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Abstract: This paper designs an interval estimator for a fourth-order nonlinear susceptible-exposed-
infected-recovered (SEIR) model with disturbances using noisy counts of susceptible people provided
by Public Health Services (PHS). Infectious diseases are considered the main cause of deaths among
the top ten worldwide, as per the World Health Organization (WHO). Therefore, tracking and es-
timating the evolution of these diseases are important to make intervention strategies. We study a
real case in which some uncertain variables such as model disturbances, uncertain input and output
measurement noise are not exactly available but belong to an interval. Moreover, the uncertain trans-
mission bound rate from the susceptible towards the exposed stage is not available for measurement.
We designed an interval estimator using an observability matrix that generates a tight interval vector
for the actual states of the SEIR model in a guaranteed way without computing the observer gain.
As the developed approach is not dependent on observer gain, our method provides more freedom.
The convergence of the width to a known value in finite time is investigated for the estimated
state vector to prove the stability of the estimation error, significantly improving the accuracy for
the proposed approach. Finally, simulation results demonstrate the satisfying performance of the
proposed algorithm.

Keywords: interval analysis; interval estimator; finite-time convergence; bounded uncertainties;
infectious diseases; SEIR epidemic model

1. Introduction

There were around 30.2–45.1 million people living with HIV with 680,000 casualties
in 2020, whereas an epidemic like seasonal influenza causes 3–5 million serious illness
cases with 250,000–500,000 casualties each year worldwide according to the WHO [1,2].
The surveillance of infectious diseases plays a vital role in analyzing these epidemics, for
instance, origin, spread and dynamics. PHS relies upon surveillance statistics collected
by agencies such as the Chinese Center for Disease Control and Prevention (China CDC)
for infected people to estimate the activity level of such diseases, intervention strategy
preparation, and recommendations of design policies.

Mathematical modeling of epidemics plays a major role in organizing public health
responses and developing early outbreak detection systems [3–7]. The first modern math-

Fractal Fract. 2022, 6, 213. https://doi.org/10.3390/fractalfract6040213 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract6040213
https://doi.org/10.3390/fractalfract6040213
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0003-4914-5959
https://orcid.org/0000-0003-1998-2377
https://doi.org/10.3390/fractalfract6040213
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract6040213?type=check_update&version=2


Fractal Fract. 2022, 6, 213 2 of 18

ematical epidemic model, i.e., susceptible-infectious-recovered (SIR), was proposed by
Kermack et al. in 1927 for cholera (London 1865) and plague epidemics (Bombay 1906,
London 1665–1666) [8]. According to the SIR model, a fixed number of the population can
be divided into three compartments at any time: susceptible individuals (not yet infected
but can be infected in future), infectious individuals (those who have an infection and
can infect others), and recovered individuals (who are recovered from the infection and
are immune now). The number of people for each compartment represents the states of
a SIR epidemic model. The total number of individuals who are assumed to be mixed
homogenously remains the same, which means the probability of each individual coming
in contact with others is equal [3].

However, the generic SIR epidemic model must be expanded to include a fourth
compartment in case of many infectious diseases, for instance, influenza-like illness, tuber-
culosis, and HIV/AIDS [3,9,10]. The state of the fourth compartment corresponds to the
latency period of disease, i.e., someone who is infected but still unable to infect others. This
modified model is called the SEIR epidemic model [11]. Several estimation techniques have
been developed to track and estimate the states of these models [3,12,13]. To design these
estimators to converge to actual states, one needs to know the exact values of the uncertain
quantities. However, designing such estimators for SEIR models in a real scenario is chal-
lenging, especially when the uncertain parameters are not exactly known but are defined
by an interval or polytope. Interval estimator techniques can solve such issues [14–22].
Based on the monotone system theory (MST), interval estimators are designed to estimate
the real states at any time instant and generate a set of acceptable values known as the
interval in [20,23–28]. The ability to deal with large and unknown uncertainties in the
system is one of the key advantages of interval state estimator design [29–31]. However,
getting cooperative/nonnegative systems are not always possible, and solving this issue
for interval estimator design is still an open area of research.

This article proposes an interval estimation-based method to track and estimate the four
states of the SEIR epidemic model subject to uncertain parameters. Diaby et al., 2015 [32]
proposed the first interval estimator for the continuous-time epidemic model. The results
obtained by Diaby et al. were adequate but not ideal because the observer gain was
manually set. Instead, we consider the discrete-time SEIR model and use an efficient method
based on the observability matrix to design the interval estimator without observer gain.
Finite-time convergence for the interval vectors’ width is derived to verify the boundedness
of the estimation error that significantly improves the accuracy of the designed method.

