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Abstract: In this paper, efficient methods seeking the numerical solution of a time-fractional fourth-
order differential equation with Caputo’s derivative are derived. The solution of such a problem has
a weak singularity near the initial time t = 0. The Caputo time-fractional derivative with derivative
order α ∈ (0, 1) is discretized by the well-known L1 formula on nonuniform meshes; for the spatial
derivative, the local discontinuous Galerkin (LDG) finite element method is used. Based on the
discrete fractional Gronwall’s inequality, we prove the stability of the proposed scheme and the
optimal error estimate for the solution, i.e., (2− α)-order accurate in time and (k + 1)-order accurate
in space, when piece-wise polynomials of degree at most k are used. Moreover, a second-order and
nonuniform time-stepping scheme is developed for the fractional model. The scheme uses the L2-1σ

formula for the time fractional derivative and the LDG method for the space approximation. The
stability and temporal optimal second-order convergence of the scheme are also shown. Finally, some
numerical experiments are presented to confirm the theoretical results.

Keywords: time-fractional fourth-order equation; nonuniform time meshes; local discontinuous
Galerkin method; stability analysis; error estimate

1. Introduction

In this paper, we consider the local discontinuous Galerkin (LDG) finite element method
for the following time-fractional fourth-order problem with periodic boundary condition{

CDα
0,tu + c1ux + c2uxx + c3uxxx + c4uxxxx = f (x, t), (x, t) ∈ D = (0, L)× (0, T],

u(x, 0) = u0(x), x ∈ Ω = (0, L),
(1)

where c1, c2, c3 and c4 > 0 are arbitrary constants. Without loss of generality, we assume
that c1 > 0 and c3 > 0; however, we do not require the sign of c2 to be positive or negative.
The source term f (x, t) and the initial value u0(x) are given functions. The term CDα

0,tu
represents the Caputo fractional derivative of order α (0 < α < 1) with respect to t, which
is [1,2],

CDα
0,tu(x, t) =

∫ t

0
ω1−α(t− s)∂su(x, s)ds with ωβ(t) = tβ−1/Γ(β), (2)

in which the operator ∂s denotes the partial derivative with respect to s, and Γ(·) is the
usual gamma function.

Time-fractional partial differential equations with fourth-order spatial derivatives
have been widely used in various fields, such as bridge slabs, airplane wings, floor system
and window glass (e.g., [2–5]). On the assumption that the analytical solution is sufficiently
smooth, many numerical methods have been devised for this kind of problem. In [6], a fully
discrete LDG scheme was proposed to solve the time-fractional fourth-order equation and
was proven to be stable and convergent with orderO(τ−αhk+1 + τ2−α + τ−α/2hk+1/2 + hk+1),
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where k is the degree of piece-wise polynomial, and τ and h are the temporal and spatial
stepsizes, respectively.

Soon after, Guo et al. [7] showed that the order of convergence for the LDG method
presented in [6] can be improved to the optimal order O(τ2−α + hk+1). Liu et al. [8] pre-
sented a mixed finite element method for the time-fractional fourth-order problem, and the
stability as well as the convergence were proven. Zhang and Pu [9] solved the fourth-order
fractional sub-diffusion equation by applying the L2-1σ formula for the time variable and
employing a compact operator to approximate the spatial fourth-order derivative. The
unconditional stability and convergence were proven using the discrete energy method.

Cui [10] studied the convergence of a compact finite difference scheme for the time-
fractional fourth-order equation. Fei and Huang [11] analyzed the Galerkin–Legendre
spectral method for the distributed-order time-fractional fourth-order partial differential
equation. In [12], a space-time spectral-Galerkin method was presented for the fourth-order
time-fractional partial integro-differential equation with a weakly singular kernel.

Note that, in most of the numerical methods mentioned above, the convergence
analysis requires that solution u of problem (1) be smooth enough with respect to t, and then
the expected accuracy can be achieved. However, from a practical application point of
view, this requirement is unrealistic, because the solution u of a time-fractional differential
equation usually exhibits a weak initial singularity, that is, ∂tu(x, t) and /or ∂2

t u(x, t) blows
up as t → 0+, although u(x, t) is continuous on [0, T], see, e.g., [13–22]. However, to the
authors’ knowledge, there is little discussion on numerical methods and related numerical
analysis that take into account the possible initial singularity of time-fractional fourth-order
problems (1).

The main objective of this paper is to study two types of time discretization schemes
combined with the LDG method in the spatial direction for solving problem (1) with an
initial singularity. The first scheme is to approximate the Caputo time-fractional derivative
with the L1 formula on nonuniform meshes, to discretize the spatial derivative with the
LDG method, and then a fully discrete numerical scheme is obtained. With the help of the
discrete fractional Gronwall inequality, we show that the scheme is numerically stable and
yields the optimal error estimate (i.e., (2− α)th-order accurate in time and (k + 1)th-order
accurate in space when piece-wise polynomials of up to k are used).

However, no matter how the mesh is divided, the accuracy of this approach in the time
direction is at most (2− α). In order to construct a numerical scheme with higher accuracy
in the time direction, we consider another formula to discretize the Caputo time-fractional
derivative, namely the L2-1σ formula, while, in the spatial direction, we still use the LDG
method to approximate it. This method is then shown to be stable and convergent and to
achieve second-order accuracy in the time direction.

The rest of the paper is organized as follows. In Section 2, we introduce some no-
tations, definitions and projections that will be used in the following numerical analysis.
Furthermore, the semi-discrete LDG scheme is presented in this section. In Section 3, a fully
discrete numerical scheme based on the L1 formula in the time direction and the LDG
method in the spatial direction is proposed for the time-fractional fourth-order Equation (1),
and its stability analysis and error estimate are rigorously discussed. In Section 4, a higher-
order numerical scheme is constructed, and the stability and convergence of the scheme
are likewise demonstrated. In Section 5, numerical examples are provided to illustrate the
theoretical statements. The last section includes some concluding remarks.

2. Preliminaries

Let us start by presenting the notations, definitions and projections used in this paper.

2.1. Tessellation and Function Space

Let Th = {Ij = (xj− 1
2
, xj+ 1

2
)}N

j=1 be the partition of Ω, where x 1
2
= 0 and xN+ 1

2
= L

are the two boundary endpoints. For each cell Ij, the cell center and cell length are denoted
by xj = (xj− 1

2
+ xj+ 1

2
)/2 and hj = xj+ 1

2
− xj− 1

2
, respectively. We use h = maxj hj to
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denote the length of the largest cell. Throughout this paper, it is assumed that Th is a
quasi-uniform mesh; namely, there exists a fixed positive constant ρ independent of h such
that ρh ≤ hj ≤ h for any j = 1, . . . , N, when h goes to zero. Define the finite element space

Vh =
{

v ∈ L2(Ω) : v|Ij ∈ P
k(Ij), ∀j = 1, . . . , N

}
,

where P k(Ij) denotes the space of polynomials of degree no more than k on the cell Ij. Note
that the functions in this space are allowed to have discontinuities across element interfaces.
As usual, we use u−

j+ 1
2

and u+
j+ 1

2
to represent the left and right limits of u at the cell interface

xj+ 1
2
, respectively. At each point xj+ 1

2
, the jump of a possibly discontinuous function u is

denoted as
[[u]]j+ 1

2
= u+

j+ 1
2
− u−

j+ 1
2
.

