
����������
�������

Citation: Abdelhadi, M.; Alhazmi,

S.E.; Al-Omari, S. On a Class of

Partial Differential Equations and

Their Solution via Local Fractional

Integrals and Derivatives. Fractal

Fract. 2022, 6, 210. https://doi.org/

10.3390/fractalfract6040210

Academic Editor: Ravi P. Agarwal

Received: 27 February 2022

Accepted: 31 March 2022

Published: 8 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

On a Class of Partial Differential Equations and Their Solution
via Local Fractional Integrals and Derivatives
Mohammad Abdelhadi 1, Sharifah E. Alhazmi 2 and Shrideh Al-Omari 3,*

1 Department of Applied Science, Ajloun College, Al-Balqa Applied University, Ajloun 26816, Jordan;
mohmdnh@bau.edu.jo

2 Mathematics Department, Al-Qunfudah University College, Umm Al-Qura University,
Mecca 24382, Saudi Arabia; sehazmi@uqu.edu.sa

3 Department of Scientific Basic Sciences, Faculty of Engineering Technology, Al-Balqa Applied University,
Amman 11134, Jordan

* Correspondence: shridehalomari@bau.edu.jo or s.k.q.alomari@fet.edu.jo; Tel.: +962-77-206-1029

Abstract: This article investigates the local fractional generalized Kadomtsev–Petviashvili equation
and the local fractional Kadomtsev–Petviashvili-modified equal width equation. It presents traveling-
wave transformation in a nondifferentiable type for the governing equations, which translate them
into local fractional ordinary differential equations. It also investigates nondifferentiable traveling-
wave solutions for certain proposed models, using an ansatz method based on some generalized
functions defined on fractal sets. Several interesting graphical representations as 2D, 3D, and contour
plots at some selected parameters are presented, by considering the integer and fractional derivative
orders to illustrate the physical naturality of the inferred solutions. Further results are also introduced
in some details.

Keywords: partial differential equation; hyperbolic function; local fractional derivative; exact solu-
tion; Kadomtsev–Petviashvili equation

1. Introduction

Differential calculus is a notable mathematical field that investigates the concept of
derivatives and integrals of arbitrary orders as well as their properties. It began in 1695,
with a letter from Leibniz to L’Hopital. As soon as this field appeared, a lot of scientists built
and proposed diverse alternative approaches for the fractional derivative and the fractional
integral [1–6]. The fractional differential equations have attracted researchers, due to their
importance in investigating models of many fields of science such as physics, biology,
chemistry, finance, fractal dynamics, acoustic waves, control theory, signal processing,
diffusion-reaction processes, hydromagnetic waves, and anomalous transport [7–11]. This
importance is the main reason for exploring the exact or numerical solutions for it. Numer-
ous approaches have been introduced and implemented to gain such solutions. For instance,
reproducing the kernel Hilbert space method [12,13], multistep approach [14,15], residual
power series method [16], Riccati-Bernoulli sub-ordinary differential equation Sub-ODE
technique (RBSODET) [17], unified method [18], modified simple equation method [19],
and several others [20–22].

The local fractional calculus is an important tool to interpret and model phenomena in
several fields of science such as fractal rheological models [23], electric circuit models [24],
and fractal growth of populations models [25]. Many studies have been presented in the
literature to investigate the numerous aspects of this concept such as the chain rule and
Leibniz rule for local fractional derivative operator [26]. Due to the advances in the theory of
local fractional calculus, scientists have proposed several techniques to establish solutions
for the local fractional differential equations. One such technique is the nondifferentiable
traveling-wave approach, which was utilized to construct nondifferentiable exact solutions
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for models for fractal fluid flows [27–29]; then, it has been proposed to handle other models
in several fields [30–32].

The Kadomtsev–Petviashvili (KP) equation is a nonlinear evolution equation intro-
duced for the first time by Kadomtsev and Petviashvili, utilized to investigate the soliton
solution stability for the Korteweg–de Vries (KdV) equation. The Kadomtsev–Petviashvili
equation was created to study the evolution of the long ion-acoustic waves of small am-
plitude that propagate in plasma [33]. It became one of the significantly used models in
the theory of nonlinear waves. Currently, the KP equation is used for the checking and
development of several techniques in mathematics such as the theory of variational for
existence and stability of energy minimizers as well as dynamical system techniques for
water waves [34–36]. Owing to importance of the Kadomtsev–Petviashvili equation, it
has attracted many researchers, where semi-rational solutions for it have been constructed
using the hierarchy reduction method in [36]. In addition, the rogue wave solutions,
breather solutions, and lump solutions for the Kadomtsev–Petviashvili equation have been
established [37]. The Kadomtsev–Petviashvili equation was solved by applying the Bell
polynomials [38].