It is worth mentioning that the observer gain used in the conventional interval ob-
servers’ design determines the magnitude of the upper bound of the interval estimation
errors (for instance, see [27,28]). As a result, interval observers that converge faster may
result in a state enclosure that is too conservative at steady state. The noted issue is solved
in this study since we do not require an observer gain to run the proposed state estimator.
In contrast, set-membership state estimators address the optimization problem at each
iteration, and the problem of finite convergence time is ignored. Therefore, the proposed
result on finite time convergence is intriguing. However, it is a little more demanding in
terms of computation time. Furthermore, compared with the Kalman filter-type estimators,
the proposed interval state estimator requires less information on state disturbances and
measurement noise to generate guaranteed enclosures of the real state vector. This knowl-
edge is advantageous when dealing with real-world situations when state disturbances
and measurement noise are poorly known. More specifically, compared with the existing
results in the literature, the contributions are fourfold:

1. We solve the interval estimation problem for the fourth-order SEIR epidemic model
subject to disturbances and uncertainties. The estimation procedure is designed based
on the observability matrix to relax the strong cooperativity assumption for designing
traditional interval observers. Finite-time convergence and tight initialization prob-
lems are analyzed separately to improve the performance of the developed method;
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2. In contrast to the existing interval observer design methods [19,33], we considered a
nonlinear model with unknown input affecting the output with a highly uncertain
state matrix A. The bounds on the uncertain input are constructed before designing
the interval estimator;

3. We introduce a novel interval state estimation method using an observability matrix
and past input-output values without designing an observer gain that can alleviate
some limitations of traditional interval observer design. For example, the system
being cooperative/non-negative [20,34–39] and the probable inflation existence of the
estimation error at the steady-state are avoided.

4. We consider the fourth compartment of the SEIR model by following the incubation
stage compared with the interval estimator designed for the SIR model in [40]. More-
over, ref. [40] considered continuous-time dynamics, whereas we concentrate on the
discrete time, which has grown in prominence through past years [41,42]. In addition,
ref. [40] assumed that exact values of ℘SI (new infectives per day) and the upper and
lower bound of ℘ (transmission rate) are available. In our case, only noisy values of
susceptible people S and probable bounds on uncertain ℘SI are available, while the
bounds on ℘ are not given by PHS. Hence, our method is more applicable in reality as
℘ is highly uncertain and cannot be obtained directly from biological consideration
compared with [43,44]. Furthermore, its bounds are usually unavailable for such
models [14].

The remainder of this work continues with notations and interval analysis in Section 2.
The problem statement is described in Section 3, and the key findings are shown in Section 4.
Two numerical examples are given in Section 5, where a comparison with previous results
in [27,28] is demonstrated. Finally, concluding remarks are presented in Section 6.

2. Preliminaries Results

First, we reviewed some basic notations on interval estimation necessary to design the
proposed state estimator.

2.1. Notations

A set of real numbers is symbolized by R with R+ = {ι ∈ R : ι ≥ 0}, whereas
Z denotes a set of integers with Z+ = Z ∩ R+. The identity matrix of dimension n is
denoted by In. λmax(∆) is the largest and λmin(∆) is the smallest eigenvalue for a square
matrix ∆ ∈ Rn×n. Let the L2-induced matrix norm be ‖∆‖2 =

√
λmax(∆T∆), where the

infinity norm is ‖∆‖∞ = max
1≤i≤n

Σn
j=1

∣∣aij
∣∣. ∆ is non-negative (∆ > 0) if aij ≥ 0, whereas it

is Schur stable if |λi| < 1 for all i, j = 1, . . . , n. The relations ∆1 ≤ ∆2 and ∇1 ≤ ∇2 are
understood elementwise for two matrices ∆1, ∆2 ∈ Rn×n or vectors ∇1, ∇2 ∈ Rn. For
known A ∈ Rm×n, we define A+ = {0, A} and A− = {0,−A} with |A| = A+ + A−.

2.2. Interval Analysis

Uncertain parameters are defined by intervals that contain real values of unknown
variables in a guaranteed way.

Definition 1. An interval vector [x] is determined by [45]

[x] = [x, x] = {a|x ≤ a ≤ x, x, x ∈ Rn}.

Lemma 1. Let x ∈ Rn be an interval vector for some x, x ∈ Rn and A ∈ Rm×n. Then [29]

A+x− A−x ≤ Ax ≤ A+x− A−x.
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Definition 2. The theory of monotone systems states that the solutions to the below system for
given x(0) ≥ 0 constructed by a matrix A ∈ Rn

+ are non-negative,

x(k + 1) = Ax(k) + w(k),

x ∈ Rn, w : Z+ → Rn
+, k ∈ Z+, k ≥ 0

and the system is referred to as cooperative or non-negative [46].

