission is shown in
Figure 1. Social network nodes can also be divided into three categories: A represents the
nodes that know the disease message and spread it out, C represents the nodes that know
the disease message but do not spread it; U represents the nodes that do not know the
disease message. The law of transmission between them is shown in Figure 2.
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In a social network for a node i with the degree k, its connection weight with node j is
ωij. If node i is connected with node j, then ωij 6= 0; on the contrary, then ωij = 0. Here, we
will only focus on undirected networks, namely ωij = ωji. According to previous research,
the weight of nodes has a strong influence on disease transmission.

By combining the states of nodes in a social-disease network, all nodes can be divided
into the following states: US, UR, AS, AI, AR, CS, CI, and CR. The law of transmission
between states is shown in Figure 3.

From Figure 3, we can find that for a susceptible node i, the probability of its infection
by the neighboring infected nodes is equal to λI(ωij) = 1− (1− α)ωij , based on the weight
(the weight is determined by the social network). If there are p infected nodes with degree

k, then the overall probability of infection is 1−
p
Π
j=1

(1− λI(ωij)). Likewise, for a node i,

which does not know the disease message, the probability that it will receive a disease
message from a neighboring node is λA(ωij) = 1− (1− qγ)ωij . If the degree of the node
is k, where there are l nodes that know and transmit a message about the disease to other

people, then the total probability of receiving information is 1−
l

Π
j=1

(1− λA(ωij)). Thus,

the law of transmission between the eight states is shown in Figure 4.
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According to the relationship between disease transmission and information propaga-
tion, a fractional-order SIR network model in a two-layer network is established as follows:

DmρUS = −ρI
[

1−
p
Π
j=1

(1− λI)

]
ρUS − ρA

[
1−

l
Π
j=1

(1− λA)

]
ρUS, (1a)

DmρUR = −ρA
[

1−
l

Π
j=1

(1− λA)

]
ρUR, (1b)

DmρAS = ρA
[

1−
l

Π
j=1

(1− λA)

]
ρUSγ− ρI

[
1−

p
Π
j=1

(1− λI)

]
ρAS, (1c)
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DmρAI = ρI
[

1−
p
Π
j=1

(1− λI)

]
ρAS − ρAI β, (1d)

DmρAR = ρA
[

1−
l

Π
j=1

(1− λA)

]
ρURγ + ρAI β, (1e)

DmρCS = ρA
[

1−
l

Π
j=1

(1− λA)

]
ρUS(1− γ)− ρI

[
1−

p
Π
j=1

(1− λI)

]
ρCS, (1f)

DmρCI = ρI
[

1−
p
Π
j=1

(1− λI)

]
ρCS − ρCI β, (1g)

DmρCR = ρA
[

1−
l

Π
j=1

(1− λA)

]
ρUR(1− γ) + ρCI β. (1h)

where Dm(•) is the Caputo differential with 0 < m < 1, ρ(t) is the density of the corre-
sponding state at the time t. For example, ρI(t) represents an infectious density at time
t. The factor λI = 1− (1− α)wij , j = 1, · · · , p represents the probability of infection of a
node i in the disease network, p is the number of infected nodes in the neighboring nodes
of a node i in the disease network. The factor λA = 1− (1− qγ)wij , j = 1, · · · , l represents
the probability of node i in the social network receiving a message, l is the number of nodes
that know and distribute messages to the neighboring nodes of a node i in a social network.

Remark 1. If m = 1, then system (1) changes to an integer order system, which is the further
generalization of the models proposed in [2,7] since it contains more possibilities for node states.
Compared with the fractional-order models in [21–24], it not only considers the transmission of
information between people but also considers the impact of the closeness of the connection between
people on the transmission of information, e.g., the network weight. Therefore, the proposed model
in this paper is more realistic and has practical significance.

