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Abstract: In this paper, numerical solutions of the variable-coefficient Korteweg-De Vries (vcKdV)
equation with space described by the Caputo fractional derivative operator is developed. The
propagation and interaction of vcKdV equation in different cases, such as breather soliton and
periodic suppression soliton, are numerically simulated. Especially, the Fourier spectral method
is used to solve the fractional-in-space vcKdV equation with breather soliton. From numerical
simulations and compared with other methods, it can be easily seen that our method has low
computational complexity and higher precision.
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1. Introduction

The KdV equation is one of the most notable integrable equations and has found
numerous applications in many fields of science, such as plasma physics, nonlinear optics,
telecommunications, fluid mechanics, condensed matter physics and dust plasma. The
KdV equation was derived by Korteweg and de Vires in 1895 [1]. There are many analytical
methods to obtain the analytical solutions of the KdV equation, including Hirota method,
Darboux transformation and so on [2,3]. The symmetry method is used to solve many
fractional differential equations, such as the seventh-order generalized KdV equation [4],
the generalized KdV-Burgers-Kuramoto equation [5] and the time fractional generalized
fifth-order KdV equation [6]. Qin [7] used the Hirota method to obtain the N-soliton
solutions of the coupled KdV-mKdV system based on Bell polynomials. Chen [8] used
the test function method combined with the bilinear to obtain the lump solutions to the
generalized variable coefficient Burgers equation.

There are also many good numerical methods to solve the KdV equation. Yan [9] used
a local discontinuous Galerkin method to solve the KdV equation. Jackaman [10] advanced
the design of the conservative finite element discretizations for the vectorial modified KdV
equation. Energy-conserving Hamiltonian boundary value methods were used to solve the
KdV equation by Brugnano [11]. However, the numerical method that can be applied to
solve the space fractional vcKdV equation with breather soliton and periodic suppression
soliton is seldom researched. Therefore, a Fourier spectral method is developed in this
paper which has low computational complexity and higher precision. We consider the KdV
equation with the following form:

vt + α1v2Dβ1
x v + εvDβ2

x v + α2vxxx + α3vx = 0, (1)

equipped with the following initial and boundary conditions,{
v(x, 0) = v0, a ≤ x ≤ b,
v(a, t) = v(b, t) = 0,

(2)
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where Dβ1
x v, Dβ2

x vs. denote Caputo fractional derivative operator which has the following
form,

Dβ
x v(x) =


1

Γ(1−β1)

∫ x
0 (x− τ)−β1 ∂v(τ)

∂τ dτ, 0 < β1 < 1,

∂v(x)
∂x , β1 = 1,

(3)

and ε, α1, α2, α3 are positive parameters.
When α1 = α3 = α4 = β1 = 0, α2 = µ and β2 = 1, Equation (1) becomes the

KdV equation,
vt + εvvx + µvxxx = 0. (4)

When ε = 3
2 , α1 = 0, α2 = 1

6 , α3 = −ω0, β1 = 0 and β2 = 1, Equation (1) is reduced to
the gKdV equation [12],

vt −ω0vx +
3
2 vvx +

1
6 vxxx = 0. (5)

When ε = α3 = α4 = 0 and β1 = 1, Equation (1) becomes the modified KdV(mKdV)
equation,

vt + α1v2vx + α2vxxx = 0, (6)

which has important applications in studying nonlinear optics [13,14], and quantum me-
chanics [15].

When ε = ε(t), β2 = 1, α1 = α1(t), β1 = 1, α2 = α2(t), α3 = α3(t) and α1(t)α2(t) 6= 0,
Equation (1) becomes the generalized variable-coefficient KdV-modified KdV equation [16],

vt + ε(t)vvx + α1(t)v2vx + α2(t)vxxx + α3(t)vx = 0. (7)

Consulting materials in the literature, we discover that the numerical solutions of the
space fractional vcKdV equation are rarely researched. Therefore, some numerical solutions
of the vcKdV equation are given in this manuscript. From the numerical simulations and
compared with other methods, it can be easily seen that our method has low computational
complexity and higher precision.