3. Problem Statement

The SEIR discrete-time model demonstrated by Figure 1 and obtained using Euler
discretization of the classical continuous-time model is given as follows [42,46]:

Figure 1. Block diagram for SEIR model.

S(k + 1) = (1− a(k))S(k) + b(k)R(k)− ℘(k)S(k)I(k) + a(k),

E(k + 1) = (1− a(k)− c(k))E(k) + ℘(k)S(k)I(k),

I(k + 1) = c(k)E(k) + (1− a(k)− d(k))I(k),

R(k + 1) = d(k)I(k) + (1− a(k)− b(k))R(k),

(1)

where S(k), E(k), I(k), andR(k) represent state variables corresponding to the portion of
population in each compartment of the model. The time-varying non-negative parameters
a stands for the natural birth-death rate, whereas b, c, d denote the uncertain transition
rates from one disease state to the other. The exact values of non-negative parameters
a, b, c, d are unknown. We only know the lower bound and upper bound values, i.e.,
a ∈ [a, a], b ∈ [b, b], c ∈ [c, c] and d ∈ [d, d] with given a, a, b, b, c, c, d, d ∈ R+. The
time-varying parameter ℘(k) is extremely uncertain, and no bounds on ℘(k) are available
for measurements. The initial values for x(k) ∈ R4 are unknown but bounded with known
bounds x(0), x(0) ∈ R4 such that x(0) ≤ x(0) ≤ x(0). At at any given time instant k, the
death rate is exactly equal to birth rate a(k) in all the compartments. In fact, by summing
up (1), one gets directly that the total population is constant, thus satisfying

N(k + 1) = N(k) = N0 ∀k ∈ Z0+,

for
N(k) = S(k) + E(k) + I(k) + R(k), ∀k ∈ Z0+.

This results in

S(k + 1) + E(k + 1) + I(k + 1) + R(k + 1) = (1− a(k))N0 + a(k), ∀k ∈ Z0+.

Hence, if the total population is initially in unity, then (1) remains as a normalized
model for all samples with the total population remaining in unity through time; therefore

S(k + 1) + E(k + 1) + I(k + 1) + R(k + 1) = 1− a(k) + a(k) = 1, ∀k ∈ Z0+. (2)

The transmission of disease arises because of the interactions among susceptible and
infectious individuals as described by (1). The disease is transferred to ℘(k) individuals
through infectious individuals at each time instant. However, a new case only arises with
probability S(k) when contact is directly made with the susceptible individual. Therefore,
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in compartment S, a fraction ℘(k)I(k) of people shift to exposed but non-infectious com-
partment E at time k. Similarly, a fraction c and d of individuals in compartments E and I
migrate to the infectious I and recovered R compartments, respectively. It should be noted
that the recovered compartment is composed of people not yet immune.

The output measured data consists of noisy counts of susceptible individuals obtained
from different government sources such as census bureaus by PHS and are represented by
the following output system model [3]:

y(k) = S(k) + v(k) (3)

where v(k) ∈ L∞ stands for unknown measurement noise with known bounds v(k), v(k) ∈
L∞ such that v(k) ≤ v(k) ≤ v(k), ∀k ≥ 0. The unknown measurement noise consists of the
uncertain number of susceptible people who did not visit the health care unit for diagnosis.
Therefore, Equations (1) and (3) are rewritten as follows:

x(k + 1) = A(k)x(k) + E=(k) + w(k),
y(k) = Cx(k) + v(k),

(4)

where x(k) = [S(k) E(k) I(k) R(k)]T and =(k) = ℘(k)S(k)I(k) represent the unknown
state vector to be determined and uncertain input, i.e., the newly confirmed infected people
from the susceptible individuals at each time instant in the known population, respectively.
The time-varying unknown matrix A(k) and constant matrices E and C in (4) are given by

A(k) =


1− a 0 0 b

0 1− a− c 0 0
0 c 1− a− d 0
0 0 d 1− a− b

,

E =


−1
1
0
0

, w(k) =


a(k)

0
0
0

, C =


1
0
0
0


T

.

The uncertain unknown bounded matrix w(k) for w, w ∈ L∞ is defined as

w =


a(k)

0
0
0

, w =


a(k)

0
0
0

,

such that w ≤ w ≤ w.