3. Stability Analysis

Let λA = 1−
l

Π
j=1

(1− λA) and λI = 1−
p
Π
j=1

(1− λI), then system (1) can be rewritten

as follows:
DmρUS = −ρIλIρ

US − ρAλAρUS,
DmρUR = −ρAλAρUR,
DmρAS = ρAλAρUSγ− ρIλIρ

AS,
DmρAI = ρIλIρ

AS − ρAI β,
DmρAR = ρAλAρURγ + ρAI β,
DmρCS = ρAλAρUS(1− γ)− ρIλIρ

CS,
DmρCI = ρIλIρ

CS − ρCI β,
DmρCR = ρAλAρUR(1− γ) + ρCI β.

(2)

For system (2), the Jacobian matrix J at equilibrium has the form

J =



−λI ρI − λAρA 0 −λAρUS −λI ρUS − λAρUS −λAρUS 0 −λI ρUS 0
0 −λAρA −λAρUR −λAρUR −λAρUR 0 0 0

λAρAγ 0 −λI ρI + λAρUSγ −λI ρAS + λAρUSγ λAρUSγ 0 −λI ρAS 0
0 0 λI ρI λI ρAS − β 0 0 λI ρAS 0
0 λAρAγ λAρURγ λAρURγ + β λAρURγ 0 0 0
0 λAρA(1− γ) λAρUS(1− γ) λAρUS(1− γ)− λI ρCS λAρUS(1− γ) −λI ρI −λI ρCS 0
0 0 0 λI ρCS 0 λI ρI −β 0
0 λAρA(1− γ) λAρUR(1− γ) λAρUR(1− γ) λAρUR(1− γ) 0 β 0


with ρI = ρAI + ρCI , ρA = ρAS + ρAI + ρAR.
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3.1. The Disease-Free Equilibrium

Let the right side of Equation (1) be equal to zero, then from (1a) and (1b) we can
obtain that

(ρAR + ρAS)ρUS = 0,
(ρAR + ρAS)ρUR = 0.

(3)

From Equation (3), if ρAR + ρAS 6= 0, then ρUS = 0 and ρUR = 0, and the disease-free
equilibrium is E01 = (0, 0, ρAS, 0, ρAR, ρCS, 0, ρCR).

If ρAR + ρAS = 0, then ρAS = 0 and ρAR = 0, and the disease-free equilibrium is

E02 = (ρUS, ρUR, 0, 0, 0, ρCS, 0, ρCR).

Firstly, we will analyze the stability of disease-free equilibrium E01.
When the disease-free equilibrium is E01 = (0, 0, ρAS, 0, ρAR, ρCS, 0, ρCR), the Jaco-

bian matrix J is simplified to

J =



−λAρA 0 0 0 0 0 0 0
0 −λAρA 0 0 0 0 0 0

λAρAγ 0 0 −λIρ
AS 0 0 −λIρ

AS 0
0 0 0 λIρ

AS − β 0 0 λIρ
AS 0

0 λAρAγ 0 β 0 0 0 0
0 λAρA(1− γ) 0 −λIρ

CS 0 0 −λIρ
CS 0

0 0 0 λIρ
CS 0 0 −β 0

0 λAρA(1− γ) 0 0 0 0 β 0


.

The eigenvalues λj(j = 1, 2, · · · , 8) of the matrix J can be calculated as follows:

λ1 = λ2 = λ3 = 0,

λ4 = λ5 = −ρAλA,

λ6 = 0,

λ7 =
λIρ

AS

2
− β− λI

√
ρAS(ρAS + 4ρCS)

2
,

λ8 =
λIρ

AS

2
− β +

λI
√

ρAS(ρAS + 4ρCS)

2
.

It is easy to judge that λ4, λ5 and λ7 are all negative. If

λ8 =
λIρ

AS

2
− β +

λI
√

ρAS(ρAS + 4ρCS)

2
> 0,

then the system is unstable at equilibrium E01.

