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Abstract: In the paper, an image enhancement algorithm based on a rough set and fractional order
differentiator is proposed. By combining the rough set theory with a Gaussian mixture model, a
new image segmentation algorithm with higher immunity is obtained. This image segmentation
algorithm can obtain more image layers with concentrating information and preserve more image
details than traditional algorithms. After preprocessing, the segmentation layers will be enhanced by
a new adaptive fractional order differential mask in the Fourier domain. Experimental results and
numerical analysis have verified the effectiveness of the proposed algorithm.

Keywords: image enhancement; rough set theory; Gaussian mixture model; Fourier transform;
fractional order differentiator

1. Introduction

The development of graphics technology and applications generates a huge number
of images carrying valuable information, such as medical examination results, traffic
condition diagrams and remote sensing images [1]. The wide range of graphics causes
the problem that the vagueness of images will lead to information leakage and even
misguidedness [2]. Under these circumstances, image enhancement methods are of great
significance to highlight necessary information.

Image segmentation is a critical step before the enhancement process because of its
ability to gather similar regions. Numerous image segmentation algorithms have been
introduced in recent years based on different properties, such as rough set theory [3–5],
genetic algorithms [6–8] and fuzzy set theory [9–11]. Furthermore, the image segmenta-
tion algorithms can be divided into several types, such as region-based algorithms, edge
detection algorithms and clustering algorithms. These algorithms keep innovating on the
original basis to seek a better segmentation effect. However, while these algorithms have
been demonstrated to be an effective tool to handle uncertain or incomplete information,
they still have the problems of missing detailed information, instability and introducing
unrelated information in segmentation results. In this article, a new image segmentation al-
gorithm based on roughness is proposed, which not only considers the difference in image
regions but also uses similarity with neighbor pixels to cluster difference image patterns,
combining the advantages of region-based and clustering algorithms. The preprocessed
results show that this algorithm has more segmentation outputs and preserves more details
and the patterns in each layer share higher similarity.

The quality of an image is enhanced through successive applications such as his-
togram manipulation [12], gamma correction [13] and contrast stretching [14]. While these
methods have improved the image quality to some extent, they have their restrictions. For
example, histogram-based methods are suitable for images that only have one peak in their
histograms. Furthermore, these methods may not highlight necessary information as they
are applied on the whole image without considering the gradient of the gray level. The
digital fractional order differentiator is an effective tool to deal with these problems and
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has good stability in image enhancement. Recently, the interest in image enhancement
techniques based on a fractional differential operator mask has grown in the field of image
processing. Liu et al. [15] introduced the fractional differential wavelet algorithm which
can greatly improve the high-frequency components of the signal and the very low fre-
quency of the nonlinear retained signal. Kaur et al. [16] proposed a technique based on the
Riesz fractional derivative in the fractional Fourier transform domain that outperformed
the existing techniques by providing improvement in various performance parameters.
Singh et al. [17] employed a piecewise gamma corrected fractional differential order mask-
ing framework for image quality enhancement. Experiments showed that the proposed
approach had advantages compared with the conventional and state-of-the-art nonreal
time algorithms. While these algorithms showed improvement, they still had problems
of instability and cannot manage different kinds of information. Aiming at solving these
problems, this paper proposes a new algorithm based on rough set theory and a fractional
order differential operator.

The core contributions of the paper to achieve higher enhancement quality are identi-
fied as follows:

1 A new image segmentation algorithm based on rough set theory and a Gaussian
mixture model is proposed, which combines the advantage of addressing uncertain
boundaries and centralizing similar information from rough set theory and the prop-
erty of clustering from a Gaussian mixture model.

2 We use 2D Fourier transform to change the gray level to image gradient and use filters
to preserve different types of information. By applying a four-direction fractional
differential mask on the Fourier domain, the proposed algorithm not only prevents
the blur and shadow that could happen but also achieves the best enhancement for
different types of frequency.

3 Entropy is employed as a cost function to calculate the optimal fractional order to
preserve more image information and avoid degradation, which makes the enhanced
images more suitable for computer vision processing.

The rest of the paper is organized as follows: Section 2 introduces the background
knowledge of the proposed algorithm. Section 3 shows the detailed process of image
segmentation and enhancement. Section 4 lists the experimental results to verify the
performance and effectiveness. Section 5 concludes the whole paper.