4. Interval Estimator Design for SEIR Model

We will design the interval state estimator in this section for the SEIR model (4). In the
presence of uncertain parameters, the primary goal of this research is to construct an
interval estimator for the SEIR model such that the unknown state signals always satisfy
the following inequality:

x(k) ≤ x(k) ≤ x(k), ∀k ≥ 0, (5)

where x(k), x(k) represent the highest and lowest values for the interval state bounds
provided that x(0) ∈ [x(0), x(0)]. The proposed interval estimator can help to make a
deciding rule for pandemic detection. The following definition and assumption are required
to design the proposed interval state estimator for the given SEIR model.

Proposition 1. As the state x(k0) = x(0) is determined uniquely for all u(τ) and y(τ), τ ∈
[k0, k1], the SEIR epidemic model described by (4) is observable over [k0, k1].
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Assumption 1. There are known bounds w, w ∈ R4, v, v ∈ R such thatw(k) ∈ [w, w], v(k) ∈ [v, v].

The given proposition and assumption are necessary for designing the proposed
interval estimator. The bounds given by Assumption 1 determine the uncertainty of initial
values, input disturbance and noise.

4.1. Interval State Estimator Design

The observability matrix© ∈ R4×4 for (4) is given by

© =


C

CA(k)
CA(k + 1)A(k)

CA(k + 2)A(k + 1)A(k)


Then, the SEIR model (4) can be written in the input/output form in the absence of

uncertain quantities and exogenous signals as follows:

x(k + 4) = A(k + 3)A(k + 2)A(k + 1)A(k)x(k),
y(k)

y(k + 1)
y(k + 2)
y(k + 3)

 = Ψ(k : k + 3) = © x(k).
(6)

As a result, using available input-output values, (6) can be written as follows:

x(k) =©−1Ψ(k : k + 3) (7)

Hence, the states of the SEIR model (4) can be obtained using the available in-
put/output values for k− 3 ≥ 0 by

x̂(k) = ∆y(k)Ψ(k− 3 : k), (8)

with
∆y(k) = A(k− 1)A(k− 2)A(k− 3)©−1.

Then, the equation of our interval state estimator for the SEIR model (4) that generates
certain bounds on the real states for k − 3 ≥ 0 subject to exogenous signals takes the
following form:

x(k) = x̂(k) + D + Λ(k) + V,
x(k) = x̂(k) + D + Λ(k) + V,

(9)

where D, D ∈ R4×1, Λ(k), Λ(k) ∈ R4×1 and V, V ∈ R4×1 denote the upper and lower limits
on uncertain birth and death rate, uncertain input, and measurement noise, respectively.
We will define these terms one by one using Lemma 1 as follows.

4.1.1. Bounds on the Uncertain Birth and Death Rate

The bounds of the unknown birth and death rate are given by

D = φ+(k)wn−1 + φ−(k)wn−1
D = φ+(k)wn−1 + φ−(k)wn−1

, (10)

where wn−1 ∈ R12×1 and wn−1 ∈ R12×1 denote n− 1 bound concatenation on the uncertain
birth and death rate defined by

wn−1 =
[

w w w
]T , wn−1 =

[
w w w

]T ,
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with
w =

[
a(k) 0 0 0

]T , w =
[

a(k) 0 0 0
]T .

Furthermore,

φ+(k) = max{0, φ(k)}, φ+(k) = max{0, −φ(k)}, φ(k) = ΣA − ∆y(k)ΣCA,

where

ΣA =


ξ11 0 ξ13 ξ14 ξ15 0 0 ξ18
0 ξ22 0 0 0 ξ26 0 0
0 ξ32 ξ33 0 0 ξ36 ξ37 0
0 ξ42 ξ43 ξ44 0 0 ξ47 ξ48

I4

, (11a)

and

ξ11 = (1− a(k1))(1− a(k2)),
ξ13 = b(k1)d(k2),
ξ14 = b(k2)(1− a(k1)) + b(k1)(1− a(k2)− b(k2)),
ξ15 = (1− a(k2)),
ξ18 = b(k2),
ξ22 = (1− a(k1)− c(k1))(1− a(k2)− c(k2)),
ξ26 = (1− a(k2)− c(k2)),
ξ32 = c(k2)(1− a(k1)− c(k1)) + c(k1)(1− a(k2)− c(k2)),
ξ33 = (1− a(k1)− d(k1))(1− a(k2)− d(k2)),
ξ36 = c(k2),
ξ37 = (1− a(k2)− d(k2)),
ξ42 = d(k1)c(k2),
ξ43 = d(k2)(1− a(k1)− d(k1)) + d(k1)(1− a(k2)− d(k2)),
ξ44 = ((1− a(k1)− b(k1))((1− a(k2)− b(k2)),
ξ47 = d(k2),
ξ48 = (1− a(k2)− b(k2)),