Suppose λ8 = λI ρAS

2 − β +
λI
√

ρAS(ρAS+4ρCS)
2 = 0, for matrix J, the minimal polynomial

of f (λ) = −λ(λ + λAρA)(−λ2 + λIρ
ASλ − 2βλ − β2 + λI

2ρASρCS + βλIρ
AS) could be

simplified to
f (λ) = −λ(λ + λAρA)(−λ2 + λIρ

ASλ− 2βλ + 3β2 − 3βλIρ
AS). Since ρA = ρAR +

ρAS 6= 0, then f (λ) = −λ(λ + λAρA)(−λ2 + λIρ
ASλ− 2βλ + 3β2 − 3βλIρ

AS) = 0, only
has one zero root, that is to say, the system is locally stable at E01.

Suppose λ8 = λI ρAS

2 − β +
λI
√

ρAS(ρAS+4ρCS)
2 < 0, similarly, we can deduce that the

minimal polynomial f (λ) = −λ(λ + λAρA)(−λ2 + λIρ
ASλ − 2βλ − β2 + λI

2ρASρCS +
βλIρ

AS) only has one zero root, and the system is locally stable at E01.
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Thus, when:

λ8 =
λIρ

AS

2
− β +

√
λIρAS(λIρAS + λIρCS)

2
≤ 0,

then
λI

2ρASρCS + 4βλI
2ρAS ≤ 4β2.

Since ρAS < 1 and ρCS < 1, if

λI
2 + 4βλI

2 < 4β2, (4)

then inequality λI
2ρASρCS + 4βλI

2ρAS < 4β2 holds.
From inequality (4), we can obtain:

λI <
2β√

1 + 4β

Since λI = 1−
p
Π
j=1

(1− λI), λI = 1− (1− α)wij , j = 1, · · · , p , therefore, if

1−
p
Π
j=1

(1− α)wij <
2β√

1 + 4β
.

holds, all eigenvalues in the disease-free equilibrium E01 are no more than zero and we can
conclude that the system is locally stable at E01.

Based on the above analysis, we can obtain the following theorem.

Theorem 1. For node i, if 1−
p
Π
j=1

(1− α)wij < 2β√
1+4β

is satisfied, while wij is the weight between

node i and node j(j = 1, 2, · · · , p) , and p is the number of infectious neighboring nodes of node i,
then system (1) is locally stable on disease-free equilibrium E01 = (0, 0, ρAS, 0, ρAR, ρCS, 0, ρCR).

Secondly, we will analyze the stability of disease-free equilibrium E02.
When the disease-free equilibrium is E02 = (ρUS, ρUR, 0, 0, 0, ρCS, 0, ρCR), the Jaco-

bian matrix J′ is

J′ =



0 0 −λAρUS −λIρ
US − λAρUS −λAρUS 0 −λIρ

US 0
0 0 −λAρUR −λAρUR −λAρUR 0 0 0
0 0 λAρUSγ λAρUSγ λAρUSγ 0 0 0
0 0 0 −β 0 0 0 0
0 0 λAρURγ λAρURγ + β λAρURγ 0 0 0
0 0 λAρUS(1− γ) λAρUS(1− γ)− λIρ

CS λAρUS(1− γ) 0 −λIρ
CS 0

0 0 0 λIρ
CS 0 0 −β 0

0 0 λAρUR(1− γ) λAρUR(1− γ) λAρUR(1− γ) 0 β 0


.

At this point, the eigenvalues λ′j(j = 1, 2, · · · , 8) of the matrix J′ can be calculated
as follows:

λ′1 = λ′2 = λ′3 = λ′4 = λ′5 = 0,

λ′6 = (λI + λA)ρ
USγ,

λ′7 = λ′8 = −β.

Obviously, if ρUS = 0, by the same method, all the eigenvalues at disease-free equilib-
rium E02 are not more than zero, and the system (1) is locally stable.

However, if ρUS > 0, then λ′6 > 0, then the system (1) at disease-free equilibrium E02

is unstable.
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3.2. The Endemic Equilibrium

Suppose there is an endemic equilibrium, then ρCI 6= 0 should be satisfied. From (1a),
(1c), (1d) and (1g), we can obtain that ρUS = 0, ρAS = 0, ρAI = 0 and

ρCS =

1−
p
Π
j=1

(1− λI)

β
.