In this article, we study the temporal–spatial local fractional generalized (3 + 1)-
dimensional Kadomtsev–Petviashvili equation (LFKPE) [39]:

∂η

∂xη

(
∂ηφ

∂tη + a1φ
∂ηφ

∂xη + a2
∂3ηφ

∂x3η

)
+ a3

∂2ηφ

∂x2η
+ a4

∂2ηφ

∂y2η
+ a5

∂2ηφ

∂z2η
+ a6

∂2ηφ

∂yη∂xη + a7
∂2ηφ

∂z∂xη + a8
∂2ηφ

∂zη∂yη = 0 (1)

where φ ≡ φ(t, x, y, z) represents the amplitude of the wave with the independent tem-
poral variable t and independent spatial variables x, y, and z. The parameters a1 and a2
represent the dispersion and the nonlinearity effect, respectively, while the parameters
a3, a6, and a7 denote the perturbed effects. The parameters a4, a5, and a8 represent the
effects of disturbed wave velocity. In addition, we consider the local fractional Kadomtsev–
Petviashvili-modified equal width equation (LFKP-MEWE) [40]:

∂η

∂xη

(
∂ηφ

∂tη + a1
∂η

∂xη

(
φ3
)
+ a2

∂3ηφ

∂tη∂x2η

)
+ a3

∂2ηφ

∂y2η
= 0 (2)

where φ ≡ φ(t, x, y) represents the water velocity with the independent temporal variable
t and independent spatial variables x and y, where a1, a2, and a3 are constants. We seek
in this article to explore nondifferentiable traveling-wave solutions based on generalized
functions defined on fractal sets for the governing Equations (1) and (2), with aid from
suitable nondifferentiable-type traveling-wave transformations.

The nondifferentiable traveling wave techniques have been considered to deal with
mathematical models of fractional partial propagation, fluid flow, quantum mechanics,
heat, and mass transfer. Anyhow, the fractional traveling wave solutions of the (3 + 1)-
dimensional Kadomtsev–Petviashvili equation have not been investigated via the local
fractional derivative (LFD). Motivated by the above discussion, the main objective of
the paper is to provide fractal travel-wave solutions to the local fractional Kadomtsev–
Petviashvili equation utilizing the LFD. The paper is arranged as follows: Section 2 presents
overview of the local fractional calculus (LFC), in which the LFD and local fractional
integral (LFI) definitions and their essential properties have presented. Section 3 is devoted
to utilizing the proposed traveling-wave transformation and to obtain the nondifferentiable
exact solutions for the LFKPE (1). The LFKP-MEWE (2) will be analyzed in Section 4,
to establish the nondifferentiable exact traveling-wave solution. Some of the concluding
remarks have been presented in Section 5.

2. Overview on Local Fractional Differential and Integral Calculus

This section is devoted to present the definitions of the LFD, LFI, and local fractional
partial derivative (LFPD), along with a list their essential properties.
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Let R and Rη be, respectively, the sets of real numbers and real line numbers. Then.
there is lim

η→1
Rη = R, where 0 < η ≤ 1. The fractal function, also called the nondifferentiable

functions (NFs), : R→ Rη , ζ → φ(ζ) , is said to be local fractional continuous at the point
ζ0, if for any ε > 0, there exists δ > 0 such that |φ(ζ)− φ(ζ0) | < εη holds for |ζ − ζ0 | < δ,
where ε, δ ∈ R [41]. Let φ ∈ Cη(a, b), where Cη(a, b) is a set of local fractional continuous
functions with the fractal dimension η, 0 < η < 1, on the interval (a, b) [23,41].

Definition 1 [23]. Let φ(ζ) ∈ Cη(a, b). Then, the LFD of the function φ(ζ) of the fractional order
η, 0 < η < 1, at the point ζ = ζ0 is defined as,

Dη
ζ φ(ζ0) =

dηφ(ζ0)

dζη = lim
ζ→ζ0

∆η(φ(ζ)− φ(ζ0))

(ζ − ζ0)
η (3)

where
∆η(φ(ζ)− φ(ζ0)) ∼= Γ(1 + η)∆(φ(ζ)− φ(ζ0)) (4)

The LFD possesses significant properties such as the properties of the classical deriva-
tive. The following theorem lists the essential properties that will be used throughout the
work.

Theorem 1 [23]. Suppose that φ1(ζ), φ2(ζ) ∈ Cη(a, b). Then, the following relations are satisfied

(p1) Dη
ζ [φ1(ζ)± φ2(ζ)] = D

η
ζ φ1(ζ)±D

η
ζ φ2(ζ)

(p2) Dη
ζ [φ1(ζ)φ2(ζ)] = D

η
ζ (φ1(ζ))φ2(ζ) + φ1(ζ)D

η
ζ φ2(ζ)

(p3) Dη
ζ

[
φ1(ζ)
φ2(ζ)

]
=
Dη

ζ (φ1(ζ))φ2(ζ)−φ1(ζ)D
η
ζ φ2(ζ)

(φ2(ζ))
2 , φ2(ζ) 6= 0

(p4) Dη
ζ [φ1(ζ) ◦ φ2(ζ)] = D

η
ζ φ1(φ2(ζ))

(
φ
(1)
2 (ζ)

)η
= φ

(1)
1 (φ2(ζ))D

η
ζ φ2(ζ).