This paper is organized as follows: In Section 2, we introduce the numerical method.
Many numerical experiments are provided in Section 3. Section 4 concludes the paper.

2. Numerical Approximation Method

We use the Fourier spectral method [17–19] for spatial discretization. In order to
standardize the space period [a, b] to [0, 2π], we use the transformations x → 2π(x−a)

L and
L = b − a. v is converted into a Fourier space with respect to x. We use Fast Fourier
transform [20] to complete this operation. We use Fourier transform for Equation (1) in
spatial domain,

∂v̂
∂t = −εF [vF−1((ik)β2 v̂)]− α1F [v2F−1((ik)β1 v̂)]− α2(ik)3v̂− α3(ikv̂),

v̂(k, 0) = v̂0,
(8)

Let xj = j∆x = 2πLj
N , N > 0 and N is an integer, L = b− a, j = 0, 1, · · · · · · , N − 1. We

use the discrete Fourier transform for v,

v̂(k, t) = F (v) = 1
N

N−1

∑
j=1

v(xj, t)e−ikxj , −N
2
≤ k ≤ N

2
− 1, (9)
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and the inverse formula is

v(xj, t) = F−1(v̂) =

N
2 −1

∑
k=− N

2

v̂(k, t)eikxj , 0 ≤ j ≤ N − 1. (10)

Next, the fourth-order Runge–Kutta method is used to solve the ordinary differential
Equation (8), 

k1 = r(tn, v̂n),
k2 = r(tn +

τ
2 , v̂n +

τk1
2 ),

k3 = r(tn +
τ
2 , v̂n +

τk2
2 ),

k4 = r(tn + τ, v̂n + τk3),
v̂n+1 = v̂n +

τ
6 (k1 + 2k2 + 2k3 + k4),

(11)

where τ is step-size and r(t, v̂) = −εF [vF−1((ik)β2 v̂)]− α1F [v2F−1((ik)β1 v̂)]− α2(ik)3v̂−
α3(ikv̂).

We mark
V = (v̂0(k, t), v̂1(k, t), · · · , v̂N−1(k, t))T ,
R(t, V) = (r0(t, v̂0(t)), r1(t, v̂0(t)), · · · , rN−1(t, v̂N−1(t)))T ,
V0(k) = (v̂00(k), v̂01(k), · · · , v̂0(N−1)(k))T ,

(12)

where n = 1, · · · , T
τ .

Equation (8) can be reduced to{
∂V
∂t = R(t, V),

V(k, 0) = V0.
(13)

Then, we can obtain the solving formula [21]

k j1 = rj(tn, v̂0,n, v̂1,n, · · · , v̂N−1,n),

k j2 = rj(tn +
h
2 , v̂0,n +

hk01
2 , · · · , v̂N−1,n +

hk(N−1)1
2 ),

k j3 = rj(tn +
h
2 , v̂0,n +

hk02
2 , · · · , v̂N−1,n +

hk(N−1)2
2 ),

k j4 = rj(tn + h, v̂0,n + hk03, · · · , v̂N−1,n + hk(N−1)3),
v̂j,n+1 = v̂j,n +

h
6 (k j1 + 2k j2 + 2k j3 + k j4),

(14)

where j = 0, 1, · · · , N − 1.

Definition 1. A class of the single-step method for solving an ordinary differential equation in the
form of:

Vn+1 = Vn + hφ(Vn, tn, h), (15)

where incremental function φ is determined by R(t, V), that is a function of Vn, tn, τ.

Theorem 1. If φ(V, t, τ) satisfies the Lipschitz condition in V, then the numerical method that is
given by Equation (15) is stable.

Proof. We refer the reader to [22–24] for the details of the proof.