In addition, from (1b) and (1e), we have ρUR = 0 or ρAR = 0. If ρUR = 0, then
substituting it into equation (1h) we have ρCI = 0, which contradicts the hypothesis. If
ρAR = 0, then substituting it into (1c) and (1d), we also have ρCI = 0, which contradicts
the hypothesis.

Thus, for system (1) there is no endemic equilibrium, and there is only a disease-free
equilibrium.

4. Targeted Immunity Based on Age Structure

For the infants and the elderly, their immunity is relatively poor and their influence
on their surroundings is relatively small, which is reflected in complex networks that these
special nodes have a relatively small weight. Taking targeted immunization against these
special nodes with a small weight is a very effective control method to suppress the spread
of infectious diseases in a wide range. Based on this, we propose a step function δ(ω)
related to the node weight, which is described as follows:

δ(ωi) =


0,

k
∑

j=1
ωij > Ω;

1,
k
∑

j=1
ωij ≤ Ω.

where ωi =
k
∑

j=1
ωij is the sum of weights of node i, k is the degree of node i, Ω is the given

threshold value of weight. When the weight of a node in the network is less than or equal to
Ω, the node is vaccinated with probability σ. At this time, the transformation relationship
among states of the network node is shown in Figure 5.
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Thus, the fractional-order SIR network model (1) can be rewritten as follows:
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DmρUS = −ρI
[

1−
p
Π
j=1

(1− λI)

]
ρUS − ρA

[
1−

l
Π
j=1

(1− λA)

]
ρUS − δ(ω)σρUS,

DmρUR = −ρA
[

1−
l

Π
j=1

(1− λA)

]
ρUR,

DmρAS = ρA
[

1−
l

Π
j=1

(1− λA)

]
ρUSγ− ρI

[
1−

p
Π
j=1

(1− λI)

]
ρAS − δ(ω)σρAS,

DmρAI = ρI
[

1−
p
Π
j=1

(1− λI)

]
ρAS − ρAI β,

DmρAR = ρA
[

1−
l

Π
j=1

(1− λA)

]
ρURγ + ρAI β + δ(ω)σρAS + δ(ω)σγρUS,

DmρCS = ρA
[

1−
l

Π
j=1

(1− λA)

]
ρUS(1− γ)− ρI

[
1−

p
Π
j=1

(1− λI)

]
ρCS − δ(ω)σρCS,

DmρCI = ρI
[

1−
p
Π
j=1

(1− λI)

]
ρCS − ρCI β,

DmρCR = ρA
[

1−
l

Π
j=1

(1− λA)

]
ρUR(1− γ) + ρCI β + δ(ω)σρCS + δ(ω)σ(1− γ)ρUS.

(5)

Similarly, for model (5), the disease-free equilibrium is E01 = (0, 0, 0, 0, ρAR, 0, 0, ρCR)
and E02 = (0, ρUR, 0, 0, 0, 0, 0, ρCR).

For E01 = (0, 0, 0, 0, ρAR, 0, 0, ρCR), the Jacobian matrix J is

J =



−λAρAR − δ(ω)σ 0 0 0 0 0 0 0
0 −λAρAR 0 0 0 0 0 0

λAρARγ 0 −δ(ω)σ 0 0 0 0 0
0 0 0 −β 0 0 0 0

δ(ω)σγ λAρARγ δ(ω)σ β 0 0 0 0
λAρAR(1− γ) 0 0 0 0 −δ(ω)σ 0 0

0 0 0 0 0 0 −β 0
δ(ω)σ(1− γ) λAρAR(1− γ) 0 0 0 δ(ω)σ β 0


.