It is clear that Vh belongs to the following broken Sobolev space:

Hl(Th) =
{

u ∈ L2(Ω) : u|Ij ∈ Hl(Ij), j = 1, . . . , N
}

,

equipped with the norm ‖u‖l = ‖u‖Hl(Th)
=

(
∑N

j=1 ‖u‖2
Hl(Ij)

) 1
2
, where ‖u‖Hl(Ij)

is the

standard Sobolev l norm, i.e., ‖u‖Hl(Ij)
=

(
∑l

s=0 ‖Dsu‖2
L2(Ij)

) 1
2
. In particular, if l = 0, we

use an unmarked norm ‖ · ‖ to represent the usual L2 norm on Ω.
To end this subsection, we list some inverse properties of the finite element space Vh.

For any vh ∈ Vh, there exists a positive constants µ independent of vh and h, such that

‖(vh)x‖ ≤ µh−1‖vh‖, ‖vh‖Γh ≤
√

µh−1‖vh‖. (3)

Here and below, Γh is the union of all cell boundary points, and for any w ∈ H1(Th),
the L2 norm on Γh is defined by

‖w‖Γh

(
N

∑
j=1

(
(w−

j+ 1
2
)2 + (w+

j− 1
2
)2
))1/2

.

2.2. The Semi-Discrete LDG Scheme

As usual, we first introduce some auxiliary variables approximating various order
derivatives of the solution and rewrite Equation (1) into a first-order system,

CDα
0,tu + c1ux + c2qx + c3 px + c4rx = f , (4a)

r = px, (4b)

p = qx, (4c)

q = ux. (4d)

Then, the semi-discrete LDG scheme is as follows: ∀t ∈ (0, T], find uh, qh, ph, rh ∈ Vh,
such that for any vh, ρh, φh, ψh ∈ Vh and j = 1, . . . , N, it holds that∫

Ij
CDα

0,tuhvhdx = c1H−j (uh, vh) + c2H+
j (qh, vh)

+ c3H+
j (ph, vh) + c4H+

j (rh, vh) +
∫

Ij

f vhdx,
(5a)

∫
Ij

rhρhdx = −H−j (ph, ρh), (5b)
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∫
Ij

phφhdx = −H+
j (qh, φh), (5c)

∫
Ij

qhψhdx = −H−j (uh, ψh), (5d)

where
H±j (v, w) =

∫
Ij

vwxdx− v±
j+ 1

2
w−

j+ 1
2
+ v±

j− 1
2
w+

j− 1
2
. (6)

Notice that the periodic boundary conditions are considered, i.e., ζ−1
2
= ζ−

N+ 1
2

and

ζ+1
2
= ζ+

N+ 1
2

for ζ = uh, qh, ph, rh.

Denote, by (v, w) = ∑N
j=1
∫

Ij
vwdx, the inner product in L2(Ω). Summing up the varia-

tional formulations (5) over j = 1, 2, . . . , N, we can write the semi-discrete LDG scheme (5a)–
(5d) in the global form: find uh, qh, ph, rh ∈ Vh, such that for any vh, ρh, φh, ψh ∈ Vh,
it holds that

(CDα
0,tuh, vh) = H(ϕh; vh) + L(rh, vh) + ( f , vh), (7a)

(rh, ρh) = −H−(ph, ρh), (7b)

(ph, φh) = −H+(qh, φh), (7c)

(qh, ψh) = −H−(uh, ψh). (7d)

Here,H±(vh, wh) = ∑N
j=1H±j (vh, wh), ϕh = (uh, qh, ph), and

H(ϕh; vh) = c1H−(uh, vh) + c2H+(qh, vh) + c3H+(ph, vh), (8)

L(rh, vh) = c4H+(rh, vh). (9)

Using the definitions of the above operators, the following lemmas can be obtained,
and the proof is straightforward (refer to [23]).

Lemma 1. For any vh, wh ∈ Vh, it holds that

H±(vh, vh) = ±
1
2
[[vh]]

2,

H−(wh, vh) = −H+(vh, wh),

where [[vh]]
2 = ∑N

j=1[[vh]]
2
j− 1

2
.

Lemma 2. Suppose (uh, qh, ph, rh) ∈ Vh ×Vh ×Vh ×Vh satisfy (7b)–(7d), then we have

L(rh, uh) = −c4‖ph‖2.

Lemma 3. For any vh, wh ∈ Vh, it holds that

|H±(wh, vh)| ≤
(
‖(wh)x‖+

√
µh−1[[wh]]

)
‖vh‖, (10)

|H±(wh, vh)| ≤
(
‖(vh)x‖+

√
µh−1[[vh]]

)
‖wh‖. (11)

Lemma 4. Suppose (uh, qh, ph, rh) ∈ Vh ×Vh ×Vh ×Vh satisfy (7b)–(7d), then

‖(uh)x‖+
√

µh−1[[uh]] ≤ Cµ‖qh‖,

‖(qh)x‖+
√

µh−1[[qh]] ≤ Cµ‖ph‖,
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‖qh‖2 ≤ ‖uh‖‖ph‖,

where Cµ is a positive constant that is independent of h but may depend on the inverse constant µ.

Lemma 4 presents the important relationships between the primal and auxiliary
variables, which are crucial to the stability analysis.

2.3. Projection and Interpolation Property

In what follows, we define the elliptic projection. For any function u, q = ux, p = qx,
and r = px, the elliptic projection is the unique solution (Uh, Qh, Ph, Rh) ∈ Vh ×Vh ×Vh ×Vh
such that, for any vh, ρh, φh, ψh ∈ Vh,

L(Rh, vh) = L(r, vh), (12a)

(Rh, ρh) = −H−(Ph, ρh), (12b)

(Ph, φh) = −H+(Qh, φh), (12c)

(Qh, ψh) = −H−(Uh, ψh). (12d)

In addition, since uh is determined as an additive constant in the elliptic problem with
periodic boundary conditions, to ensure that (12a)–(12d) is well-defined, we assume [24]

(u−Uh, 1) = 0. (13)

By referring to Lemma 4.2 in [23], it can be found that the elliptic projection defined
above exists uniquely and satisfies the following approximation properties.