Remark 1 [23]. The LFD of some functions are listed as follows:

(i) Dη
ζ ζnη =

Γ(1 + nη)

Γ(1 + (n− 1)η)
ζ(n−1)η (5)

(ii) I f Eη(ζ
η) =

∞

∑
k=0

ζkη

Γ(1 + kη)
, then Dη

ζ Eη(ζ
η) = Eη(ζ

η), (6)

where Eη(•) is Mittag-Leffler function

(iii) I f sinhη(ζ
η) =

Eη(ζη)− Eη(−ζη)

2
, then Dη

ζ sinhη(ζ
η) = coshη(ζ

η) (7)

(iii) I f coshη(ζ
η) =

Eη(ζη) + Eη(−ζη)

2
, then Dη

ζ coshη(ζ
η) = −sinhη(ζ

η) (8)

Definition 2 [23]. Letφ(ζ, θ) be a fractal function. The LFPD of φ(ζ, θ) of the fractional order
η, 0 < η < 1, at the point ζ = ζ0 is defined as

Dη
ζ φ(ζ0, θ) =

∂ηφ(ζ0, θ)

∂ζη = lim
ζ→ζ0

∆η(φ(ζ, θ)− φ(ζ0, θ))

(ζ − ζ0)
η (9)

where
∆η(φ(ζ, θ)− φ(ζ0, θ)) ∼= Γ(1 + η)∆(φ(ζ, θ)− φ(ζ0, θ)) (10)
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Definition 3 [23]. Let ψ(ζ) ∈ Cη(a, b) The LFI of the fractal functionψ(ζ) of orderη, 0 < η < 1,
is defined as,

Iη

(a,b)ψ(ζ) =
1

Γ(1 + η)

b∫
a

ψ(ζ)(dζ)η =
1

Γ(1 + η)
lim

∆ζ→0

N−1

∑
k=0

ψ(ζk)(∆ζk)
η (11)

where ∆ζk = ζk+1 − ζk, k = 0, 1, . . . ,N − 1, ζ0 = a and ζN = b.
The relation between LFD and LFI can be described in the following theorem:

Theorem 2 [23]. Let φ(ζ) ∈ Cη(a, b) Then, the following integral equations are satisfied

(i)
1

Γ(1 + η)

ζ∫
a

dηφ(ζ)

dζη (dζ)η = φ(ζ)− φ(a) (12)

(ii)
dη

dζη

 1
Γ(1 + η)

ζ∫
a

φ(ζ)(dζ)η

 = φ(ζ) (13)

For more details about the local fractional calculus, local fractional differential, and
integral calculus, the reader can be referred to the references [4,16–20].

3. Nondifferentiable Solutions for LFKPE

In this section, the travelling wave transformation approach for constructing the
traveling-wave solutions for the LFKPE (1) defined on fractals sets is considered. Consider
the nondifferentiable traveling wave transformation

φ(t, x, y, z) = Φ(χη), χη = αηtη + βη xη + γηyη + δηzη (14)

where αη , βη , γη , and δη are nonzero constants. Use this transformation with the aid of
chain rule of the LFD to obtain the following relations for the local fractional differential
terms of model (1):

∂ηφ(t, x, y, z)
∂xη =

∂ηΦ(χη)

∂xη =
dηΦ
dχη

(
dχ

dx

)η

= βη dηΦ
dχη (15)

∂2ηφ

∂xη∂tη = αη βη d2ηΦ
dχ2η

(16)

∂2ηφ

∂x2η
= β2η d2ηΦ

dχ2η
(17)

∂2ηφ

∂y2η
= γ2η d2ηΦ

dχ2η
(18)

∂2ηφ

∂z2η
= δ2η d2ηΦ

dχ2η
(19)

∂2ηφ

∂yη∂xη = βηγη d2ηΦ
dχ2η

(20)

∂2ηφ

∂zη∂xη = βηδη d2ηΦ
dχ2η

(21)

∂2ηφ

∂zη∂yη = γηδη d2ηΦ
dχ2η

(22)
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∂4ηφ

∂x4η
= β4η d4ηΦ

dχ4η
(23)

Substitute the relations (15) to (23) into the governing Equation (1) to get the following
local fractional ordinary differential equation:(

αη βη + a3β2η + a4γ2η + a5δ2η + a6βηγη + a7βηδη + a8γηδη
) d2ηΦ

dχ2η

+a1β2η

(
Φ d2ηΦ

dχ2η +
(

dηΦ
dχη

)2
)
+ a2β4η d4ηΦ

dχ4η = 0
(24)

With the aid of chain rule, the local fractional ordinary differential Equation (24) can
be written in the form

d2η

dχ2η ((α
η βη + a3β2η + a4γ2η + a5δ2η + a6βηγη + a7βηδη + a8γηδη)Φ+

a1β2η

2 Φ2 + a2β4η d2ηΦ
dχ2η ) = 0

(25)