2. Preliminary

In the image segmentation process, rough set theory is used to search for similar pixel
points while a Gaussian mixture model is employed to cluster gray levels. After segmenta-
tion, Fourier transform is used to turn gray levels into frequency, then a fractional order
differential operator is employed to enhance 2D signals in the image enhancement process.

2.1. Rough Set Theory

The rough set theory, first introduced by Pawlak in 1982 [18], has been proved to be
an efficient analysis algorithm for studying uncertain information and incomplete data. It
is effective in mining potential relationships between items without the need for additional
relevant information.

For a given nonempty set U with limited elements xi, R is an equivalent relation on
U and [xi]R indicates the set of all the elements that are indistinguishable from xi under
R. When X cannot be precisely described by the attribute of R, X is an undefined set
or rough set of R. The R-lower and R-upper approximations of set X are defined as the
following, respectively
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R(X) = {xi|xi ∈ U, [xi]R ⊆ X}, (1)

R(X) = {xi|xi ∈ U, [xi]R ∩ X 6= ∅}. (2)

One example of the relationship between R-upper and R-lower approximations of set
X and X is shown in Figure 1.

(a) ! and "-lower approximation "(!) (b) ! and "-upper approximation "(!)

Figure 1. The relationship between R-upper and R-lower approximations of set X.

Then, the R-upper and R-lower approximations have the following properties:

R(X) ⊆ X ⊆ R(X), (3)

R(X ∪Y) = R(X) ∪ R(Y), (4)

R(X ∩Y) = R(X) ∩ R(Y). (5)

The boundary region in rough set theory is BR(X) = R(X)− R(X). If the R-upper
and the R-lower approximations are identical, i.e., BR(X) = ∅, then the set X is called an
exact set.

The roughness of the set is caused by the boundary region. The larger the boundary
region is, the less accurate set X is. In order to express this relationship, the measure of
roughness is defined as

ρR(X) = 1− |R(X)|
|R(X)|

. (6)

The roughness measure can reflect the uncertainty of set X. For example, in Figure 1,
the roughness measure of set X is 18

26 .

2.2. Gaussian Mixture Model

A Gaussian model is a common variable distribution model which is widely used
in the field of mathematical statistics. The probability density function of a 1D Gaussian
distribution is defined as follows:

φ(x|θ) = 1√
2πσ

exp(− (x− µ)2

2σ2 ), (7)

where θ = (µ, σ2), µ and σ2 represent expectation and variance, respectively.
A Gaussian mixture model (GMM) [19] is regarded as a model composed of several

Gaussian models, which are hidden variables of the GMM. The GMM can be used to
smoothly approximate any given curve.
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The probability density distribution of the GMM is

P(x|θk) =
K

∑
k=1

αkφ(x|θk), (8)

where x is the observed data, K is the number of Gaussian models, αk is the component
proportion of the kth model and θk = (µk, σ2

k ).
An example of a GMM of three Gaussian models with component αk = 1

3 is shown
in Figure 2.
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Figure 2. A Gaussian mixture model.

The hidden variables αk and θk of the GMM are needed to approximate a given curve.
In this paper, an expectation maximum algorithm is employed to calculate the hidden
variables. After building the GMM, intensity g is clustered by assigning it to the class with
the largest posterior probability.

2.3. Fourier Transform

Fourier transform has been considered as a classical signal processing algorithm and
one of the most critical analytical tools in many fields. Fourier transform can turn a square
integrable function into a combination of circular functions. This algorithm can be used to
transform the signal between the space and frequency domain.

In image processing, as the distribution function of an image is not continuous, 2D
Fourier transform needs to be discretized. For an M× N image, the discrete 2D Fourier
transform and its inverse transform are defined as:

F(u, v) =
M

∑
x=1

N

∑
y=1

f (x, y)e−j2π( ux
M +

vy
N ), (9)

f (x, y) =
1

MN

M

∑
u=1

N

∑
v=1

F(u, v)ej2π(
ux
M

+
vy
N

), (10)

where F(u, v) is the distribution of the image gradient. The bright or dark parts on the
F(u, v) represent the value of the gradient. If the gradient is large, then the brightness on
F(u, v) is high, otherwise it is low. The energy distribution of the image can be obtained
by observing F(u, v). After shifting F(u, v) to the origin, a conclusion can be drawn that
the frequency is symmetrically distributed. The 2D Fourier transform of image “3.2.25”
from the USC-SIPI image database “Aerials” and its shifted frequency image are shown in
Figure 3.
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Figure 3. Fourier transform frequency image of image “3.2.25”.