Lemma 1. Let en = Vn −V(tn) and D is constant [22]. If ‖en+1‖ ≤ (1 + τL)‖en‖+ D, then

‖en‖ ≤
D(1 + τL)n

τL
+ (1 + τL)n‖e0‖ ≤

D
τL
− (eLT − 1) + eLT‖e0‖. (16)
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Theorem 2. If φ(V, t, τ) is a continuous function in V, t, τ, which satisfies the Lipschitz condition
on 0 ≤ τ ≤ τ0, 0 ≤ t ≤ T, −∞ ≤ vi ≤ ∞, then Equation (15) is convergent [22].

Theorem 3. Let V(tn) be the analytical solution of problem (13) and Vn is the numerical solution.
If φ(V, t, τ) satisfies the Lipschitz condition on 0 ≤ τ ≤ τ0, 0 ≤ t ≤ T and Equation (15) is the
fourth-order method, then the error estimate has the following form

|en| ≤ eLT(|e0|+ cTτ4 + LτM0), (17)

where M0 = max(|e0|, |e1|, · · · , |en−1|) and L is lipschitz constant.

Proof. If Equation (15) is the fourth-order one-step method, then V(t) satisfies

V(tn+1) = V(tn) + τφ(tn, V(tn), τ) + O(τ5). (18)

By denoting en = V(tn)−Vn, we have

|en+1| − |en| ≤ |en+1 − en| =
∣∣∣τ(φ(tn, V(tn), τ)− φ(tn, Vn, τ)

)
+ o(τ5)

∣∣∣ ≤ τL|en|+ O(τ5). (19)

Summing over n, we get

|en| − |e0| ≤ τL
n−1

∑
k=0
|ek|+ ncτ5, (20)

|en| ≤ τL
n−1

∑
k=0
|ek|+ cTτ4 + |e0|. (21)

Using the Gronwall inequality, we have

|en| ≤ eLT(|e0|+ cTτ4 + LτM0). (22)

Finally, we find the numerical solution using the inverse discrete Fourier trans-
form [25].

3. Simulation Results

Numerical solutions of the space fractional vcKdV equation are obtained in this chap-
ter. We use the error norms, L2, L∞ and GRE (global relative error) to test the accuracy

of the method: L2 =
√

1
N ∑N

j=1[v(xj, t)− v∗(xj, t)]2, L∞ = max
1≤j≤N

| v(xj, t) − v∗(xj, t) |,

GRE =
∑N

j=1|v(xj ,t)−v∗(xj ,t)|
∑N

j=1|v∗(xj ,t)|
, where v(xj, t) and v∗(xj, t) are the numerical solution and ana-

lytical solution. The order of convergence in space is computed by

order =
log ‖vN(x,t)−v∗(x,t)‖

‖v N
2
(x,t)−v∗(x,t)‖

log 2
. (23)

Example 1. Let ε = 1, β2 = 1 and α1 = α3 = α4 = β1 = 0 in Equation (1). The initial value is
as follows,

v(x, 0) = 3c(sech2((kx− x0)), (24)

with

k =
1
2

√
c

α2
, ω = ck, (25)
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where c, x0 are constant parameters.

Referring to the numerical experiment in [26–30], the analytical solution is as follows:

v∗(x, t) = 3c(sech2((kx−ωt− x0)), −2 ≤ x ≤ 2. (26)

In this simulation, we set α2 = 4.84× 10−4, c = 0.5, x0 = 6, τ = 0.01 and N = 512.
By present method, the numerical results are given in Table 1. Tables 2 and 3 show the
absolute error by our numerical method, Hybrid method [26], B-spline method [27], ANS
method [29], HBI method [30] at t = 0.005, 0.01. Then, we shall investigate the space
fractional KdV equation. Table 4 shows comparison of L∞ at different β2. For the space
fractional KdV equation, we take (26) as reference solution because the analytical solution
can not be obtained. Figures 1 and 2 show the logarithm of absolute errors by present
method, Hybrid numerical method [26], B-spline method [27], ANS method [29], HBI
method [30] at the the selected notes for t = 0.005, 0.01, which shows that our numer-
ical method has higher accuracy than other methods. Comparisons are made between
numerical solutions and analytical solutions at t = 0, 1, 2 in Figure 3. Figure 4 presents
absolute error at x = 2. Numerical solutions at t = 1, 2 and β2 = 0.9, 0.99, 1 are plotted in
Figures 5 and 6. Numerical solutions at different β2 are presented in Figure 7.