Taking the LFI of (25), with respect to χ twice, in which the integrating constants
considered to be zero to obtain(

αη βη + a3β2η + a4γ2η + a5δ2η + a6βηγη + a7βηδη + a8γηδη
)
Φ

+ a1β2η

2 Φ2 + a2β4η d2ηΦ
dχ2η = 0

(26)

Multiply both sides of Equation (26) by dηΦ
dχη and, then, use the chain rule to obtain

dη

dχη

((
αη βη + a3β2η + a4γ2η + a5δ2η + a6βηγη + a7βηδη + a8γηδη

)
2

Φ2 +
a1β2η

6
Φ3 +

a2β4η

2

(
dηΦ
dχη

)2
)

= 0 (27)

Apply the LFI to (27) and consider the integrating constant to be zero, then we ensure
the following equation:

(
αη βη + a3β2η + a4γ2η + a5δ2η + a6βηγη + a7βηδη + a8γηδη

)
2

Φ2 +
a1β2η

6
Φ3 +

a2β4η

2

(
dηΦ
dχη

)2
= 0 (28)

3.1. Nondifferentiable Solution-Type I

To construct the first nondifferentiable solution, Φ1, for the local fractional ordinary
differential Equation (28), we suppose it in the following form

Φ1(χ
η) = Π1sec h2

η(Π2χη) =
4Π1(

Eη(Π2χη) + Eη(−Π2χη)
)2 (29)

where Π1 and Π2 are nonzero constants to be determined.
The LFD of Φ1(χ

η), with aid of Theorem 1 and Remark 1, can be found as(
dηΦ1
dχη

)2
(
=, 4, Π1, dη

dχη ,
(

1
(Eη ,(Π2,χη),+,Eη ,(−Π2χη))

2

))
2

= 4Π2
1Π2

2

(
4(Eη(Π2χη)−Eη(−Π2χη))

(Eη(Π2χη)+Eη(−Π2χη))
3

)2

= 4Π2
1Π2

2

(
16(Eη(Π2χη)−Eη(−Π2χη))

2

(Eη(Π2χη)+Eη(−Π2χη))
6

)
(30)
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On the other hand, we obtain

4Π2
2Φ2

1(χ
η)− 4Π2

2
Π1

Φ3
1(χ

η)

= 4Π2
2

(
4Π1

(Eη(Π2χη)+Eη(−Π2χη))
2

)2

− 4Π2
2

Π1

(
4Π1

(Eη(Π2χη)+Eη(−Π2χη))
2

)3

= 4Π2
1Π2

2

(
16

(Eη(Π2χη)+Eη(−Π2χη))
4 − 64

(Eη(Π2χη)+Eη(−Π2χη))
6

)

= 4Π2
1Π2

2

(
16
(
(Eη(Π2χη)+Eη(−Π2χη))

2−4
)

(Eη(Π2χη)+Eη(−Π2χη))
6

)

(31)

Based on the analysis given in (30) and (31), we ensure that Φ1(χ) satisfies the follow-
ing relation (

dηΦ1

dχη

)2
= 4Π2

2Φ2
1(χ

η)− 4Π2
2

Π1
Φ3

1(χ
η) (32)

By comparing the Equation (28) and the obtained relation (32), the constants Π1 and
Π2 read as

Π1 =
−3
(
αη βη + a3β2η + a4γ2η + a5δ2η + a6βηγη + a7βηδη + a8γηδη

)
a1β2η

(33)

Π±2 = ±

√
−
(
αη βη + a3β2η + a4γ2η + a5δ2η + a6βηγη + a7βηδη + a8γηδη

)
4a2β4η

(34)

Inserting (33) and (34) into (28), we get the following solution for the local fractional
ordinary differential Equation (28):

Φ±1 (χ
η) =

(
−3(αη βη+a3β2η+a4γ2η+a5δ2η+a6βηγη+a7βηδη+a8γηδη)

a1β2η

)

×sec h2
η

((
±
√
−(αη βη+a3β2η+a4γ2η+a5δ2η+a6βηγη+a7βηδη+a8γη δη)

4a2β4η

)
χη

) (35)

Consequently, the traveling-wave solution for the LFKPE (1) can be written as

φ±1 (t, x, y, z) = (−3(αη βη+a3β2η+a4γ2η+a5δ2η+a6βηγη+a7βηδη+a8γηδη)
a1β2η )

×sech2
η((±

√
−(αη βη+a3β2η+a4γ2η+a5δ2η+a6βηγη+a7βηδη+a8γηδη)

4a2β4η )(αηtη + βη xη + γηyη + δηzη))

(36)

3.2. Nondifferentiable Solution-Type II

To construct another traveling-wave solution for LFKPE (1), we suppose the nondiffer-
entiable solution for the local fractional ordinary differential equation (LFODE) (28) can be
taken in the following form