2.4. Fractional Differential Operator

Fractional differentiation is the broad sense of integer-order differentiation and in-
cludes the nth derivative as a particular case [20,21]. There are three classical definitions
of a fractional differentiator, the Grünwald–Letnikov definition, the Riemann–Liouville
definition and the Caputo definition [22]. This paper uses the Grünwald–Letnikov frac-
tional derivative definition as it has the advantages of being able to convert to convolution
in numerical implementation and is suitable for image signal processing. For 1D signal
f (t), t ∈ [a, t], the definition of the Grünwald–Letnikov fractional differentiator of order
α is

aDα
t f (t) =

dα f (t)
dtα

= lim
h→0

h−α
[ t−a

h ]

∑
j=0

(−1)j
(

α

j

)
f (t− jh). (11)

According to Equation (11), if the period is divided by h = 1, n =

[
t−a

h

]
= [t− a].

Then, the fractional differential expression is obtained [23]:

dα f (t)
dtα

≈ f (t) + (−α) f (t− 1) +
(−α)(−α + 1)

2
f (t− 2)

+ · · ·+ Γ(−α + 1)
n!Γ(−α + n + 1)

f (t− n).
(12)

Under the definition of Grünwald–Letnikov, the fractional differential of y = 1
2 x2 for

different orders α is shown in Figure 4.
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Figure 4. Fractional differential of different y = 1
2 x2 for different orders α.
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For an M × N image f , as the gray level is finite, the largest variance is bounded.
Furthermore, considering the discreteness of the image, the minimum interval in f (x, y) is
the distance between adjacent pixels, which means h = 1. Then, in the x and y direction, n

is nx =

[
M
h

]
= M, ny =

[
N
h

]
= N, respectively. For image f , the fractional differential is

defined as follows in the x and y direction:

∂α f (x, y)
∂xα

≈ f (x, y) + (−α) f (x− 1, y) +
(−α)(−α + 1)

2
f (x− 2, y)

+ · · ·+ Γ(−α + 1)
n!Γ(−α + n + 1)

f (x− n, y) + · · · ,
(13)

∂α f (x, y)
∂yα

≈ f (x, y) + (−α) f (x, y− 1) +
(−α)(−α + 1)

2
f (x, y− 2)

+ · · ·+ Γ(−α + 1)
n!Γ(−α + n + 1)

f (x, y− n) + · · · .
(14)

Then, a four-direction fractional order differentiator mask can be built as shown in
Figure 5.
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"%$

"%$ "%$

"%$ "%$

"&$ "&$ "&$

"&$ "&$

"&$ "&$ "&$

0 0

0 0

00

0 0
Figure 5. A four-direction fractional order differentiator mask.

This paper employs the four-direction fractional order differentiator mask to scan the
2D transformed image gradient. Then, Fourier inverse transform is used to obtain the
enhanced image.

3. Proposed Methodology
3.1. Image Segmentation Algorithm

The intention of the segmentation algorithm is to produce image layers containing
similar pixels, which can avoid burrs later in the image enhancement process. The rough
set approach is employed to find pixels similar to the neighborhood while a Gaussian
mixture model is used to cluster gray levels into several categories.

3.1.1. Histogram and Histon

Let f be the original M× N image, then the histogram is calculated by

hi(g) =
M

∑
m=1

N

∑
n=1

δ( f (m, n, i)− g), 0 ≤ g ≤ L− 1, i ∈ {R, G, B}, (15)

where δ(i) =

{
1, i = 0

0, i 6= 0
is the unit impulse function and L denotes the largest gray level.
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Considering the P×Q neighborhood around pixel f (m, n), the total distance between
all the pixels in the neighborhood and f (m, n) is calculated by

d(m, n) = ∑
p∈P

∑
q∈Q

(
∑

i∈{R,G,B}

(
f (m, n, i)− f (p, q, i)

)2
) 1

2

. (16)

By setting a threshold T0, the matrix X of size M× N is built by

X(m, n) =

{
1, d(m, n) < T0,

exp
(−(d(m,n)−T0)

2

T0

)
, d(m, n) ≥ T0.

(17)

Then, the pixels in the neighborhood are assumed to be similar to pixel f (m, n) if
d(m, n) < T0 and their similarity decreases exponentially when d(m, n) ≥ T0.