Lemma 5. For any function u, q = ux, p = qx, r = px with the smoothness assumption

‖u‖k+1 + ‖q‖k+1 + ‖p‖k+1 + ‖r‖k+1 ≤ C.

Let Uh, Qh, Ph, Rh ∈ Vh be the elliptic projection (12), we have

‖u−Uh‖+ ‖q−Qh‖+ ‖p− Ph‖+ ‖r− Rh‖ ≤ Chk+1, (14)

where C is a constant depending on the regularity of u but is independent of h.

3. Nonuniform L1–LDG Scheme

In this section, we propose a fully discrete numerical scheme to solve the time-
fractional fourth-order Equation (1), hereafter referred to as the nonuniform L1–LDG
scheme, which discretizes the Caputo time-fractional derivative using the L1 formula on
nonuniform meshes and the LDG method to discretize the spatial derivative.

3.1. The Fully Discrete Numerical Scheme and Its Stability

For a given finite time T > 0, denote tn = T(n/M)r, and let n = 0, 1, . . . , M be the
mesh points, where r ≥ 1. Let τn = tn − tn−1, n = 1, . . . , M be the time mesh sizes. If r = 1,
then the mesh is uniform.

The well-known L1 approximation on the nonuniform meshes to the Caputo derivative
is given by [22]

CDα
0,tu(x, tn) ≈ Υα

t u(x, tn)

:=
dn,1

Γ(2− α)
un − dn,n

Γ(2− α)
u0 +

1
Γ(2− α)

n−1

∑
i=1

un−i(dn,i+1 − dn,i),
(15)

where dn,i = [(tn − tn−i)
1−α − (tn − tn−i+1)

1−α]/τn−i+1 for i = 1, . . . , n. Throughout this
paper, we denote un = u(x, tn) if no confusion appears.
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Denote a(n)n−k = dn,n−k+1/Γ(2− α) for k = 1, . . . , n, and

P(n)
n−k =

1

a(k)0


1, k = n,

n

∑
j=k+1

(a(j)
j−k−1 − a(j)

j−k)P(n)
n−j, 1 ≤ k ≤ n− 1.

Then, from ([19] Lemma 2.1), the coefficient {P(n)
n−k} satisfies the property that

n

∑
k=1

P(n)
n−k ≤ (tn)

α/Γ(1 + α). (16)

The nonuniform L1 scheme (15) can be written as Υα
t un =

n

∑
i=1

a(n)n−i(u
i − ui−1) for

n = 1, . . . , M. For simplicity, we denote

Rn
1 = CDα

0,tu(x, tn)− Υα
t u(x, tn).

Lemma 6 ([22]). Assume that ‖∂l
tu(x, t)‖ ≤ Ctl−α for l = 0, 1, 2. Then,

‖Rn
1‖ ≤ Cn−min{2−α,rα}.

Lemma 7 ([19]). Assume that u(x, ·) ∈ C2((0, T]) and ‖∂l
tu(x, t)‖ ≤ Ctl−α for l = 0, 1, 2,

and then

n

∑
j=1

P(n)
n−j|R

j
1| ≤ C

(
α−1Tα M−rα +

r2

1− α
4r−1Tα M−min{rα,2−α}

)
, n ≥ 1. (17)

Let un
h , qn

h , pn
h , rn

h ∈ Vh be the approximation of u(x, tn), q(x, tn), p(x, tn), r(x, tn), respec-
tively. Then, the fully discrete nonuniform L1–LDG scheme for problem (1) is as follows:
find un

h , qn
h , pn

h , rn
h ∈ Vh such that, for any vh, ρh, φh, ψh ∈ Vh, it holds that

(Υα
t un

h , vh) = H(ϕn
h; vh) + L(rn

h , vh) + ( f n, vh), (18a)

(rn
h , ρh) = −H−(pn

h , ρh), (18b)

(pn
h , φh) = −H+(qn

h , φh), (18c)

(qn
h , ψh) = −H−(un

h , ψh). (18d)

Now, we turn to the stability analysis of scheme (18). We first introduce the following
discrete fractional Gronwall inequality.

Lemma 8 ([25]). For any finite time tM = T > 0 and a given nonnegative sequence (λl)
M−1
l=0 ,

assume that there exists a constant λ, independent of time-steps, such that λ ≥
M−1

∑
l=0

λl . Suppose

that the grid function {un|n ≥ 0} satisfies

Υα
t (v

n)2 ≤
n

∑
l=1

λn−l(vl)2 + φnvs.n + (ψn)2, 1 ≤ n ≤ M, (19)

where {φn, ψn|1 ≤ n ≤ M} are nonnegative sequences. If the maximum time-step τM ≤
(2Γ(2− α)λ)−

1
α , it holds that, for 1 ≤ n ≤ M,

vn ≤ 2Eα,1(2λtα
n)

(
v0 + max

1≤k≤n

k

∑
j=1

P(k)
k−jφ

j +
√

Γ(1− α) max
1≤k≤n

{tα/2
k ψk}

)
. (20)
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Here, Eα,1(z) = ∑∞
k=0

zk

Γ(kα+1) is the Mittag–Leffler function.

Lemma 9 ([26]). Let the functions un = u(x, tn) be in L2(Ω) for n = 0, 1, . . . , M. Then, one has
the following inequality

(Υα
t un, un) ≥ 1

2
Υα

t ‖un‖2.

Theorem 1. If the graded mesh satisfies the maximum time-step condition

τM ≤
(

2πAΓ(2− α)
(

3c2
2

2c4
+

27c4
3

32c3
4
+ 1
))−1/α

, then, for n = 1, . . . , M − 1, the solution un
h of

the fully discrete nonuniform L1–LDG scheme (18) satisfies

‖un
h‖ ≤ 2Eα,1

((
3c2

2
c4

+
27c4

3

16c3
4
+ 2
)

tα
n

)(
‖u0

h‖+
√

Γ(1− α) max
1≤j≤n

(
tα/2

j ‖ f j‖
))

.

Proof. Choosing the test function in (18a) as vh = un
h and using Lemma 2, we obtain

(Υα
t un

h , un
h) + c4‖pn

h‖
2 = c1H−(un

h , un
h) + c2H+(qn

h , un
h) + c3H+(pn

h , un
h) + ( f n, un

h). (21)

It follows from Lemma 1 that

c1H−(un
h , un

h) = −c1
1
2
[[un

h ]]
2 ≤ 0. (22)

By the Cauchy–Schwarz inequality and (18c), one has

c2H+(qn
h , un

h) = −c2(pn
h , un

h) ≤
ε

4
‖pn

h‖
2 +

c2
2
ε
‖un

h‖
2. (23)

Applying Lemma 1, the equality (18d) and Lemma 4, we find

c3H+(pn
h , un

h) = −c3H−(un
h , pn

h) = c3(qn
h , pn

h)

≤ ε

4
‖pn

h‖
2 +

c2
3
ε
‖qn

h‖
2

≤ ε

4
‖pn

h‖
2 +

c2
3
ε
‖un

h‖‖pn
h‖

≤ ε

2
‖pn

h‖
2 +

c4
3

ε3 ‖u
n
h‖

2.