Table 1. Spatial numerical errors L∞, L2 and their corresponding convergence rates at t = 0.001 for
Example 1.

N L∞ Order L2 Order

32 7.3429× 10−4 − 4.1640× 10−4 −
64 6.9269× 10−4 N−0.0842 2.4502× 10−4 N−0.7651

128 2.6108× 10−5 N−4.7297 8.3098× 10−6 N−4.8819

256 1.1068× 10−9 N−14.5257 3.8198× 10−10 N−14.4090

512 1.0904× 10−10 N−3.3436 3.2646× 10−11 N−3.5486

Table 2. Comparison of absolute errors at t = 0.005.

x Absolute Error

HBI [30] ANS [29] Hybrid [26] B–Spline [27] Present Method

0.1 9.7700× 10−6 2.0000× 10−8 1.5900× 10−6 1.1900× 10−6 8.0000× 10−8

0.5 6.7880× 10−3 5.2021× 10−4 4.8032× 10−4 6.5700× 10−5 1.0000× 10−8

0.6 5.8627× 10−3 4.9210× 10−5 1.1316× 10−4 1.8600× 10−5 1.9000× 10−7

0.7 5.9116× 10−4 3.6400× 10−6 1.3030× 10−5 1.6500× 10−6 1.0000× 10−8

0.8 4.9840× 10−5 6.4000× 10−7 1.4100× 10−6 1.3000× 10−7 1.0000× 10−8

0.9 4.1400× 10−6 5.0000× 10−8 1.2000× 10−7 1.0000× 10−8 1.0000× 10−8

1.0 3.5000× 10−7 1.0000× 10−8 1.0000× 10−8 0.0000 1.0000× 10−8

Table 3. Comparison of absolute errors at t = 0.01.

x Absolute Error

HBI [30] ANS [29] Hybrid [26] B–Spline [27] Present Method

0.2 2.3064× 10−4 1.7400× 10−6 5.0200× 10−6 7.2000× 10−7 8.0000× 10−8

0.5 1.3048× 10−2 9.8242× 10−4 8.9174× 10−4 1.1370× 10−4 6.0000× 10−8

0.6 1.1900× 10−2 5.5860× 10−5 2.3296× 10−4 3.5900× 10−5 1.9000× 10−7

0.7 1.2044× 10−3 7.4500× 10−6 2.5860× 10−5 4.0100× 10−6 5.0000× 10−8

0.8 1.0158× 10−4 1.3900× 10−6 2.9200× 10−6 3.4000× 10−7 4.0000× 10−8

0.9 8.4300× 10−6 1.2000× 10−7 2.5000× 10−7 3.0000× 10−8 4.0000× 10−8

1.0 7.0000× 10−7 1.0000× 10−8 3.0000× 10−8 0.0000 4.0000× 10−8
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Figure 1. Logarithm of absolute errors of v(x, t) at t = 0.005 for Example 1.

Figure 2. Logarithm of absolute errors of v(x, t) at t = 0.01 for Example 1.
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Figure 3. Numerical solutions of v(x, t) obtained by the present method and analytical solutions at
t = 0, 1, 2 for Example 1.