Taking the discrepancy between distributions in different regions into consideration,
the threshold T0 is supposed to be larger for small regions to expand the R-upper approxi-
mation of the histogram,

T0 =

T1, ∑i∈{R,G,B} h(g)
3MN < k,

T2, ∑i∈{R,G,B} h(g)
3MN ≥ k,

(18)

where k is the threshold of proportion of pixel intensity g. In this article, we set k = 0.003,
T1 = 40 and T2 = 15.

Then, the histon [24] is defined as

Hi(g) =
M

∑
m=1

N

∑
n=1

(1 + X(m, n))δ( f (m, n, i)− g), 0 ≤ g ≤ L− 1, i ∈ {R, G, B}. (19)

The histogram and histon of the origin image are considered as the R-lower approxi-
mation and R-upper approximation in the rough set theory, respectively. The histogram
value represents the number of pixels in the set of the gth gray level while the histon value
of the gth gray level represents the number of all the pixels considered similar to g.

We substitute the histogram and histon into Equations (3)–(5). We can see the value
of histograms will always be smaller than the histon. Furthermore, the histogram and
histon value of gray level g1 and g2 will be the sum of their corresponding value. Then, it
is verified that the histogram and histon satisfy all the properties in the rough set theory,
which means they can be seen as the R-lower approximation and R-upper approximation.

3.1.2. Cluster Based on Gaussian Mixture Model

According to the rough set theory, the roughness measure is defined as

ρi(g) = 1− hi(g)
Hi(g)

, 0 ≤ g ≤ L− 1, (20)

However, the definition of histogram and histon determines their discreteness, which
means the roughness measure function is discontinuous and it is difficult to separate its
peaks and valleys. Under this circumstance, instead of using the δ(i) function, this paper
uses the Gaussian kernel function to smooth the histogram and histon. Then, a Gaussian
mixture model is applied to fit the roughness measure function.

The probability density distribution of the roughness measure function is

P(g|θ) =
K

∑
k=1

αkφ(g|θk), (21)
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where αk represents the component proportion of each Gaussian model, θk = (µk, σ2
k ) and K

are chosen by cross validation. For every given gray level g, it is assigned to the component
Gaussian model yielding the highest posterior probability.

The segmentation process is described as follows:

Step 1: For an M× N image f , for every channel, calculate its histogram hi(g) by using
Equation (15).

Step 2: Use histogram hi(g) to consider the gth gray level as a small or large region and
assign the corresponding threshold by Equation (18).

Step 3: Calculate the M× N weight matrix X by using Equation (17).
Step 4: Calculate the histon Hi(g) by using Equation (19).
Step 5: Use the Gaussian kernel function to smooth hi(g) and Hi(g) and calculate the

rough measure function ρi(g) with Equation (20).
Step 6: Use a Gaussian mixture model to fit the rough measure model and cluster the

gray level.
Step 7: Use the cluster result to segment image f and obtain a series of segmentation

results S.

The segmentation layers of image “3.2.25” are shown in Figure 6.

Figure 6. The segmentation results of image “3.2.25”.

The segmentation method proposed in the paper combined the rough set measure
with the Gaussian mixture model. Compared with traditional segmentation methods which
only divide an image into the object and background, this method has more segmentation
layers which will preserve more details and pixels in every layer sharing higher similarity.

3.2. Adaptive Fractional Order Differential Mask for Image Enhancement in Fourier Domain

After preprocessing segmentation layers, this paper first uses 2D Fourier transform to
turn gray levels into an image gradient, then applies filters to extract and enhance boundary
and base information, respectively. Finally, a four-direction adaptive fractional differential
mask based on entropy is employed to enhance images.

3.2.1. Preprocess

As the range of gray levels in segmentation layers might be wide, we compress the
segmentation results S by using a logarithmic function. Then, to avoid burrs in the image
enhancement process, blank regions are filled artificially in each segmentation layer with
average nonzero pixel intensity by

F(x, y) =

s(x, y) + (1− I(x, y))× ∑M
m=1 ∑N

n=1 s(m,n)
∑M

m=1 ∑N
n=1 I(m,n)

, ∑M
m=1 ∑N

n=1 I(m, n) 6= 0

0, ∑M
m=1 ∑N

n=1 I(m, n) = 0,
(22)

where F(x, y) is the image to be enhanced, s(x, y) is the compressed segmentation results,

I(m, n) =

{
1, f (m, n) ∈ S

0, f (m, n) /∈ S
. The comparison of preprocessed images of the third layers of

image “3.2.25” is shown in Figure 7. It can be seen that the pixels in the final preprocessed
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image are all in a small range of gray level and there are few adjacent regions with large
variance.