(24)

Substituting (22)–(24) into (21), we arrive at

(Υα
t un

h , un
h) + c4‖pn

h‖
2 ≤ 3ε

4
‖pn

h‖
2 +

(
c2

2
ε
+

c4
3

ε3

)
‖un

h‖
2 + ( f n, un

h). (25)

Therefore, if we take ε = 4
3 c4 and use the Cauchy–Schwarz inequality again, then

(Υα
t un

h , un
h) ≤

(
3c2

2
4c4

+
27c4

3

64c3
4

)
‖un

h‖
2 + ‖ f n‖‖un

h‖. (26)

By using the Young’s inequality together with Lemma 9, we obtain the estimate

Υα
t ‖un

h‖
2 ≤

(
3c2

2
2c4

+
27c4

3

32c3
4
+ 1

)
‖un

h‖
2 + ‖ f n‖2. (27)
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Therefore, applying Lemma 8 with vn = ‖un
h‖, φn = 0, ψn = ‖ f n‖, λ0 =

3c2
2

2c4
+

27c4
3

32c3
4
+ 1,

and λj = 0 for 1 ≤ j ≤ M− 1, we have

‖un
h‖ ≤ 2Eα,1

((
3c2

2
c4

+
27c4

3

16c3
4
+ 2
)

tα
n

)(
‖u0

h‖+
√

Γ(1− α) max
1≤j≤n

(
tα/2

j ‖ f j‖
))

,

provided that the maximum time-step τM ≤
((

3c2
2

c4
+

27c4
3

16c3
4
+ 2
)

Γ(2− α)

)−1/α

. This com-

pletes the proof.

3.2. Error Estimate of the Nonuniform L1–LDG Scheme

We are now ready to show the optimal error estimate of scheme (18). Assume that the
solution u of time-fractional fourth-order problem (1) satisfies

u ∈ L∞
(
(0, T]; Hk+4(Ω)

)
,
∣∣∣∂l

tu(x, t)
∣∣∣ ≤ C(1 + tα−l) for 0 < t ≤ T and l = 0, 1, 2. (28)

Theorem 2. Let un be the exact solution of Equation (1) that satisfies the smoothness assump-
tion (28), and un

h be the numerical solution of the nonuniform L1–LDG scheme (18). Then, for
n = 1, 2, . . . , M, the following estimate holds

‖un − un
h‖ ≤ C

(
M−min{2−α,rα} + hk+1

)
, (29)

where C is a positive constant independent of M and h.

Proof. For any t > 0, denote

(en
u, en

q , en
p, en

r ) = (un − un
h , qn − qn

h , pn − pn
h , rn − rn

h). (30)

Let (Un
h , Qn

h , Pn
h , Rn

h) be the elliptic projection defined in (12) at time t = tn. Then, we
divide the error en

ς in the form
en

ς = ξn
ς − ηn

ς , (31)

for ς = u, q, p, r, where

(ξn
u, ξn

q , ξn
p , ξn

r ) = (Un
h − un

h , Qn
h − qn

h , Pn
h − pn

h , Rn
h − rn

h),

(ηn
u , ηn

q , ηn
p , ηn

r ) = (Un
h − un, Qn

h − qn, Pn
h − pn, Rn

h − rn).
(32)

In order to obtain the error equation of the fully discrete numerical scheme, we need
to present the weak formulation of (4) at tn, which is,

(CDα
0,tu

n, v) = H(ϕn; v) + L(rn, v) + ( f n, v), (33a)

(rn, ρ) = −H−(pn, ρ), (33b)

(pn, φ) = −H+(qn, φ), (33c)

(qn, ψ) = −H−(un, ψ), (33d)

where ϕn = (un, qn, pn) and v, ρ, φ, ψ are test functions. Then, we can find the error equation
by subtracting (18) from (33) that, for any vh, ρh, φh, ψh ∈ Vh and n = 1, . . . , M,

(CDα
0,tu

n − Υα
t un

h , vh) = H(en
ϕ; vh) + L(en

r , v), (34a)

(en
r , ρh) = −H−(en

p, ρh), (34b)

(en
p, φh) = −H+(en

q , φh), (34c)
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(en
q , ψh) = −H−(en

u, ψh), (34d)

where en
ϕ = (en

u, en
q , en

p). According to the definition (12) of elliptic projection and (33b)–(33d),
we obtain

0 = L(ηn
r , vh), (35a)

(ηn
r , ρh) = −H−(ηn

p , ρh), (35b)

(ηn
p , φh) = −H+(ηn

q , φh), (35c)

(ηn
q , ψh) = −H−(ηn

u , ψh). (35d)

Therefore, we have from (34a) and (35a) that

(CDα
0,tu

n − Υα
t un

h , vh) = H(ξn
ϕ; vh) + L(ξn

r , vh)−H(ηn
ϕ; vh). (36)

Here, ξn
ϕ = (ξn

u, ξn
q , ξn

p) and ηn
ϕ = (ηn

u , ηn
q , ηn

p). By using (8), (35c) and (35d), the above
equation can be further written as

(CDα
0,tu

n − Υα
t un

h , vh) = c1(η
n
q , vh) + c2(η

n
p , vh)− c3H+(ηn

p , vh) +H(ξn
ϕ; vh) + L(ξn

r , vh), (37a)

Substituting (31) into (34b)–(34d) and using (35b)–(35d), we obtain

(ξn
r , ρh) = −H−(ξn

p , ρh), (37b)

(ξn
p , φh) = −H+(ξn

q , φh), (37c)

(ξn
q , ψh) = −H−(ξn

u, ψh). (37d)

Taking vh = ξn
u in (37a), we obtain the following identity

(CDα
0,tu

n − Υα
t un

h , ξn
u) = c1(η

n
q , ξn

u) + c2(η
n
p , ξn

u)− c3H+(ηn
p , ξn

u) +H(ξn
ϕ; ξn

u) + L(ξn
r , ξn

u). (38)

From Lemma 2, we arrive at

L(ξn
r , ξn

u) = −c4‖ξn
p‖2. (39)

It has been shown in ([23], Lemma 9) that

‖ξn
q ‖ ≤ C‖ξn

p‖. (40)

By the similar argument to prove inequality (11) in Lemma 3 (refer ([27], Lemma 3.3)
for similar analysis), we can find

|H+(ηn
p , ξn

u)| ≤
(
‖(ξn

u)x‖+
√

µh−1[[ξn
u ]]