Figure 4. Absolute error of v(x, t) obtained by the present method at x = 2 for Example 1.
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Table 4. Comparison of L∞ of v(x, t) at α1 = 1, α2 = 1, k1 = 0.5, k2 = 1 for Example 1.

t β1 = 0.9999 β1 = 0.99999 β1 = 0.999999 β1 = 0.9999999 β1 = 1

1.0 3.7351× 10−3 3.7415× 10−4 3.6993× 10−5 4.0937× 10−6 2.0209× 10−6

1.5 6.9479× 10−3 6.9721× 10−4 7.0101× 10−5 7.4340× 10−6 1.2061× 10−6

2.0 1.1371× 10−2 1.1409× 10−3 1.1363× 10−4 1.1542× 10−5 8.8914× 10−7

2.5 1.6674× 10−2 1.6785× 10−3 1.6737× 10−4 1.6364× 10−5 8.7256× 10−7

3.0 2.2625× 10−2 2.2826× 10−3 2.2962× 10−4 2.4065× 10−5 1.1692× 10−6

Figure 5. Numerical solutions of vs. at t = 1, β2 = 0.9, 0.99, 1 for Example 1.

Figure 6. Numerical solutions of vs. at t = 2, β2 = 0.9, 0.99, 1 for Example 1.
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(a) β2 = 0.9. (b) β2 = 0.99.

(c) β2 = 0.999. (d) β2 = 1.

Figure 7. Numerical solutions of vs. at different β2 for Example 1.

From Example 1, we know that our numerical method has higher accuracy than other
methods for the one-soliton solution. Next, we will study the generalized vc KdV-mKdV
equation and the influence of β1, β2 on the numerical solution of this equation.

Example 2. Let ε(t) = −6, α1(t) = 0.06, β1 = 2, β2 = 1, α2(t) = 0.01, α3(t) = −15 cos πt
2 in

Equation (1) and τ = 0.01, N = 512. The initial value is as follows,

v(x, 0) = −202
Ψ

exp(x +
1

100
). (27)

Wang [31] obtained one periodic depression soliton solution of the generalized vcKdV-
mKdV equation,

v∗(x, t) = −202
Ψ

exp(
t

100
+

30
π

sin
πt
2

+ x +
1

100
), −20 ≤ x ≤ 20, (28)

with

Ψ = 20200 exp(
t

100
+

30
π

sin
πt
2

+ x +
1

100
) + 10001 exp(

60
π

sin
πt
2

+ 2x +
1
50

) + 10201 exp(
t

50
). (29)
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Table 5 shows L∞ and GRE at different times. Table 6 shows numerical results.
Figures 8–10 represent numerical solution. Absolute errors at t = 3.4, 3.5, 3.6 are shown in
Figures 11–14 present absolute errors at x = −10,−5, 10. From Figure 15 which shows the
numerical solutions at different β1 and β2, we can find that the change of β1 and β2 has
minimal effect on the shape of periodic depression soliton.

Table 5. Error norms L∞ and GRE at different times for Example 2.

L∞ GRE

Present Method Ref. [32] Present Method Ref. [32]

t = 1.0 8.2189× 10−7 5.1096× 10−6 2.9499× 10−4 7.4281× 10−4

t = 2.0 9.0010× 10−7 7.3044× 10−6 4.1717× 10−4 1.2207× 10−3

t = 3.0 1.0152× 10−6 1.1358× 10−5 5.2455× 10−4 1.8416× 10−3

t = 4.0 9.2295× 10−7 1.4313× 10−5 6.8842× 10−4 2.4443× 10−3

Table 6. Numerical results of v(x, t) obtained by the present method at t = 1 for Example 2.

x Analytical Solution Numerical Solution Absolute Error

−13.75 −0.0003 −0.0003 1.9412× 10−9

−12.5 −0.0009 −0.0009 6.7763× 10−9

−11.25 −0.0026 −0.0026 1.3403× 10−8

−10 −0.0047 −0.0047 1.9307× 10−9

−8.75 −0.0043 −0.0043 3.8465× 10−8

−7.5 −0.0020 −0.0020 1.6845× 10−8

−6.25 −0.0007 −0.0007 2.2970× 10−8

−5 −0.0002 −0.0002 3.6866× 10−9

Figure 8. Numerical solution of v(x, t) obtained by the present method for Example 2.
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Figure 9. 2D contour plot of v(x, t) obtained by the present method for Example 2.