ΣCA =


04×1 04×1 04×1

C 04×1 04×1
CA(k1) C 04×1

CA(k1)A(k2) CA(k1) C

,

=



0 0 0 0
1 0 0 0

1− a(k1) 0 0 b(k1)

{1− a(k1)}
{1− a(k2)}

0
b(k1)
d(k1)

−b(k1)b(k2)+
b(k1){1− a(k1)}+
b(k2){1− a(k1)}

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1− a(k1) 0 0 b(k1) 1 0 0 0

,

(11b)

with k1 = k− 1, k2 = k− 2.
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4.1.2. Bounds on Uncertain Input

The bounds on the uncertain input are represented as

Λ(k) = (φEn−1)
+=(k)− (φEn−1)

−=(k),
Λ(k) = (φEn−1)

+=(k)− (φEn−1)
−=(k). (12)

Using (3) and (4), one can write

y(k + 1) = Cx(k + 1) + v(k + 1),

= CA(k)x(k) + CE=(k) + Cw(k) + v(k + 1),

−CE=(k) = CA(k)x(k) + Cw(k)− y(k + 1) + v(k + 1).

Moreover, from (1), (3) and (4), we derive that

CE = −1, Cw(k) = a(k).

This results in

=(k) = CA(k)x(k) + a(k)− y(k + 1) + v(k + 1),

with
=(k) = (CA)+x(k)− (CA)−x(k) + |−y(k + 1)|+ v + a
=(k) = (CA)+x(k)− (CA)−x(k) + |−y(k + 1)| − v + a

,

such that [=(k)] = [=(k), =(k)] and En−1 = [E E E]T .

4.1.3. Bounds on Measurement Noise Vector

The bounds for the measurement noise vector are described by

V = ϕ+
v (k)vn + ϕ−v (k)vn,

V = ϕ+
v (k)vn + ϕ−v (k)vn,

(13)

where vn, vn ∈ R4×1, respectively, denote the n concatenation of v ∈ R and v ∈ R, given by

vn =


v
v
v
v

, vn =


v
v
v
v

,

and
ϕ+

v (k) = max{0 , ϕv(k)}, φ−v (k) = max{0 , −ϕv(k)}

with
ϕv(k) = −∆y(k).

Theorem 1. When Assumption 1 is satisfied for the given SEIR model (4), the interval state
estimator given by (9) yields the following relations:

x(k) ≤ x(k) ≤ x(k), ∀k ≥ 3, (14)

provided that x(0) ≤ x(0) ≤ x(0).

Proof of Theorem 1. The solution to the SEIR model (4) at any time instant k for x(0) ∈
[x(0), x(0)] and w(k) ∈ [w, w] can be obtained as

x(k) =
k

∏
`=1

A(k− `)x(0) + E=(k− 1) + w(k− 1) +
k−2

∑
m=0

{
k−m−1

∏
`=1

A(k− `)

}
{E=(m) + w(m)}. (15)
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The given SEIR model is a 4th order system i.e., n = 4. Therefore, the states x(k) can
be determined at any time k using previous state values at k− 3 as follows:

x(k) = A(k− 1)A(k− 2)A(k− 3)x(k− 3) + A(k− 1)A(k− 2){E=(k− 3) + w(k− 3)}
+A(k− 1){E=(k− 2) + w(k− 2)}+ E=(k− 1) + w(k− 1).

(16)

Now using theory of interval analysis [39] for all x(k− 3) ∈ [x(k− 3)], =(ϑ) ∈ [=(ϑ)]
and w(ϑ) ∈ [w(ϑ)] with ϑ ∈ {k− 3, k− 2, k− 1}, the state vector x(k) ∈ [x(k)] is given by

[x(k)] = A(k− 1)A(k− 2)A(k− 3)[x(k− 3)] + ΣA{En−1[=(k)] + [wn−1]}, (17)

As a result, utilizing the past input/output values and the observability matrix, the
following set inversion formula is obtained to get the state enclosure [x(k− 3)]:

[x(k− 3)] =©−1{[Ψ(k− 3 : k)]− ΣCAEn−1[=(k)]}+©−1ΣCA[wn−1], (18)

where

[Ψ(k− 3 : k)] =


y(k− 3)
y(k− 2)
y(k− 1)

y(k)

− [vn].