)
‖ηn

p‖. (41)

Then, combine (40)–(41) and Lemma 4 to obtain

|c3H+(ηn
p , ξn

u)| ≤ Chk+1
(
‖(ξn

u)x‖+
√

µh−1[[ξn
u ]]

)
≤ Chk+1‖ξn

q ‖ ≤ Chk+1‖ξn
p‖,

(42)

where we have used the interpolating property (14) in the first inequality.
Note that

H(ξn
ϕ; ξn

u) = c1H−(ξn
u, ξn

u) + c2H+(ξn
q , ξn

u) + c3H+(ξn
p , ξn

u), (43)
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by (8). A simple application of Lemma 1 leads to

c1H−(ξn
u, ξn

u) = −
c1

2
[[ξn

u ]]
2 ≤ 0. (44)

Using the Cauchy–Schwarz inequality and (37c), one finds

c2H+(ξn
q , ξn

u) = −c2(ξ
n
p , ξn

u) ≤
ε1

4
‖ξn

p‖2 +
c2

2
ε1
‖ξn

u‖2, (45)

where ε1 is a positive constant. We next estimate c3H+(ξn
p, ξn

u). It follows from Lemma 1
and (37d) that

H+(ξn
p , ξn

u) = −H−(ξn
u, ξn

p) = (ξn
q , ξn

p).

Then, applying the Cauchy–Schwarz inequality, Young’s inequality and Lemma 4, we
have that

c3H+(ξn
p , ξn

u) ≤
ε1

4
‖ξn

p‖2 +
c2

3
ε1
‖ξn

q ‖2

≤ ε1

4
‖ξn

p‖2 +
c2

3
ε1
‖ξn

u‖‖ξn
p‖

≤ ε1

2
‖ξn

p‖2 +
c4

3

ε3
1
‖ξn

u‖2.

(46)

Substituting (44)–(46) into (43), we arrive at

H(ξn
ϕ; ξn

u) ≤
3ε1

4
‖ξn

p‖2 +

(
c2

2
ε1

+
c4

3

ε3
1

)
‖ξn

u‖2. (47)

Combining (38), (39), (42), and (47) together and utilizing the Cauchy–Schwarz in-
equality, we conclude that

(CDα
0,tu

n − Υα
t un

h , ξn
u) + c4‖ξn

p‖2

≤
(
‖c1ηn

q ‖+ ‖c2ηn
p‖
)
‖ξn

u‖+ Chk+1‖ξn
p‖+

3ε1

4
‖ξn

p‖2 +

(
c2

2
ε1

+
c4

3

ε3
1

)
‖ξn

u‖2

≤ Ch2k+2 +

(
1
2
+

3ε1

4

)
‖ξn

p‖2 +

(
1
2
+

c2
2

ε1
+

c4
3

ε3
1

)
‖ξn

u‖2.

(48)

As a consequence, if we take ε1 = 2
3 c4, then

(CDα
0,tu

n − Υα
t un

h , ξn
u) ≤ Ch2k+2 +

(
1
2
+

3c2
2

2c4
+

27c4
3

8c3
4

)
‖ξn

u‖2. (49)

Note that Rn
1 = CDα

0,tu
n − Υα

t un. Thus, by (49) and (31), we obtain

(Υα
t ξn

u, ξn
u) = (Υα

t ηn
u , ξn

u)− (Rn
1 , ξn

u) + Ch2k+2 +

(
1
2
+

3c2
2

2c4
+

27c4
3

8c3
4

)
‖ξn

u‖2, (50)

which, together with Lemma 9 and interpolation property (14), yields

Υα
t ‖ξn

u‖2 ≤
(

2 +
3c2

2
c4

+
27c4

3

4c3
4

)
‖ξn

u‖2 + 2Ch2k+2 + 2‖Rn
1‖‖ξn

u‖. (51)
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Applying Lemma 8 with λ0 = 2 +
3c2

2
c4

+
27c4

3
4c3

4
, λj = 0 for 1 ≤ j ≤ M − 1, vn =

‖ξn
u‖, φn = 2‖Rn

1‖, and ψn =
√

2Chk+1, we find from (51) that

‖ξn
u‖ ≤ 2Eα,1

((
4 +

6c2
2

c4
+

27c4
3

2c3
4

)
tα
n

)(
2 max

1≤k≤n

k

∑
j=1

P(k)
k−j‖R

j
1‖

+
√

2CΓ(1− α) max
1≤k≤n

{t
α
2
k hk+1}

)
,

(52)

provided that the maximum time-step τM ≤
((

4 + 6c2
2

c4
+

27c4
3

2c3
4

)
Γ(2− α)

)−1/α

. From

Lemma 7, we have
‖ξn

u‖ ≤ C
(

M−min{rα,2−α} + hk+1
)

. (53)

Then, the desired estimate can be obtained using together interpolation property (14)
and the triangle inequality.

Remark 1. In (44), we can obtain

c1H−(ξn
u, ξn

u) ≤ C‖ξn
u‖2 +

c4

4
‖ξn

p‖2,

if c1 < 0. Since

− c1

2
[[ξn

u ]]
2 ≤ C‖ξn

q ‖2 ≤ C‖ξn
u‖ξn

p‖ ≤ C‖ξn
u‖2 +

c4

4
‖ξn

p‖2,

owing to Lemma 4, (37b)–(37d) and Young’s inequality.

From Theorem 2, it can be concluded that the optimal order of convergence (i.e.,
(2− α)th-order accurate in time and (k + 1)-order accurate in space) for the solution can
be obtained if we use nonuniform L1 formula in the temporal direction and the LDG
method in space. However, the numerical solution generated by scheme (18) will be
limited to being (2− α)-order accurate in time even if the solution is sufficiently smooth.
Therefore, developing high-order numerical algorithms for the time-fractional fourth-order
problem (1) is also indispensable and will be studied in the next section.

4. Nonuniform L2-1σ–LDG Scheme

In the section, based on the LDG method in the spatial direction and L2-1σ approx-
imation in the time direction, we propose a fully discrete numerical scheme (called the
nonuniform L2-1σ–LDG scheme for brevity) with high temporal accuracy to solve the
time-fractional fourth-order Equation (1).