For node i, when
k
∑

j=1
ωij > Ω and δ(ωi) = 0, the Jacobian matrix J at E01 =

(0, 0, 0, 0, ρAR, 0, 0, ρCR) can be written as

J =



−λAρAR 0 0 0 0 0 0 0
0 −λAρAR 0 0 0 0 0 0

λAρARγ 0 0 0 0 0 0 0
0 0 0 −β 0 0 0 0
0 λAρARγ 0 β 0 0 0 0

λAρAR(1− γ) 0 0 0 0 0 0 0
0 0 0 0 0 0 −β 0
0 λAρAR(1− γ) 0 0 0 0 β 0


,

and the eigenvalues λj(j = 1, 2, · · · , 8) of the matrix J can be calculated as follows:

λ1 = λ2 = λ3 = λ4 = 0,

λ5 = λ6 = −λAρAR,

λ7 = λ8 = −β.
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When
k
∑

j=1
ωij ≤ Ω and δ(ωi) = 1, the Jacobian matrix J can be rewritten as

J =



−λAρAR − σ 0 0 0 0 0 0 0
0 −λAρAR 0 0 0 0 0 0

λAρARγ 0 −σ 0 0 0 0 0
0 0 0 −β 0 0 0 0

σγ λAρARγ σ β 0 0 0 0
λAρAR(1− γ) 0 0 0 0 −σ 0 0

0 0 0 0 0 0 −β 0
σ(1− γ) λAρAR(1− γ) 0 0 0 σ β 0


,

and the eigenvalues λj(j = 1, 2, · · · , 8) of the matrix J can be calculated as follows:

λ1 = λ2 = λ3 = 0,
λ4 = −λAρAR, λ5 = −σ,

λ7 = λ8 = −β, λ6 = −λAρAR − σ.

Therefore, applying the same method, system (2) is always locally stable at E01 =
(0, 0, 0, 0, ρAR, 0, 0, ρCR).

Moreover, for E02 = (0, ρUR, 0, 0, 0, 0, 0, ρCR), the Jacobian matrix J is

J =



−δ(ω)σ 0 0 0 0 0 0 0
0 0 −λAρUR −λAρUR −λAρUR 0 0 0
0 0 −δ(ω)σ 0 0 0 0 0
0 0 0 −β 0 0 0 0

δ(ω)σγ 0 λAρURγ λAρURγ + β λAρURγ 0 0 0
0 0 0 0 0 −δ(ω)σ 0 0
0 0 0 0 0 0 −β 0

δ(ω)σ(1− γ) 0 λAρUR(1− γ) λAρUR(1− γ) λAρUR(1− γ) δ(ω)σ β 0


.

Thus, system (2) is also locally stable at E02 = (0, ρUR, 0, 0, 0, 0, 0, ρCR).
In the same way, we can deduce that there is also no endemic equilibrium under

targeted immunity based on age structure, either.

λ6 = −λAρURγ, λ7 = λ8 = −β.

When
k
∑

j=1
ωij ≤ Ω, we can obtain the eigenvalues of the Jacobian matrix

λ1 = λ2 = 0, λ3 = −λAρURγ,

λ4 = λ5 = λ6 = −σ,

λ7 = λ8 = −β.

Thus, system (2) is also locally stable at E02 = (0, ρUR, 0, 0, 0, 0, 0, ρCR).

Corollary 1. If the network weight ωij = ω is a constant, then system (2) is always local stable at
the disease-free equilibrium point.

Remark 2. Compared with the theoretical results in [16,17], the results present that the infected
density is affected by the network weights and the node degree. In this paper, if the basic reproduction
number is less than 1, we can conclude that the degree of decay is also influenced by the network
weights, and even more, the infectious density is gradually truncated to zero, eventually. This result
further simplifies the propagation law of infectious disease under-weighted networks.
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5. Examples and Simulations

In this section, numerical simulations are presented to illustrate the theoretical results
mentioned above.

Example 1. Without loss of generality, for a node i, suppose that α = 0.04, β = 0.35, q = 0.4,
γ = 0.88. The number of infectious neighboring nodes is equal l = 10, and the number of nodes
that know and distribute messages is p = 13. The weights ωij are valued as a random number
between 0 and 1. The initial condition is [0.122, 0.1, 0.038, 0.019, 0.432, 0.231, 0.010, 0.038].