Consequently, by combing (17) and (18), one gets

[x(k)] = A(k− 1)A(k− 2)A(k− 3)©−1([Ψ(k− 3 : k)]− ΣCA{En−1[=(k)] + [wn−1]})
+ΣA{En−1[=(k)] + [wn−1]},

(19)

[x(k)] = ∆y(k){[Ψ(k− 3 : k)]− [vn]} − ∆y(k)ΣCA{En−1[=(k)] + [wn−1]}
+ΣA{En−1[=(k)] + [wn−1]},

(20)

[x(k)] = ∆y(k)[Ψ(k− 3 : k)]− ∆y(k)[vn] + (ΣA − ∆y(k)ΣCA){En−1[=(k)] + [wn−1]}, (21)

[x(k)] = ∆y(k)[Ψ(k− 3 : k)] + φ(k)En−1[=(k)] + φ(k)[wn−1] + ϕv(k)[vn], (22)

[x(k)] = x̂(k) + [Λ] + [D] + [V], (23)

where [x(k)] = [x, x], [Λ] = [Λ, Λ], [D] = [D, D] and [V] = [V, V]. This completes the
proof of Theorem 1.

4.2. Interval Prediction for k < 3

It is worth mentioning that to use the developed interval state estimator (9) for the
given SEIR model (4), the initial n− 1 = 3 values of input-output should be accessible.
However, in many real life scenarios, these values are not always available for measure-
ments, such as in the given case, where only the initial values are given with some known
bounds. Therefore, we proposed the following recursive system as an interval predictor
that provides a bound on the system’s states for k = 0, 1, 2.

Proposition 2. The following interval predictor generates [x(k)] such that for k = 0, 1, 2, we have
x(k) ∈ [x(k)] as

[x(k)] = ∏k
`=1 A(k− `)[x(0)] + [∂(k− 1)],

[∂(k)] = A(k)[∂(k− 1)] + E[=] + [w],
[∂(0)] = E[=] + [w].

(24)
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Proof. To prove Proposition 2, we use mathematical induction. As for the initial case k = 0,
the input and output are available. Therefore, we consider the case k = 1. Hence, the first
cycle of the SEIR model produces the following equations:

x(1) = A(0)x(0) + E=(0) + w(0),
[x(1)] ∈ A(0)[x(0)] + E[=] + [w],
[x(1)] ∈ A(0)[x(0)] + [∂(0)],

(25)

which implies the correctness of (24) for k = 1. Next, we demonstrate that (24) is true for
k = 2. Once again, considering (4) for k = 2, we get

x(2) = ∏2
`=1 A(2− `)x(0) + E=(1) + w(1) + ∑1

m=0

{
∏2

`=1 A(2− `)
}
{E=(m) + w(m)},

[x(2)] ∈ ∏2
`=1 A(2− `)[x(0)] + A(1)[∂(0)] + E[=] + [w],

(26)

[x(2)] ∈
2

∏
`=1

A(2− `)[x(0)] + [∂(1)]. (27)

Thus, by simple mathematical induction, one can easily show that (27) is true for k = 2
as well. This completes the proof of Proposition 2.

4.3. Finite-Time Convergence

The finite-time convergence of the interval width f [x(k)] is one of the primary issues
concerning the tight initialization and stability of the interval estimator. Therefore, this
section proves that f [x(k)] converges to a known upper-bounded value in finite time
provided by the uncertain quantities. Hence, we introduce the following Lemma to compute
the upper bound on f [x(k)].

Lemma 2. The following inequality determines the upper bound on the width of the interval vector
provided by (9) and (24):

f [x(k)] ≤ ‖φ(k)En−1‖∞f [=] + ‖φ(k)‖∞f [w] + ‖ϕv(k)‖∞f [vn], ∀k ≥ 3. (28)

Proof. Firstly, the recursive system (24) is employed as an interval predictor during the
initialization phase for k = 0, 1, 2 to provide tight bounds on the interval vector of the SEIR
model (4). As a result, the upper limit on the width of interval vector provided by (24) is
given by

f [x(k)] ≤
∥∥∥∥∥ k

∏
`=1

A(k− `)

∥∥∥∥∥
∞

f [x(0)] +f [∂(k− 1)]. (29)

Secondly, the proposed interval state estimator (9) is used for k ≥ 3. Then, Equation (23)
implies

f [x(k)] ≤ ‖φ(k)En−1‖∞f [=] + ‖φ(k)‖∞f [wn−1] + ‖ϕv(k)‖∞f [vn], (30)

whereas
‖φ(k)En−1‖∞f [=] + ‖φ(k)‖∞f [wn−1] + ‖ϕv(k)‖∞f [vn]

≤ ‖φ(k)En−1‖∞f [=] + ‖φ(k)‖∞f [w] + ‖ϕv(k)‖∞f [vn].
(31)

Based on (30) and (31), one can easily determine that

f [x(k)] ≤ ‖φ(k)En−1‖∞f [=] + ‖φ(k)‖∞f [w] + ‖ϕv(k)‖∞f [vn]. (32)

This completes the proof of Lemma 2.