Figure 7. The comparison of preprocessed results of image “3.2.25”.

3.2.2. Adaptive Fractional Differential-Based Image Enhancement Process in Fourier Domain

Then, the frequency images are obtained by 2D Fourier transform. By setting threshold
d0, a high-pass filter (Hp) and low-pass filter (Lp) are obtained to extract the boundary
details and basic information of the image.

Let m0 = dM
2 e, n0 = dN

2 e, d0 = min(m0
12 , n0

12 ) and d(i, j) =
√
(i−m0)2 + (j− n0)2. In

an M× N Fourier frequency image, Hp reserves the points (i, j) with d(i, j) ≤ d0 while Lp
reserves the points (i, j) with d(i, j) > d0.

The Fourier frequency images of the filtered images by Hp and Lp and their inverse
transform results are shown in Figure 8.

Figure 8. The Fourier frequency images of the filtered image by Hp and Lp and their inverse
transform results.
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Considering that the choice of fractional order will affect the image enhancement perfor-
mance, this paper uses an unsupervised optimization algorithm to find the optimal fractional
order. The concept of information entropy [25] is introduced to measure the distribution of
gray value in an image to calculate the optimal parameter. The higher the value of entropy is,
the more information the image transports. The formula of information entropy is

Hα = −
L−1

∑
g=0

Pα(g)log2Pα(g) (23)

where P(g) is the frequency of the gth gray level and L denotes the largest gray level of
image f . After obtaining the optimal fractional order parameter, a fractional mask is used
to enhance the image.

The image enhancement process is described as follows:

Step 1: Use a segmentation method above to obtain a series of image layers.
Step 2: Calculate the Hp and Lp filters to extract the boundary and fundamental information.
Step 3: Calculate the optimal fractional order parameter α for filtered images Fφ

Hp and Fφ
Lp

based on maximizing the entropy of Fφ
Hp and Fφ

Lp.

Step 4: Apply a fractional order differentiator mask on the enhanced filtered images Fφ
Hp

and Fφ
Lp, respectively.

Step 5: Combine the enhanced results.

The block diagram of proposed algorithm is shown in Figure 9.

Assigning threshold #, %!, %"

Calculating histogram ℎ#(()

Calculating weight matrix *

Calculating histon +#(()

Smoothing with Gaussian kernel

Calculating roughness measure ,#(-)

Calculating parameter of GMM

Clustering gray level based on GMM

Fourier frequency image

2D Fourier Transform

Enhancing +. signal

Frequency image /$%& Frequency image /'%&

Fractional differentiator

Enhanced image /′

Fourier inverse transform

Calculating entropy +

Termination 
condition

No

Calculating +. and 1.

Enhancing 1. signal

Fractional differentiator

Fourier inverse transform

Parameter 2

Original image

Optimal enhanced image /′*

Figure 9. The process of the proposed algorithm where F
′∗ denotes the optimal image.
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4. Experimental Results and Numerical Analysis
4.1. Experimental Results

In order to verify the image enhancement performance, we apply the algorithm on the
USC-SIPI image database “Aerials”, which was distributed in 1977 and consists of 37 color
and one monochrome high-altitude aerial images, and list the enhanced results of the
proposed method for six images (https://sipi.usc.edu/database/database.php?volume=
aerials, accessed on 25 February 2022). The image enhancement performance of this method
is compared with that of the 2-D DFOSGD method [26], which also builds an adaptive
fractional order differentiator enhancement model. The comparison results are listed in
Figures 10–15.

Figure 10. Enhancement results of image “2.1.01”.

Figure 11. Enhancement results of image “2.1.02”.

Figure 12. Enhancement results of image “2.1.03”.

https://sipi.usc.edu/database/database.php?volume=aerials
https://sipi.usc.edu/database/database.php?volume=aerials
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Figure 13. Enhancement results of image “2.2.01”.

Figure 14. Enhancement results of image “2.2.02”.

Figure 15. Enhancement results of image “3.2.25”.

It is noted that compared with the original images, the proposed algorithm shows
good enhancement results. Apart from this, the proposed algorithm extracts more texture
details and makes the unobtrusive pattern more observable than the algorithm in [26].