Figure 10. 2D density plot of v(x, t) obtained by the present method for Example 2.
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Figure 11. Absolute errors of v(x, t) obtained by the present method at t = 3.4, 3.5, 3.6 for Example 2.

Figure 12. Absolute error of v(x, t) obtained by the present method at x = −10 for Example 2.
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Figure 13. Absolute error of v(x, t) obtained by the present method at x = −5 for Example 2.

Figure 14. Absolute error of v(x, t) obtained by the present method at x = 10 for Example 2.
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(a) β1 = 0.7, β2 = 0.5.

(b) β1 = 1.0, β2 = 0.5.

(c) β1 = 1.0, β2 = 0.6.

Figure 15. Numerical solutions of vs. at different β1, β2 for Example 2.
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From Example 2, we find that our numerical method has higher accuracy and low
computational complexity than other methods for one periodic depression soliton solution
of the generalized vc KdV-mKdV equation. Next, we will investigate the breather-type
solution of the mKdV equation.

Example 3. Let α3 = α4 = ε = 0 and β1 = 1 in Equation (1).
Case I The initial value is as follows,

v(x,−4) = ±2

√
6α2

α1

∂

∂x
arctan

 k2

k1

sin(k1α
− 1

3
2 x−ω1(−4))

cosh(ω2(−4)− k2α
− 1

3
2 x)

, −20 ≤ x ≤ 20, (30)

with

ω1 = 3k2
2k1 − k3

1, ω2 = k3
2 − 3k2

1k2, (31)

where k1, k2 are constant parameters.

The breather-type solution is as follows [33]:

v∗(x, t) = ±2

√
6α2

α1

∂

∂x
arctan

 k2

k1

sin(k1α
− 1

3
2 x−ω1t)

cosh(ω2t− k2α
− 1

3
2 x)

. (32)

In this simulation, we set α1 = 1, α2 = 1, k1 = 0.5, k2 = 1, τ = 0.01 and N = 512.
Table 7 gives the numerical results and Figures 16–18 show the numerical solution. Figure 19
shows the absolute errors at t = 1. The absolute error at x = 5 is plotted in Figure 20.
Table 8 gives L2, L∞ and GRE at different times. Then, we shall investigate the space
fractional modified KdV equation. We take (32) as the analytical solution for the space
fractional modified KdV equation. Figures 21 and 22 show the numerical solutions at
β1 = 0.6, 0.99, 1 and t = 0, 1. Table 9 gives L∞ at different β1. Figure 23 shows numerical
solutions at different β1.

Table 7. Numerical results of v(x, t) at t = 1,α1 = 1, α2 = 1, k1 = 0.5, k2 = 1 for Case I.

x Analytical Solution Numerical Solution Absolute Error

−10.0 0.0003 0.0003 4.7709× 10−9

−7.5 0.0094 0.0094 1.7568× 10−8

−5.0 0.0306 0.0306 1.7562× 10−8

−2.5 −1.1357 −1.1357 4.1767× 10−9

0 −0.2941 −0.2941 2.4809× 10−8

2.5 1.2591 1.2591 6.0335× 10−8

5.0 −0.1163 −0.1163 7.8856× 10−8

7.5 −0.0147 −0.0147 5.0883× 10−8

Table 8. Error norms, L2, L∞ and GRE at α1 = 1, α2 = 1, k1 = 0.5, k2 = 1 for Example 3.

t = 0 t = 1.0 t = 2.0 t = 3.0 t = 4.0

L2 4.3364× 10−7 4.1878× 10−8 3.6983× 10−7 7.3778× 10−7 7.7441× 10−7

L∞ 5.0048× 10−7 9.0930× 10−8 4.5768× 10−7 8.1363× 10−7 8.4852× 10−7

GRE 1.5727× 10−6 1.1964× 10−7 1.3157× 10−6 2.6396× 10−6 2.7113× 10−6
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Figure 16. Numerical solution at α1 = 1, α2 = 1, k1 = 0.5, k2 = 1 for Example 3.