Remark 1. It is worth noting that we do not need observer gain to design the interval estimator.
Therefore, the impact of gain that leads to pessimistic state enclosures for the traditional-type interval
observer design method [27,28] is avoided. However, it is more demanding in term of computation
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time. In addition, unlike Kalman filter-type state estimators, the exact values of exogenous signals are
not necessarily known and hence represent an advantage while dealing with practical applications.

5. Simulation Results

In this section, two simulated examples are used to demonstrate the efficiency of the
designed interval state estimator compared with the traditional interval observer design
methods [27,28]. Example 1 is a general numerical type, whereas Example 2 is based on the
2014 West African Ebola virus outbreak [47].

5.1. Example 1

Consider the SEIR epidemic model (4) with the following parameters defining the
time-varying matrix A(k) as

a(k) = a(0) + 0.05 sin(0.5πk)

b(k) = b(0) + 0.02 sin(0.5πk)

c(k) = c(0) + 0.1sin2(0.25πk)

d(k) = d(0) + 0.1 sin(0.25πk)

with a(0) = 0.4/month, b(0) = 0.124/month, c(0) = 0.2/month, d(0) = 0.45/month and
degree of seasonality η = 0.4.

The uncertain input parameter is ℘(k) = 0.5(1 + η cos(0.25k)), while the bounded dis-
turbance and output measurement noise are: w(k) ∈ [w(k) w(k)] for w(k) = [0.35 0 0 0]T ,
w(k) = [0.45 0 0 0]T and v(k) = V cos(0.25πk) with V = −0.00001.

The two matrices ΣA and ΣCA are, respectively, obtained using (12a) and (12b), and
bounds on the uncertain quantities are calculated by (10), (11) and (13). The observability
matrix for κj = (k + j); j = 0, 1, 2 is computed as follows:

©−1 =



1 0 0
1− aκ0 0 0

(1− aκ1)
(1− aκ0)

0 bκ1 dκ0

(1− aκ2)
(1− aκ1)
(1− aκ0)

bκ1 cκ0 dκ2

bκ1 dκ2(1− aκ0 − dκ0)
+dκ0{bκ1(1− aκ2)
+bκ2(1− aκ1 − bκ1)

0
b(κ0)

(1− a(κ1)
)b(κ0)

+b(κ1)
(1− a(κ0)

− b(κ0)
)

bκ0(1− aκ2)(1− aκ1)
+(1− aκ0 − bκ0)

{bκ1(1− aκ2) + bκ2(1− aκ1 − bκ1)}


It should be noted that our model is of order four, i.e., n = 4. Therefore, we need

to know the first two state intervals to implement the given interval estimator (9) for
k ≥ 3. Hence, the interval predictor (24) is used for k = 1, 2 provided that the initial values
x(0) ≤ x(0) ≤ x(0) are satisfied. It is worth mentioning that the given model does not
have to be non-negative for the proposed interval estimator to operate.

Simulation experiments of the proposed method and the one in [28] are conducted
to show the efficiency of the given approach. As perceived, the actual states are confined
inside the two boundaries generated by (24) and (9). Figure 2 depicts the evolution of the
actual states xs, s = 1, 2, 3, 4, the estimated bounds by the proposed method (solid pink
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lines), and the estimated bounds by MST (blue dashed line) [28]. The figure shows that
the developed approach estimates tighter bounds than those calculated using the method
described in [28]. Furthermore, in regards to the design perspective, the observer gain
matrix in [28] needs to be Schur and non-negative, while we do not need an observer gain
to design the interval estimator.

0 20 40 60 80 100
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0.3

0.35

0.4
S

X
1 by propsed method by the method in [28]
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2,3,4 by propsed method by the method in [28]
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R

20 20 40 60 80 100
-0.02

0.02

0.06

I

Figure 2. Interval estimations by proposed method vs. given in [28] for each state variable x1, x2, x3, x4

corresponding to S, E, I, R.