Φ2(χ
η) = Π3csc h2

η(Π4χη) =
4Π3(

Eη(Π4χη)− Eη(−Π4χη)
)2 , (37)
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where Π3 and Π4 are nonzero constants to be determined. Use the properties of the
LFD with the similar technique in the previous section to ensure that Φ2(χ

η) satisfies the
following relation (

dηΦ2

dχη

)2
= −4Π2

2Φ2
2(χ

η)− 4Π2
2

Π1
Φ3

2(χ
η). (38)

Therefore, comparing the coefficients of the local fractional ordinary differential equa-
tion (LFODE) (28) with the constructed relation (38), we deduce the following values for
the constants Π3 and Π4

Π3 =
3
(
αη βη + a3β2η + a4γ2η + a5δ2η + a6βηγη + a7βηδη + a8γηδη

)
a1β2η

, (39)

Π±4 = ±

√(
αη βη + a3β2η + a4γ2η + a5δ2η + a6βηγη + a7βηδη + a8γηδη

)
4a2β4η

. (40)

Accordingly, the second traveling-wave solution for the LFKPE (1) can be written as

φ±2 (t, x, y, z) =
(

3(αη βη+a3β2η+a4γ2η+a5δ2η+a6βη γη+a7βη δη+a8γηδη)
a1β2η

)

×csc h2
η

((
±
√

(αη βη+a3β2η+a4γ2η+a5δ2η+a6βηγη+a7βηδη+a8γηδη)
4a2β4η

)
(αηtη + βη xη + γηyη + δηzη)

) (41)

The graphical representation of the inferred traveling-wave solution (36) for the LFKPE
(1) is presented in the following figures. Figure 1 shows the 3D plot and the contour plot of
φ+

1 (t, x, 0, 0) at the fractional derivative order at selected the parameters. The effect of the
local fractional derivative on the observed traveling-wave solution φ−1 (t, x, 0, 0) has been
illustrated in Figure 2. In Figure 3, we show the contour plot of the obtained traveling-wave
solution φ+

2 (t, x, 0, 0) at some selected parameters, in which the derivative is considered in
an integer and fractional sense. It is clear from Figures 2 and 3 that the fractional derivative
mainly affects the intensity of the convexity in the form of the inferred solution. Figure 4
presents the 2D plot of the constructed exact solution φ+

2 (t, x, 0, 0) at the diverse selected
parameters to present a comparison in behavior of the traveling-wave solutions at different
values for the spatial variable x and at two opposite values for the dispersion parameters a1
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ln(3); (b) contour plot on 𝑡𝑡, 𝑥𝑥 ∈ [0, 1] at 𝜂𝜂 = ln(2)
ln(3). 
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Figure 2. Effect of the local fractional derivative on the traveling-wave solution 𝜙𝜙1−(𝑡𝑡, 𝑥𝑥, 0) at: 𝑎𝑎1 =
1,𝑎𝑎2 = −1,𝑎𝑎3 = 3, 𝑎𝑎4 = 1,𝑎𝑎5 = 2,𝑎𝑎6 = 0.1, 𝑎𝑎7 = 1,𝑎𝑎8 = 1,𝛼𝛼 = 0.1,𝛽𝛽 = 0.1,𝛾𝛾 = 0.1,𝛿𝛿 = 0.1  on 𝑡𝑡, 𝑥𝑥 ∈

Figure 1. The profile of the traveling-wave solution φ+
1 (t, x, 0, 0) at: a1 = −1, a2 = −1,

a3 = −0.3, a4 = 1, a5 = 0.6, a6 = 0.1, a7 = 1, a8 = 1, α = 0.1, β = 0.1, γ = 0.1, δ = 0.1 :
(a) 3D plot on t, x ∈ [0, 1.5] at η =

ln(2)
ln(3) ; (b) contour plot on t, x ∈ [0, 1] at η =

ln(2)
ln(3) .
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Figure 1. The profile of the traveling-wave solution 𝜙𝜙1+(𝑡𝑡,𝑥𝑥, 0,0)  at: 𝑎𝑎1 = −1,𝑎𝑎2 = −1, 𝑎𝑎3 =
−0.3,𝑎𝑎4 = 1,𝑎𝑎5 = 0.6, 𝑎𝑎6 = 0.1,𝑎𝑎7 = 1,𝑎𝑎8 = 1,𝛼𝛼 = 0.1,𝛽𝛽 = 0.1, 𝛾𝛾 = 0.1,𝛿𝛿 = 0.1: (a) 3D plot on 𝑡𝑡, 𝑥𝑥 ∈
[0, 1.5] at 𝜂𝜂 = ln(2)

ln(3); (b) contour plot on 𝑡𝑡, 𝑥𝑥 ∈ [0, 1] at 𝜂𝜂 = ln(2)
ln(3). 