Figure 17. 2D contour plot at α1 = 1, α2 = 1, k1 = 0.5, k2 = 1 for Example 3.
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Figure 18. 2D density plot at α1 = 1, α2 = 1, k1 = 0.5, k2 = 1 for Example 3.

Figure 19. Absolute error at α1 = 1, α2 = 1, k1 = 0.5, k2 = 1, t = 1 for Example 3.
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Figure 20. Absolute error at α1 = 1, α2 = 1, k1 = 0.5, k2 = 1, x = 5 for Example 3.

Figure 21. Numerical solutions of vs. at t = 0, β1 = 0.9, 0.99, 1, α1 = 1, α2 = 1, k1 = 0.5, k2 = 1 for
Example 3.
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Figure 22. Numerical solutions of vs. at t = 1, β1 = 0.9, 0.99, 1, α1 = 1, α2 = 1, k1 = 1, k2 = −2 for
Example 3.

Table 9. Comparison of L∞ of v(x, t) at α1 = 1, α2 = 1, k1 = 0.5, k2 = 1 for Example 3.

t β1 = 0.999999 β1 = 0.9999999 β1 = 0.99999999 β1 = 0.999999999 β1 = 1

−2 1.7658× 10−3 1.7716× 10−4 1.8260× 10−5 2.3703× 10−6 1.2617× 10−6

−1 1.8815× 10−3 1.8875× 10−4 1.9565× 10−5 2.6702× 10−6 9.2254× 10−7

0 5.4293× 10−3 5.4241× 10−4 5.3860× 10−5 5.7137× 10−6 5.0048× 10−7

1 6.9070× 10−3 6.9092× 10−4 6.9067× 10−5 6.8848× 10−6 9.0930× 10−8

2 9.6478× 10−3 9.6405× 10−4 9.6092× 10−5 9.9524× 10−6 5.5768× 10−6

(a) β1 = 0.99.

Figure 23. Cont.
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(b) β1 = 0.995.

(c) β1 = 0.999.

Figure 23. Numerical solutions at α1 = 1, α2 = 1, k1 = 0.5, k2 = 1 and different β1 for Example 3.

Case II The initial value is as follows,

v(x,−2) = ±2

√
6α2

α1

∂

∂x
arctan

 k2

k1

sin(k1α
− 1

3
2 x−ω1(−2))

cosh(ω2(−2)− k2α
− 1

3
2 x)

, −10 ≤ x ≤ 10. (33)

In this simulation, we set α1 = 1, α2 = 1, k1 = 1, k2 = −2 , τ = 0.01 and N = 256.
Table 10 shows numerical results. Table 11 gives L2, L∞ and GRE at different times. Absolute
error at t = −1 is plotted in Figure 24. Figures 25 and 26 show absolute errors at x = −5, 5.
Figure 27 shows numerical solutions at β1 = 0.9, 0.99, 1 and t = 0. Table 12 presents L∞
at different β1. Numerical solution at different β1 are plotted in Figure 28. Figures 29–31
present the numerical solution.
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Table 10. Numerical results of v(x, t) at α1 = 1, α2 = 1, k1 = 1, k2 = −2, t = 0 for Case II.