4.2. Numerical Analysis

To further prove the efficiency of the proposed algorithm, a series of numerical analyses
has been carried out with classical image enhancement algorithms such as 2D DFOSGD [26],
LIME [27], Dong [28], MSRCP [29] and MSRCR [29].

4.2.1. Information Entropy Analysis

Shannon’s information theory introduces the concept of information entropy and uses
it to measure the distribution of gray values of an image. As this paper uses the model based
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on an entropy adaptive model to choose fractional order α and, in the other algorithms, we
use the same process to choose optimal α to carry out the comparison experiments.

The comparison of the information entropy of enhanced images is shown in Table 1.
The experimental results show that the entropy of the images enhanced by the proposed
scheme is larger than that of the others, which means they can provide more information
for later computer vision processing.

Table 1. The comparison of information entropy.

File Name Original Image MSRCR MSRCP Dong LIME 2D Ours[29] [29] [28] [27] DFOSGD [26]

2.1.01 7.1953 6.0504 6.8504 7.2276 7.1749 7.4801 7.0126
2.1.02 7.1957 5.6973 7.3305 7.2253 6.9049 7.5231 7.4305
2.1.03 5.7432 5.0140 5.9454 6.2486 6.0599 6.1488 6.1326
2.2.01 7.5383 6.5375 7.3525 7.4967 7.4986 7.4258 7.4216
2.2.02 5.5966 5.5984 5.6934 5.8297 5.6365 4.9948 6.4338
3.2.25 6.7327 6.8914 6.7327 6.9222 6.0745 6.3865 6.6088

4.2.2. Peak Signal to Noise Ratio

Peak signal to noise ratio (PSNR) measures the quality between the original image
and the enhanced image. A higher PSNR value indicates less degradation of the image. It
is estimated by calculating the value of mean square error (MSE) as

MSE =
1

MN

M

∑
m=1

N

∑
n=1

( f (α)(m, n)− f (m, n))2, (24)

PSNR = 10 log (
(L− 1)2

MSE
). (25)

As the PSNR is the measure for gray images, in the experiment we average the gray
level of the three channels of original and enhanced images as inputs to calculate MSE and
PSNR. The comparison of PSNR of enhanced images is shown in Table 2.

Table 2. The comparison of PSNR.

File Name MSRCR MSRCP Dong LIME 2D DFOSGD Ours

2.1.01 14.9695 12.9041 16.8970 12.7384 16.9118 16.3130
2.1.02 16.6889 23.8252 21.2345 15.0227 17.6716 29.8310
2.1.03 16.4032 22.0502 16.6842 16.8729 24.4056 26.0449
2.2.01 14.2120 12.9945 18.3624 14.1881 16.1057 19.5256
2.2.02 21.6140 18.9519 20.8912 18.3157 19.4603 13.8081
3.2.25 19.3656 32.9054 14.5181 9.7675 19.3744 24.0654

By analyzing the comparable results from Table 2, we find that the results of the pro-
posed algorithm are better than most existing algorithms. Some results are smaller because
the proposed algorithm emphasizes more interesting regions. While the information is
preserved, the difference in gray level increases, which will increase the value of MSE.

4.2.3. Structural Similarity

To have a better understanding of the degradation of the image, this paper uses
structural similarity (SSIM) [30] as another index. The SSIM is an indicator of the similarity
between two images, which is defined as

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (26)
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where µx and µy are the average of x and y, respectively, σ2
x and σ2

y are the variance of
x and y, respectively, σxy is the covariance of x and y and c1 = (0.01L)2, c2 = (0.03L)2

are constant numbers to stabilize the equation. The range of SSIM is [0, 1]. When the two
images are exactly the same, the value of SSIM is equal to 1. The comparison results are
listed in Table 3.

Table 3. The comparison of SSIM.

File Name MSRCR MSRCP Dong LIME 2D DFOSGD Ours

2.1.01 0.7365 0.3635 0.8799 0.8896 0.6338 0.9191
2.1.02 0.7067 0.9723 0.9522 0.9510 0.7048 0.9840
2.1.03 0.8725 0.9508 0.8917 0.9612 0.7859 0.9589
2.2.01 0.6972 0.4814 0.9080 0.9128 0.5939 0.9148
2.2.02 0.8600 0.9196 0.9563 0.9817 0.8701 0.8472
3.2.25 0.9330 0.9978 0.8071 0.8379 0.6909 0.4758

The comparison shows that the results of the proposed algorithm are better than the
other algorithms except for the image “3.2.25”. To have a better understanding, we made a
comparison between the results of two algorithms, as shown in Figure 16.