 
 

(a) (b) 

Figure 2. Effect of the local fractional derivative on the traveling-wave solution 𝜙𝜙1−(𝑡𝑡, 𝑥𝑥, 0) at: 𝑎𝑎1 =
1,𝑎𝑎2 = −1,𝑎𝑎3 = 3, 𝑎𝑎4 = 1,𝑎𝑎5 = 2,𝑎𝑎6 = 0.1, 𝑎𝑎7 = 1,𝑎𝑎8 = 1,𝛼𝛼 = 0.1,𝛽𝛽 = 0.1,𝛾𝛾 = 0.1,𝛿𝛿 = 0.1  on 𝑡𝑡, 𝑥𝑥 ∈

Figure 2. Effect of the local fractional derivative on the traveling-wave solution φ−1 (t, x, 0) at:
a1 = 1, a2 = −1, a3 = 3, a4 = 1, a5 = 2, a6 = 0.1, a7 = 1, a8 = 1, α = 0.1, β = 0.1, γ = 0.1, δ = 0.1
on t, x ∈ [0, 2] where blue for η = 0.85; orange for η = 0.6; and green for η = 0.45 : (a) 3D plot of
φ−1 (t, x, 0); (b) 2D plot of φ−1 (t, 0, 0).
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Figure 3. The profile of traveling-wave solution φ+
2 (t, x, 0, 0) at: a1 = −6, a2 = 1, a3 = 1,

a4 = 1, a5 = 1, a6 = −1, a7 = −1, a8 = −1, α = 0.01, β = 0.01, γ = 0.001, δ = 0.001 on
x ∈ [0, 1] and t ∈ [0, 1] where: (a) η = 0.75; (b) η =

ln(2)
ln(3) ; (c) η = 0.5.
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4. Nondifferentiable Solutions for LFKP-MEWE

In this section, we seek to explore nondifferentiable traveling-wave solutions for
the LFKP-MEWE (2). To this purpose, we consider a nondifferentiable traveling-wave
transformation in the form:

φ(t, x, y) = Φ(χη), χη = αηtη + βη xη + γηyη , (42)

where αη , βη , and γη are nonzero constants.
Substitute this transformation into the LFKP-MEWE (2), with the aid of the properties

of the LFD, and simplify the resultant to infer the following local fractional ordinary
differential equation:

(
αη βη + γ2ηa3

)d2ηΦ
dχ2η

+ 3β2ηa1

(
Φ2 d2ηΦ

dχ2η
+ 2Φ

(
dηΦ
dχη

)2
)
+ αη β3ηa2

d4ηΦ
dχ4η

= 0. (43)

Use the chain rule to rewrite Equation (43) as follows:

d2η

dχ2η

((
αη βη + γ2ηa3

)
Φ + β2ηa1Φ3 + αη β3ηa2

d2ηΦ
dχ2η

)
= 0 (44)

Utilize the LFI to both sides of the local fractional ordinary differential Equation (44)
twice with zero integrating constants to obtain

(
αη βη + γ2ηa3

)
Φ + β2ηa1Φ3 + αη β3ηa2

d2ηΦ
dχ2η

= 0 (45)

Multiplying the local fractional ordinary differential Equation (44) by the differential
operator dη Φ

dχη and, then, using the chain rule leads to the following equation

dη

dχη

((
αη βη + γ2ηa3

)
2

Φ2 +
β2ηa1

4
Φ4 +

αη β3ηa2

2

(
dηΦ
dχη

)2
)

= 0. (46)

Apply the LFI to (46) and consider the integrating constant to be zero. Thus, the
corresponding local fractional ordinary differential Equation (46) can be written as(

αη βη + γ2ηa3
)

2
Φ2 +

β2ηa1

4
Φ4 +

αη β3ηa2

2

(
dηΦ
dχη

)2
= 0. (47)
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4.1. Nondifferentiable Exact Solution-Type I

We construct the first nondifferentiable traveling-wave solution for the local fractional
ordinary differential Equation (45) in the form

Φ1(χ
η) = Π1sec hη(Π2χη) =

2Π1

Eη(Π2χη) + Eη(−Π2χη)
, (48)

where Π1 and Π2 are constants to be determined. The LFD of Φ1(χ
η) can be observed as

follows: (
dηΦ1
dχη

)2
= Π2

1

(
dη

dχη

(
2

Eη(Π2χη)+Eη(−Π2χη)

))2

= Π2
1Π2

2

(
2(Eη(Π2χη)−Eη(−Π2χη))

(Eη(Π2χη)+Eη(−Π2χη))
2

)2

= 4Π2
1Π2

2

(
(Eη(Π2χη)−Eη(−Π2χη))

2

(Eη(Π2χη)+Eη(−Π2χη))
4

)

= 4Π2
1Π2

2

(
(Eη(Π2χη)+Eη(−Π2χη))

2−4

(Eη(Π2χη)+Eη(−Π2χη))
4

)

= Π2
1Π2

2

(
22

(Eη(Π2χη)+Eη(−Π2χη))
2 − 24

(Eη(Π2χη)+Eη(−Π2χη))
4

)

= Π2
1Π2

2

(
sec h2

η(Π2χη)− sec h4
η(Π2χη)

)
= Π2

2Φ2
1 −

Π2
2

Π2
1
Φ4

1.