4.1. The Fully Discrete Numerical Scheme and Its Stability

For a given finite time T > 0, let tn = T(n/M)r, n = 0, 1, . . . , M be the mesh
points, r ≥ 1. Denote τn = tn − tn−1, and let n = 1, . . . , M be the time mesh sizes. For
σ ∈ [0, 1], we set tn+σ = tn + στn+1, un+σ = u(x, tn+σ), and un,σ = σun+1 + (1− σ)un for
n = 0, 1, . . . , M− 1.
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The nonuniform L2-1σ approximation to Caputo’s fractional derivative at tn+σ

(n = 0, 1, . . . , M− 1) is given by [28]

CDα
0,tu(x, tn+σ) =

1
Γ(1− α)

∫ tn+σ

0

∂u(x, s)
∂s

ds
(tn+σ − s)α

=
1

Γ(1− α)

n

∑
k=1

∫ tk

tk−1

∂u(x, s)
∂s

ds
(tn+σ − s)α

+
1

Γ(1− α)

∫ tn+σ

tn

∂u(x, s)
∂s

ds
(tn+σ − s)α

≈ gn,nun+1 −
n

∑
j=0

(gn,j − gn,j−1)uj

:= <α
t un+σ,

(54)

where g0,0 = τ−1
1 a0,0, gn,−1 = 0, and for n ≥ 1,

gn,j =


τ−1

j+1(an,0 − bn,0), j = 0,

τ−1
j+1(an,j + bn,j−1 − bn,j), 1 ≤ j ≤ n− 1,

τ−1
j+1(an,n + bn,n−1), j = n.

an,n =
1

Γ(1− α)

∫ tn+σ

tn
(tn+σ − s)−αds =

σ1−α

Γ(2− α)
τ1−α

n+1 , n ≥ 0,

an,j =
1

Γ(1− α)

∫ tj=1

tj

(tn+σ − s)−αds, n ≥ 1, 0 ≤ j ≤ n− 1,

bn,j =
2

Γ(1− α)(tj+2 − tj)

∫ tj+1

tj

(tn+σ − s)−α(s− tj+1/2)ds, n ≥ 1, 0 ≤ j ≤ n− 1.

Denote An+1,σ
n+1−j = gn,j, ∇tuj+1 = uj+1 − uj for 0 ≤ j ≤ n, and 0 ≤ n ≤ M− 1. Then,

for n = 0, 1, . . . , M− 1, it holds that

<α
t un+σ =

n

∑
j=0

An+1,σ
n+1−j∇tuj+1.

Referring to Ref. [29], we introduce the discrete convolution kernel Pn+1,σ
n+1−j,

Pn+1,σ
1 =

1

An+1,σ
1

, Pn+1,σ
n+1−j =

1

Aj+1,σ
1

n

∑
i=j+1

(
Ai+1,σ

i−j − Ai+1,σ
i−j+1

)
Pn+1,σ

n+1−i.

Moreover, it was proven in [25] that

n

∑
j=i

Pn+1,σ
n+1−j A

j+1,σ
j−i+1 = 1, for 0 ≤ i ≤ n ≤ M− 1. (55)

n

∑
j=0

Pn+1,σ
n+1−jω1+mα−α(tj+1) ≤ πAω1+mα(tn+1), for 0 ≤ n ≤ M− 1 and m = 0, 1, (56)

where πA is a positive constant.
Let q = ux, p = qx, r = px, and then the weak form of the time-fractional fourth-order

Equation (1) at tn+σ is formulated as(
(CDα

0,tu)
n+σ, v

)
= H(ϕn,σ; v) + L(rn,σ, v) + (Rn+σ

2 , v) + ( f n+σ, v), (57a)
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(rn,σ, ρ) = −H−(pn,σ, ρ), (57b)

(pn,σ, φ) = −H+(qn,σ, φ), (57c)

(qn,σ, ψ) = −H−(un,σ, ψ), (57d)

where v, ρ, φ, ψ are test functions; ϕn,σ = (un,σ, qn,σ, pn,σ); the bilinear operatorsH± and L
are defined in (6) and (9), respectively;H(ϕn,σ; v) has been given in (8); and

Rn+σ
2 = c1(un,σ

x − un+σ
x ) + c2(qn,σ

x − qn+σ
x ) + c3(pn,σ

x − pn+σ
x ) + c4(rn,σ

x − rn+σ
x ).

The LDG method introduced in Section 2 is used for spatial discretization. Then, the
fully discrete nonuniform L2-1σ–LDG approximation scheme for (1) reads as: find un,σ

h ,
qn,σ

h , pn,σ
h , rn,σ

h ∈ Vh such that, for all vh, ρh, φh, ψh ∈ Vh, it holds that(
<α

t un+σ
h , vh

)
= H(ϕn,σ

h ; vh) + L(rn,σ
h , vh) + ( f n+σ, vh), (58a)

(rn,σ
h , ρh) = −H−(pn,σ

h , ρh), (58b)

(pn,σ
h , φh) = −H+(qn,σ

h , φh), (58c)

(qn,σ
h , ψh) = −H−(un,σ

h , ψh). (58d)

Below, we study the stability of the nonuniform L2-1σ–LDG scheme (58). The following
lemmas play a key role in proving the stability for the nonuniform meshes.

Lemma 10 ([25]). For any finite time tM = T > 0 and a given nonnegative sequence (λl)
M−1
l=0 ,

assume that there exists a constant Λ, independent of time-steps, such that
M−1

∑
l=0

λl ≤ Λ. Let

σ = 1− α/2 and suppose that the grid function {vn+1|n ≥ 0} satisfies

n

∑
i=0

An+1,σ
n+1−i∇t(vi+1)2 ≤

n

∑
i=0

λn−i(vi,σ)2 + φn+1vn,σ + (ψn+1)2, 0 ≤ n ≤ M− 1,

where {φn+1, ψn+1|0 ≤ n ≤ M − 1} are nonnegative sequences. If the maximum time-step
τM ≤ (2πAΓ(2− α)Λ)−1/α, it holds that, for 0 ≤ n ≤ M− 1,

vn+1 ≤ 2Eα,1(2πAΛtα
n+1)

(
v0 + max

0≤i≤n

i

∑
j=0

Pi+1,σ
i−j+1φj +

√
πAΓ(1− α) max

0≤j≤n
{tα/2

j+1ψj+1}
)

.

Lemma 11 ([26]). Suppose σ = 1− α/2. For any function un+1(0 ≤ n ≤ M− 1), we have the
following inequality

(<α
t un+σ, un,σ) ≥ 1

2
<α

t (‖u‖2)n+σ.

Theorem 3. If the graded mesh satisfies the maximum time-step condition

τM ≤
(

2πAΓ(2− α)
(

3c2
2

2c4
+

27c4
3

32c3
4
+ 1
))−1/α

, then, for n = 0, 1, . . . , M− 1, the solution un+1
h

of the fully discrete nonuniform L2-1σ–LDG scheme (58) satisfies

‖un+1
h ‖ ≤ 2Eα,1

(
πA

(
3c2

2
c4

+
27c4

3

16c3
4
+ 2
)

tα
n+1

)(
‖u0

h‖+
√

πAΓ(1− α) max
0≤j≤n

{tα/2
j+1‖ f j+σ‖}

)
.