Figure 16. The comparison of the enhancement results.

From Figure 16, it is observed that SSIM values of the other algorithms are higher,
which is because their enhancement performances are not obvious. While the proposed
algorithm preserves and enhances the image structure, it sensibly modifies the gray levels
and leads to the lowest SSIM.
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4.2.4. Measure of Enhancement by Entropy

The measure of enhancement by entropy (EMEE), proposed by Agaian et al. [31], is
based on the modification of Weber’s and Fisher’s Laws. EMEE uses Weber’s ratio in the
calculation of entropy and gives the measure of contrast in terms of entropy [32]. EMEE is
more sensitive to change in contrast to other metrics, with a larger EMEE value indicating
higher contrast in images. EMEE is defined as

EMEE =
1
L2

L

∑
i=1

L

∑
j=1

α(
fmax

fmin
)α ln(

fmax

fmin
), fmin > 0 (27)

where image f is divided in to L× L blocks, 0 < α < 1 is a constant, fmax and fmin are
the maximum and minimum values of the pixels in each block. The compared results are
shown in Table 4.

The comparison shows that the proposed algorithm has the second highest EMEE value
among all the six algorithms. Moreover, while 2D DFOSGD has the highest EMEE value, it
might lose information of an image as the high contrast will reduce the detail pattern.

Table 4. The comparison of EMEE (α = 0.5, L = 4).

File Name MSRCR MSRCP Dong LIME 2D DFOSGD Ours

2.1.01 0.5703 1.2858 1.3631 1.2298 1.6667 1.6917
2.1.02 0.5641 1.1045 1.2107 1.1868 2.6192 1.2085
2.1.03 1.6893 1.4232 1.4570 1.4578 6.8302 2.1350
2.2.01 1.6194 1.2754 1.4351 1.2190 1.4122 1.3887
2.2.02 0.9698 0.5425 0.8565 0.7802 1.3538 1.2693
3.2.25 0.6713 0.6699 0.9298 0.7660 1.2178 1.8949

4.2.5. Blind/Referenceless Image Spatial Quality Evaluator

The blind/referenceless image spatial quality evaluator (BRISQUE) [33] is a model
based on natural scene statistics and can measure image naturalness based on measured
deviations from a natural image model. The first step of BRISQUE is extracting natural
scene statistics and transforming image gray level to luminance. Then, we calculate fracture
vectors and use a learning algorithm to evaluate the image quality score, with a smaller
BRISQUE score indicating better perceptual quality. The comparison results are shown in
Table 5.

Table 5. The comparison of BRISQUE.

File Name MSRCR MSRCP Dong LIME 2D DFOSGD Ours

2.1.01 36.3670 45.0807 43.3830 36.4630 45.3041 30.0843
2.1.02 27.1624 42.9080 43.4556 43.4614 44.5253 41.2102
2.1.03 42.4831 23.2094 26.3333 21.1117 39.8493 17.4546
2.2.01 42.8555 41.9647 37.3137 33.1370 33.0672 30.7001
2.2.02 43.3932 33.3401 30.3013 26.3762 38.2801 26.9195
3.2.25 35.2187 22.8275 43.3979 28.9676 43.1892 32.5178

The results show that the proposed algorithm has the lowest BRISQUE for most of the
test images, while for image “3.2.25” MSRCP and LIME have better performance. From
Figure 16, it is observed that the change in both algorithms is slight, which leads to the
lower BRISQUE value.

5. Conclusions

In this paper, a new image enhancement algorithm based on a rough set and fractional
order differentiator is proposed. In the proposed segmentation process, the rough set
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theory and Gaussian mixture model are combined to cluster gray levels into several image
layers. In addition, compressing gray levels and filling in blank regions are performed to
further centralize the information. Moreover, in the image enhancement process, 2D Fourier
transform is employed to turn gray levels into a gradient, then an adaptive fractional order
differential operator based on entropy is proposed to enhance the information of images.
Experiments have verified the effectiveness of this algorithm. In the future, we intend to
extend this enhancement process by studying more efficient segmentation methods and
enhancement algorithms that can achieve higher structure similarities.
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