We can calculate that λ1 = 0.2010 and 2β√
1+4β

= 0.4516, which satisfies Theorem 1,

thus there is only a disease-free equilibrium, and system (1) is locally stable. From Figure 6,
we can find that the disease-free equilibrium point is globally asymptotically stable. To be
clear, Figure 7 shows that the infectious states AI and CI converge to zero when m = 0.98,
which means that the disease will eventually disappear. From the above, we can conclude
that the theoretical results are correct and the simulation results are effective.
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Remark 3. Compared with the results in [16,17], the simulation in Figure 6 not only presents that
the infectious will disappear in the future but also shows how all the states evolve over time. We also
find that all people know the information about the disease, which signifies that they will voluntarily
take measures to prevent the epidemic.

In addition, we also simulate the effect of the fractional order parameter on disease
transmission. When we choose m = 0.6, from Figure 8, we can also find that the disease-
free equilibrium point is globally asymptotically stable. However, Figure 9 shows that the
infectious states AI and CI converge much slower compared with Figure 7. Moreover, we
can conclude that the smaller the fractional order parameter, the slower the infective rate
converges, as can be seen from Figure 10.
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Figure 11. The simulation results for all the states under targeted immunity control.

Remark 4. Comparing Figures 6 and 11, it is obvious that the disease dies out much more quickly
under control than no control, although it is roughly specified about the control node weight and
control proportion. In the next step, we will build a real network to seek the optimal control nodes
and control proportion, according to the actual situation of node weight.

Example 2. For node i, suppose that α = 0.25, β = 0.2, q = 0.4, γ = 0.88. Other parameters are
the same as Example 1, that is to say, m = 0.98, l = 10, p = 13 weights ωij are valued as a random
number from 0 to 1, and the initial condition is also [0.122, 0.1, 0.038, 0.019, 0.432, 0.231, 0.010,
0.038]. In this case, we can calculate that λ1 = 0.8451 and 2β√

1+4β
= 0.2985, which did not satisfy

Theorem 1. From Figures 12 and 13, we observe that without control, the infectious states do not
decline to zero, and even have a trend of rising for a period of time.
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Remark 5. Comparing Figures 7 and 13, it is easy to see that as the disease propagation rates α and
β are different, then for the infectious density, one is obviously stable, the other may be unstable in a
period. In a word, the disease network topology has a great influence on the epidemic transmission
dynamics.

Similarly, for the purpose of suppressing the spread of the disease among the elderly
and young, targeted immunity control with Ω = 1, σ = 0.8 is still taken. At this moment,
the simulation result is shown in Figure 14, which indicates that the disease will disappear
ultimately and the control method is effective. Moreover, with different control rates,
from Figure 15, we can observe that the larger the control rate, the more quickly the
infectious state decreases. The best control effect happens when σ = 1, but the control cost
is the highest.
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6. Conclusions

The connection between individuals has a significant impact on the spread of disease.
In order to quantitatively investigate the effect of edge weight on the spread of an epidemic,
this article presents a fractional SIR model with a two-layer weighted network. On the basis
of the Jacobian matrix, the stability of disease-free equilibrium is analyzed in detail. Under
certain conditions, the disease-free equilibrium is locally stable, which means that the
disease will eventually die out, regardless of the initial density of the infected individuals.
Furthermore, we conclude that there exists no endemic equilibrium. Since the elderly and
the children have lower immunity, a targeted immunity controller based on age structure is
proposed. In addition, its transmission dynamics are analyzed in detail. Finally, numerical
simulations are presented to illustrate the theoretical results, and the effect of the fractional
order parameter on the infection rate is simulated.

Note, that since the weight has a large influence on the propagation dynamics, it may
be necessary to further build a specific model and develop control strategies for certain
specific infectious diseases. Many scientific disciplines are currently investigating and
forecasting the spread of COVID-19. They found that older people and young children are
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more susceptible to COVID-19. Susceptible people have a relatively small weight in the
population network. In this case, the idea is to prioritize vaccination to the nodes with less
weight to prevent widespread COVID-19 infection. This strategy has worked in Zhejiang
Province, China, and after a period of observation, it will be extended to the entire country.
Therefore, the next research work is to analyze the critical weight parameter and calculate
the optimal inoculation ratio in a real environment, although a little work has been done in
this paper.
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