Proof. Taking the test function vh = un,σ
h in (58a) and applying Lemma 2, we obtain

(<α
t un+σ

h , un,σ
h ) + c4‖pn,σ

h ‖
2 = H(ϕn,σ

h ; un,σ
h ) + ( f n+σ, un,σ

h ). (59)



Fractal Fract. 2022, 6, 206 14 of 23

Similar to that in the proof of (26), we can use the Cauchy–Schwarz inequality to obtain

(<α
t un+σ

h , un,σ
h ) ≤

(
3c2

2
4c4

+
27c4

3

64c3
4

)
‖un,σ

h ‖
2 + ‖ f n+σ‖‖un,σ

h ‖. (60)

A combination of Lemma 11 and (60) leads to

<α
t (‖uh‖2)n+σ ≤

(
3c2

2
2c4

+
27c4

3

32c3
4
+ 1

)
‖un,σ

h ‖
2 + ‖ f n+σ‖2. (61)

It thus follows from Lemma 10 with λ0 =
3c2

2
2c4

+
27c4

3
32c3

4
+ 1, λj = 0 for 1 ≤ j ≤ M− 1,

vn,σ = ‖un,σ
h ‖, φn+1 = 0, and ψn+1 = ‖ f n+σ‖ that

‖un+1
h ‖ ≤ 2Eα,1

(
πA

(
3c2

2
c4

+
27c4

3

16c3
4
+ 2
)

tα
n+1

)(
‖u0

h‖+
√

πAΓ(1− α) max
0≤j≤n

{tα/2
j+1‖ f j+σ‖}

)
,

provided that the maximum time-step τM ≤
(

2πAΓ(2− α)
(

3c2
2

2c4
+

27c4
3

32c3
4
+ 1
))−1/α

. The

proof is completed.

4.2. Error Estimate of the Nonuniform L2-1σ–LDG Scheme

In this section, we study the error analysis of fully discrete nonuniform L2-1σ–LDG
scheme (58) for Equation (1). Assume that the exact solution u(x, t) of (1) is sufficiently
smooth, i.e.,

u ∈ L∞
(
(0, T]; Hk+4(Ω)

)
,
∣∣∣∂l

tu(x, t)
∣∣∣ ≤ C(1 + tα−l) for 0 < t ≤ T and l = 0, 1, 2, 3. (62)

Lemma 12 ([30]). Suppose σ = 1− α/2. Then, for any function v(t) ∈ C3(0, T], one has

∣∣(CDα
0,tv)

n+σ − Υα
t vn+σ

∣∣ ≤ Ct−α
n+σ

(
ψn+σ

v + max
1≤s≤n

{ψn,s
v }
)

for n = 0, 1, . . . , M− 1,

where

ψn+σ
v = τ3−α

n+1 tα
n+σ sup

s∈(tn ,tn+1)

|v′′′(s)| for n = 1, 2, . . . , M− 1,

ψn,1
v = τα

1 sup
s∈(0,t1)

(
s1−α|(I2,1v(s))′ − v′(s)|

)
for n = 1, 2, . . . , M− 1,

ψn,s
v = τ−α

n+1τ2
i (τi + τi+1)tα

i sup
s∈(ti−1,ti+1)

|v′′′(s)| for 2 ≤ i ≤ n ≤ M− 1,

and I2,1v(s) is the quadratic polynomial that interpolates to v(s) at the points ts−1, ts and ts+1.

Lemma 13 ([30]). Suppose that v(t) ∈ C[0, T] ∩ C3(0, T] satisfies the condition (62). Then,
we have

ψn+σ
v ≤ CM−min{rα,3−α} for n = 0, 1, . . . , M− 1,

ψn,s
v ≤ CM−min{rα,3−α} for s = 1, . . . , M− 1, n ≥ 1.

In Section 3.2, we gave the convergence analysis of the nonuniform L1–LDG scheme,
and the same idea can be used for the nonuniform L2-1σ–LDG scheme. However, the proof
will be somewhat complicated. Along a similar line, we can easily establish the error equa-
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tion by subtracting (58) from (57) that, for any vh, ρh, φh, ψh ∈ Vh and n = 0, 1, . . . , M− 1,(
(CDα

0,tu)
n+σ −<α

t un+σ
h , vh

)
= H(en,σ

ϕ ; vh) + L(en,σ
r , vh) + (Rn+σ

2 , vh), (63a)

(en,σ
r , ρh) = −H−(en,σ

p , ρh), (63b)

(en,σ
p , φh) = −H+(en,σ

q , φh), (63c)

(en,σ
q , ψh) = −H−(en,σ

u , ψh), (63d)

where en,σ
ϕ = (en,σ

u , en,σ
q , en,σ

p ), en,σ
u , en,σ

q , en,σ
p , and en,σ

r are the errors with the decompositions

(en+1
u , en+1

q , en+1
p , en+1

r ) = (un+1 − un+1
h , qn+1 − qn+1

h , pn+1 − pn+1
h , rn+1 − rn+1

h )

= (ξn+1
u − ηn+1

u , ξn+1
q − ηn+1

q , ξn+1
p − ηn+1

p , ξn+1
r − ηn+1

r ).
(64)

Here,

(ξn+1
u , ξn+1

q , ξn+1
p , ξn+1

r ) = (Un+1
h − un+1

h , Qn+1
h − qn+1

h , Pn+1
h − pn+1

h , Rn+1
h − rn+1

h ),

(ηn+1
u , ηn+1

q , ηn+1
p , ηn+1

r ) = (Un+1
h − un+1, Qn+1

h − qn+1, Pn+1
h − pn+1, Rn+1

h − rn+1),

and (Un+1
h , Qn+1

h , Pn+1
h , Rn+1

h ) is the elliptic projection defined in (12).

Theorem 4. Assume that the solution u of the problem (1) satisfies the condition (62) and
CDα

0,tu ∈ L∞((0, T]; Hk+1(Ω)). Let un
h be the numerical solution of the fully discrete LDG

scheme (58). Suppose σ = 1− α/2 and the nonuniform mesh satisfies the maximum time-step
condition τM ≤ (4πAΓ(2− α))−1/α, then for n = 1, 2, . . . , M, the following estimate holds

‖un − un
h‖ ≤ C

(
M−min{rα,2} + hk+1

)
,

where C is a positive constant independent of M and h.