x Analytical Solution Numerical Solution Absolute Error

−5.625 −0.0005 −0.0005 9.8195× 10−7

−5.0 −0.0020 −0.0020 1.5196× 10−6

−3.75 −0.0035 −0.0035 1.0557× 10−6

−1.875 1.0078 1.0078 1.2865× 10−6

−1.25 2.2706 2.2706 1.9922× 10−6

0 −9.7980 −9.7980 1.6831× 10−5

1.25 2.2706 2.2706 2.1611× 10−6

1.875 1.0078 1.0078 1.6041× 10−6

3.75 −0.0035 −0.0035 1.5075× 10−6

Table 11. Error norms, L2, L∞ and GRE at α1 = 1, α2 = 1, k1 = 1, k2 = −2 for Example 3.

t = −2 t = −1 t = 0 t = 1 t = 2

L2 4.0774× 10−16 8.5229× 10−7 2.7727× 10−6 1.6213× 10−6 1.5889× 10−6

L∞ 1.7764× 10−15 2.1440× 10−6 1.6831× 10−5 3.5398× 10−6 2.5029× 10−6

GRE 5.2480× 10−16 1.3009× 10−6 3.2589× 10−6 2.7586× 10−6 2.7296× 10−6

Table 12. Comparison of L∞ of v(x, t) at α1 = 1, α2 = 1, k1 = 1, k2 = −2 for Example 3.

t β1 = 0.9999999 β1 = 0.99999999 β1 = 0.99999999 β1 = 0.9999999999 β1 = 1

−1 3.8303× 10−3 3.8396× 10−4 3.9336× 10−5 4.8743× 10−6 2.1440× 10−6

0 1.6335× 10−2 1.6269× 10−3 1.7066× 10−4 2.7020× 10−5 1.6831× 10−5

1 3.7859× 10−2 3.7830× 10−3 3.7557× 10−4 3.8415× 10−5 3.5398× 10−6

2 5.7068× 10−2 5.7102× 10−3 5.6925× 10−4 5.6869× 10−5 2.5029× 10−6

Figure 24. Absolute error at t = −1, α1 = 1, α2 = 1, k1 = 1, k2 = −2 for Case II.
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Figure 25. Absolute error at x = −5, α1 = 1, α2 = 1, k1 = 1, k2 = −2 for Case II.

Figure 26. Absolute error at x = 5, α1 = 1, α2 = 1, k1 = 1, k2 = −2 for Case II.
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Figure 27. Numerical solutions of vs. at β1 = 0.9, 0.99, 1, t = 0, α1 = 1, α2 = 1, k1 = 1, k2 = −2 for
Case II.

(a) β1 = 0.9995.

Figure 28. Cont.
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(b) β1 = 0.9999.

(c) β1 = 0.99999.

Figure 28. Numerical solutions of vs. at different β1 , α1 = 1, α2 = 1, k1 = 1, k2 = −2 for Case II.
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Figure 29. Numerical solution of vs. at α1 = 1, α2 = 1, k1 = 1, k2 = −2 for Case II.

Figure 30. 2D contour plot of vs. at α1 = 1, α2 = 1, k1 = 1, k2 = −2 for Case II.
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Figure 31. 2D density plot of vs. at α1 = 1, α2 = 1, k1 = 1, k2 = −2 for Example 3.

Through Example 3, we can obtain that if β1 tends to 1, the numerical solution of
the spatial fractional mKdV equation tends to the analytical solution of Equation (6); in
addition, the numerical solution of the spatial fractional mKdV equation is very sensitive
to a change in β1.

4. Conclusions

In this manuscript, we study the influence of β1, β2 on the numerical solutions of the
spatial fractional vcKdV equation. Comparisons are made between the present method and
others methods; it can be easily seen that our method has low computational complexity
and higher precision. Through Examples 1–3, we know that if β1, β2 tends to 1, the
numerical solution of the spatial fractional vcKdV equation tends to the analytical solution
of the original equation. Through Example 3, the solutions of the space fractional KdV
equation are very sensitive to a change in β1, β2. From Example 2, we can find that a
change in β1 and β2 has a minimal effect on the shape of a periodic depression soliton.
These results are consistent with the numerical simulation of other scholars [24,27,32].

All computations are performed by the MatlabR2017b software.
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