Secondly, the comparison of the interval state estimation errors eS, eE, eI and eR
reflected in Figures 3 and 4 further clarify that the estimated bounds generated by the
proposed method are more accurate and precise compared with [28]. Finally, Figure 5
shows the convergence of the interval widths given by (28). After three steps, the interval
widths converge to their final values, proving the finite-time convergence performance
of the proposed technique. Thus, it is concluded that the proposed method has a better
performance.
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5.2. Example 2: Ebola Outbreak in West Africa

The 2014 West Africa Ebola outbreak [47] is considered using the following parameters
to demonstrate the efficiency of the suggested technique having a period of one day as

a = 0.0099/day, b = 0.00128/day, c = 0.1887/day,
d = 0.1/day, ℘ = 0.4/day.

Using these parameters, we get matrix A, as follows:

A =


0.9901 0 0 0.00128

0 0.8014 0 0
0 0.1887 0.8901 0
0 0 0.1 0.9888

.

The output measurement noise v(k) is uniformly distributed with given bounds
−V ≤ v(k) ≤ V; V = 0.001.

We assumed that =(k) = ℘S(y − v) is unknown but bounded with the following
constraints:

=(k)− τ = =(k) ≤ =(k) ≤ =(k) = =(k) + τ; τ = 0.0001.

The observability matrix is obtained using A and C as

© =


1 0 1 0

0.9991 0.1887 0.8991 0.0013
0.9982 0.3226 0.8085 0.0026
0.9973 0.4140 0.7272 0.0038

.

The disturbance matrix to obtain bounds on the uncertain input, and uncertain birth
and death rate is computed as
φ(k) = ΣA − ∆y(k)ΣCA with ∆y(k) = A3©−1 and

ΣA =


0.9696 0 0.0001 0.0024 0.96 0

0 0.5016 0 0 0 0.66
0 0.4348 0.7638 0 0 0.3
0 0.0332 0.2057 0.9672 0 0

0 0 1 0 0 0
0.66 0 0 1 0 0

0.8493 0 0 0 1 0
0.1107 0.9588 0 0 0 1

,

ΣCA =


0 0 0 0 0 0 0
1 0 0 0 0 0 0

1.01 0 0 0.0012 1 0 0
0.9696 0 0.0001 0.0024 1.01 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0.0012 1 0 1 0

.

Similarly, the measurement noise matrix is calculated as ϕv(k) = −∆y(k). The initial un-
known bounded states are part of the interval x(0) ≤ x(0) ≤ x(0)with x(0) = [0.88 0.06 0.049 0]
and x(0) = [0.93 0.08 0.052 0.05].

The bounds on the uncertain input, uncertain birth-death rate and measurement noise
are obtained using (10), (11) and (13), respectively. For the proposed SEIR model (4), we
have n = 4; therefore, interval predictor (24) is used for k = 1, 2 whereas (9) is used for
k > 2 to obtain guaranteed bounds on x(k) provided that x(0) ≤ x(0) ≤ x(0).

The simulation results of the proposed method and the one in [27] are depicted in
Figure 6 to compare the observers’ dynamics. As shown in Figure 6, the bounds generated
by the developed method are tighter than those resulting from the work of Degue et al. [27].
In addition, the proposed method is easy to implement compared with [27] as it does not
need observer gain and nonnegativity of the system dynamics to design the interval
estimator. Moreover, Figures 7 and 8 show that the interval estimation errors e−i = xr − xr,
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e+i = xr − xr for r = 1, 2, 3, 4; i = S, E, I, R, respectively, provided by our work are much
smaller compared with [27].

Figure 6. Interval estimations by proposed method vs. the method given in [27] for each state variable
x1, x2, x3, x4 corresponding to S, E, I, R.
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Figure 7. Upper-bound error: (a) proposed method; (b) method given in [27].
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Figure 8. Lower-bound error: (a) proposed method; (b) method given in [27].

6. Conclusions

We developed a new strategy to design an interval state estimator for a fourth-order
nonlinear discrete-time SEIR epidemic model subject to uncertain input, disturbances and
measurement noise. The proposed method only requires the bounded values instead
of exact values for state disturbance, unknown input, and parameters. In addition, no
bounds on the time-varying transmission rate (susceptible to the infected stage) are re-
quired. The MST is widely used to design such an observer, but obtaining a non-negative
model is not always feasible. Therefore, the proposed interval state estimator relaxes
such restrictions by estimating the four compartment states using the observability matrix
instead of point-wise estimation. The finite-time convergence of the interval width for
the proposed approach is investigated to demonstrate its stability and performance. In
addition, the interval widths’ upper bound is estimated a priori. Finally, two numerical
simulations are conducted to test the performance of the designed method. It is concluded
that the proposed interval estimator generates more accurate boundaries and performs
better. However, the proposed technique can currently be applied in linear and nonlinear
discrete-time models. The interval estimator design approach for continuous-time systems
will be investigated in the future.
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