(49)

The analysis in (49) ensures the following relation for the assumption Φ1(χ)(
dηΦ1

dχη

)2
= Π2

2Φ2
1 −

Π2
2

Π2
1

Φ4
1. (50)

Compare the coefficients of the same terms in the LFODE (46) and the obtained relation
(50) to deduce the following values for the constants Π1 and Π2:

Π±1 = ±

√
2
(
αη βη + γ2ηa3

)
β2ηa1

, Π±2 = ±

√
−
(
αη βη + γ2ηa3

)
αη β3ηa2

. (51)

Accordingly, the nondifferentiable traveling-wave solutions for the LFODE (47) can be
given as

Φ±1 (χ
η) = ±

√
2
(
αη βη + γ2ηa3

)
β2ηa1

sec hη

±√−(αη βη + γ2ηa3
)

αη β3ηa2
χη

. (52)

Consequently, the nondifferentiable exact traveling-wave solutions for the LFKP-
MEWE (2) are observed to be
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φ±1 (t, x, y) = ±

√
2
(
αη βη + γ2ηa3

)
β2ηa1

sec hη

±√−(αη βη + γ2ηa3
)

αη β3ηa2
(αηtη + βη xη + γηyη)

. (53)

4.2. Nondifferentiable Exact Solution-Type II

We suppose that the nondifferentiable traveling-wave solution for the LFODE (47) can
be written in the form

Φ2(χ
η) = Π3 secη(Π4χη) =

2Π3

Eη

(
Π4(iχ)

η)+ Eη

(
−Π4(iχ)

η) (54)

where Π3 and Π4 are constants to be determined. Utilizing the same technique in (49) to
infer the following relation of the assumption Φ2(χ

η)(
dηΦ1

dχη

)2
= −Π2

4Φ2
1 +

Π2
4

Π2
3

Φ4
1 (55)

Compare the LFODE (47) and the obtained relation (55). Then, the values of the
constants Π3 and Π4 fall to be

Π±3 = ±

√
−2
(
αη βη + γ2ηa3

)
β2ηa1

, Π±4 = ±

√(
αη βη + γ2ηa3

)
αη β3ηa2

(56)

Upon the observed result (56), the nondifferentiable traveling-wave solution for the
LFODE (47) is given by

Φ±2 (χ
η) = ±

√
−2
(
αη βη + γ2ηa3

)
β2ηa1

secη

±√(αη βη + γ2ηa3
)

αη β3ηa2
χη

 (57)

Therefore, we establish the nondifferentiable exact traveling-wave solution for the
LFKP-MEWE (2) as follows

φ±2 (t, x, y) = ±

√
−2
(
αη βη + γ2ηa3

)
β2ηa1

secη

±√(αη βη + γ2ηa3
)

αη β3ηa2
(αηtη + βη xη + γηyη)

 (58)

To understand the physical naturality of the established traveling-wave solution, we
depict it in the following figures. Figure 5 represents the surface of the nondifferentiable
traveling-wave solution φ−1 (t, x, 0), at selected parameters, where the derivative is consid-
ered in a fractional sense. In Figure 6, we show the effect of the local fractional derivative on
the inferred solutions φ+

1 (t, x, 0), at diverse fractional derivative orders, which illustrated
that the intensity of the convexity of the constructed traveling-wave solutions has been
affected with the change on the fractional derivative orders. Figure 7 represents the surface
of the nondifferentiable traveling-wave solution φ+

2 (t, x, 0), at selected parameters, where
the derivative is considered in a fractional sense. In Figure 8, we show the effect of the
local fractional derivative on the inferred solutions and φ−2 (t, x, 0), respectively, at diverse
fractional derivative orders, which illustrated that the intensity of the convexity of the
constructed traveling-wave solutions has been affected with the change on the fractional
derivative orders.



Fractal Fract. 2022, 6, 210 12 of 15

Fractal Fract. 2022, 6, x FOR PEER REVIEW 12 of 15 
 

 

Compare the LFODE (47) and the obtained relation (55). Then, the values of the 
constants Π3 and Π4 fall to be  

Π3
± = ±�−2(𝛼𝛼𝑘𝑘𝛽𝛽𝑘𝑘+𝛾𝛾2𝑘𝑘𝑎𝑎3)

𝛽𝛽2𝑘𝑘𝑎𝑎1
,Π4

± = ±�(𝛼𝛼𝑘𝑘𝛽𝛽𝑘𝑘+𝛾𝛾2𝑘𝑘𝑎𝑎3)
𝛼𝛼𝑘𝑘𝛽𝛽3𝑘𝑘𝑎𝑎2

  (56) 

Upon the observed result (56), the nondifferentiable traveling-wave solution for the 
LFODE (47) is given by 

Φ2
±(𝜒𝜒𝜂𝜂) = ±�

−2(𝛼𝛼𝜂𝜂𝛽𝛽𝜂𝜂 + 𝛾𝛾2𝜂𝜂𝑎𝑎3)
𝛽𝛽2𝜂𝜂𝑎𝑎1

sec𝜂𝜂 �±�
(𝛼𝛼𝜂𝜂𝛽𝛽𝜂𝜂 + 𝛾𝛾2𝜂𝜂𝑎𝑎3)

𝛼𝛼𝜂𝜂𝛽𝛽3𝜂𝜂𝑎𝑎2
𝜒𝜒𝜂𝜂� (57) 

Therefore, we establish the nondifferentiable exact traveling-wave solution for the 
LFKP-MEWE (2) as follows  

𝜙𝜙2
±(𝑡𝑡, 𝑥𝑥, 𝑦𝑦) = ±�−2(𝛼𝛼𝑘𝑘𝛽𝛽𝑘𝑘+𝛾𝛾2𝑘𝑘𝑎𝑎3)

𝛽𝛽2𝑘𝑘𝑎𝑎1
sec𝜂𝜂 �±�(𝛼𝛼𝑘𝑘𝛽𝛽𝑘𝑘+𝛾𝛾2𝑘𝑘𝑎𝑎3)

𝛼𝛼𝑘𝑘𝛽𝛽3𝑘𝑘𝑎𝑎2
(𝛼𝛼𝜂𝜂𝑡𝑡𝜂𝜂 + 𝛽𝛽𝜂𝜂𝑥𝑥𝜂𝜂 + 𝛾𝛾𝜂𝜂𝑦𝑦𝜂𝜂)�  (58) 

To understand the physical naturality of the established traveling-wave solution, we 
depict it in the following figures. Figure 5 represents the surface of the nondifferentiable 
traveling-wave solution 𝜙𝜙1−(𝑡𝑡, 𝑥𝑥, 0) , at selected parameters, where the derivative is 
considered in a fractional sense. In Figure 6, we show the effect of the local fractional 
derivative on the inferred solutions 𝜙𝜙1+(𝑡𝑡, 𝑥𝑥, 0), at diverse fractional derivative orders, 
which illustrated that the intensity of the convexity of the constructed traveling-wave 
solutions has been affected with the change on the fractional derivative orders. Figure 7 
represents the surface of the nondifferentiable traveling-wave solution 𝜙𝜙2+(𝑡𝑡, 𝑥𝑥, 0) , at 
selected parameters, where the derivative is considered in a fractional sense . In Figure 8, 
we show the effect of the local fractional derivative on the inferred solutions 𝜙𝜙1+(𝑡𝑡, 𝑥𝑥, 0) 
and 𝜙𝜙2−(𝑡𝑡, 𝑥𝑥, 0), respectively, at diverse fractional derivative orders, which illustrated that 
the intensity of the convexity of the constructed traveling-wave solutions has been 
affected with the change on the fractional derivative orders. 

 
 

(a) (b) 

Figure 5. The profile of 𝜙𝜙1−(𝑡𝑡, 𝑥𝑥, 0) at 𝑎𝑎1 = 2,𝑎𝑎2 = −1, 𝑎𝑎3 = 2,𝛼𝛼 = 1,𝛽𝛽 = 1,𝛾𝛾 = 1 where: (a) the 3D 
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ln(3) on 𝑥𝑥 ∈ [0,1] and 𝑡𝑡 ∈ [0,1]; (b) contour plot at 𝜂𝜂 = ln(2)
ln(3) on 𝑥𝑥 ∈ [0,1] and 𝑡𝑡 ∈ [0,1]. 

Figure 5. The profile of φ−1 (t, x, 0) at: a1 = 2, a2 = −1, a3 = 2, α = 1, β = 1, γ = 1 where: (a) the

3D plot at η =
ln(2)
ln(3) ; on x ∈ [0,1] and t ∈ [0,1]; (b) contour plot at η =

ln(2)
ln(3) ; on x ∈ [0,1] and t ∈ [0,1].
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5. Conclusions

In this article, the traveling-wave solutions of two significant nonlinear local fractional
evolution equations, namely the fractional generalized (3 + 1)-dimensional Kadomtsev–
Petviashvili equation and fractional Kadomtsev–Petviashvili-modified equal width equa-
tion, have been investigated under the local fractional derivative. The governing equations
have been translated into local fractional ordinary differential equations by utilizing a
traveling-wave transformation with a nondifferentiable type. The ansatz method is imple-
mented to investigate nondifferentiable solutions for the proposed models based on the
generalized functions defined on fractal sets. The obtained solutions are depicted in 2D, 3D,
and contour plots at some selected parameters, where the derivative orders are considered
in a fractional sense. The interesting obtained results show that the proposed technique
is effective to explore traveling-wave solutions for diverse nonlinear partial differential
equations. Fractal local derivatives will be of interest to explore fractal functions in future
analysis such as the diffusion and convection models.
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