Proof. Substituting (64) into (63) and denoting ζn+σ = (CDα
0,tu)

n+σ − <α
t un+σ, we ob-

serve that (
<α

t ξn+σ
u , vh

)
=
(
<α

t ηn+σ
u , vh

)
− (ζn+σ, vh) + (Rn+σ

2 , vh) +H(ξn,σ
ϕ ; vh)

−H(ηn,σ
ϕ ; vh) + L(ξn,σ

r , vh)−L(ηn,σ
r , vh),

(65a)

(ξn,σ
r , ρh)− (ηn,σ

r , ρh) = −H−(ξn,σ
p , ρh) +H−(ηn,σ

p , ρh), (65b)

(ξn,σ
p , φh)− (ηn,σ

p , φh) = −H+(ξn,σ
q , φh) +H+(ηn,σ

q , φh), (65c)

(ξn,σ
q , ψh)− (ηn,σ

q , ψh) = −H−(ξn,σ
u , ψh) +H−(ηn,σ

u , ψh), (65d)

in which ξn,σ
ϕ = (ξn,σ

u , ξn,σ
q , ξn,σ

p ) and ηn,σ
ϕ = (ηn,σ

u , ηn,σ
q , ηn,σ

p ). By the definition (12) of elliptic
projection, we have

0 = L(ηn,σ
r , vh), (66a)

(ηn,σ
r , ρh) = −H−(ηn,σ

p , ρh), (66b)

(ηn,σ
p , φh) = −H+(ηn,σ

q , φh), (66c)

(ηn,σ
q , ψh) = −H−(ηn,σ

u , ψh). (66d)

Then, Equations (65a)–(65d) become(
<α

t ξn+σ
u , vh

)
=
(
<α

t ηn+σ
u , vh

)
− (ζn+σ, vh) + (Rn+σ

2 , vh) +H(ξn,σ
ϕ ; vh)

−H(ηn,σ
ϕ ; vh) + L(ξn,σ

r , vh),
(67a)

(ξn,σ
r , ρh) = −H−(ξn,σ

p , ρh), (67b)
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(ξn,σ
p , φh) = −H+(ξn,σ

q , φh), (67c)

(ξn,σ
q , ψh) = −H−(ξn,σ

u , ψh). (67d)

Setting vh = ξn,σ
u in (67a) and using Lemma 2, we arrive at(

<α
t ξn+σ

u , ξn,σ
u
)
+ c4‖ξn,σ

p ‖2 =
(
<α

t ηn+σ
u , ξn,σ

u
)
− (ζn+σ, ξn,σ

u ) + (Rn+σ
2 , ξn,σ

u )

+H(ξn,σ
ϕ ; ξn,σ

u )−H(ηn,σ
ϕ ; ξn,σ

u ).
(68)

By an analysis similar to that in the proof of (47), we have that

|H(ξn,σ
ϕ ; ξn,σ

u )| ≤ 3ε3

4
‖ξn,σ

p ‖2 +

(
c2

2
ε3

+
c4

3

ε3
3

)
‖ξn,σ

u ‖2, (69)

where ε3 is a positive constant. Employing the definition of operator H(·; ·) and apply-
ing (66c)–(66d), it is easy to see that

H(ηn,σ
ϕ ; ξn,σ

u ) = c1H−(ηn,σ
u , ξn,σ

u ) + c2H+(ηn,σ
q , ξn,σ

u ) + c3H+(ηn,σ
p , ξn,σ

u )

= −c1(η
n,σ
q , ξn,σ

u )− c2(η
n,σ
p , ξn,σ

u ) + c3H+(ηn,σ
p , ξn,σ

u ).
(70)

Similar to that in the proof of (42), we can derive

|c3H+(ηn,σ
p , ξn,σ

u )| ≤ Chk+1‖ξn,σ
p ‖. (71)

Then, a simple use of the Cauchy–Schwarz inequality and interpolation property (14)
yields

|H(ηn,σ
ϕ ; ξn,σ

u )| ≤ Chk+1‖ξn,σ
u ‖+ Chk+1‖ξn,σ

p ‖. (72)

Combining (68), (69) and (72), we can derive(
<α

t ξn+σ
u , ξn,σ

u
)
+ c4‖ξn,σ

p ‖2 ≤
(
‖<α

t ηn+σ
u ‖+ ‖ζn+σ‖+ ‖Rn+σ

2 ‖
)
‖ξn,σ

u ‖+ Ch2k+2

+

(
3ε3

4
+

c4

2

)
‖ξn,σ

p ‖2 +

(
c2

2
ε3

+
c4

3

ε3
3
+ 1

)
‖ξn,σ

u ‖2.
(73)

Thus, if we take ε3 = 2c4
3 , inequality (73) reduces to(

<α
t ξn+σ

u , ξn,σ
u
)
+ c4‖ξn,σ

p ‖2 ≤
(
‖<α

t ηn+σ
u ‖+ ‖ζn+σ‖+ ‖Rn+σ

2 ‖
)
‖ξn,σ

u ‖

+

(
3c2

2
2c4

+
27c4

3

8c3
4
+ 1

)
‖ξn,σ

u ‖2 + Ch2k+2.
(74)

From interpolation property (14), we have

‖<α
t ηn+σ

u ‖ =
∥∥<α

t (u−Uh)
n+σ − (CDα

0,t(u−Uh))
n+σ + (CDα

0,t(u−Uh))
n+σ
∥∥

≤ C‖ζn+σ‖1 + Chk+1‖(CDα
0,tu)

n+σ‖k+1.
(75)

Next, we estimate max
0≤n≤M−1

{
tα
n+σ‖Rn+σ

2

∥∥}. When n = 0, since u ∈ L∞((0, T]; Hk+4(Ω)
)
,

there exists a constant C such that tα
σ‖Rn+σ

2 ‖ ≤ Ctα
1 ≤ CM−rα. When n ≥ 1, by using ([30],

Lemma 9) and (62), we have

tα
n+σ‖Rn+σ

2 ‖ ≤ Ctα
n+στ2

n+1tα−2
n ≤ C(n + 1)rα M−rα M−2rnrα−2M−rα+2r

≤ C(n/M)2rα−2M−2,
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where, in the second step, the estimate τn+1 ≤ CTM−rnr−1 (n = 0, 1, . . . , M− 1) has been
applied. As a consequence,

tα
n+σ‖Rn+σ

2 ‖ ≤
{

CM−2, n = 1, 2, . . . , M− 1, r ≥ 1/α,
CM−2α, n = 1, 2, . . . , M− 1, 1 ≤ r < 1/α,

which, together with the case of n = 0, leads to

max
0≤n≤M−1

{
tα
n+σ‖Rn+σ

2 ‖
}
≤ CM−min{rα,2}. (76)

Then, it follows from Lemmas 12 and 13 that

‖<α
t ηn+σ

u ‖+ ‖ζn+σ‖+ ‖Rn+σ
2 ‖

≤ C‖ζn+σ‖1 + Chk+1‖(CDα
0,tu)

n+σ‖k+1 + t−α
n+σtα

n+σ‖Rn+σ
2 ‖

≤ Ct−α
n+σ max

1≤n≤M−1

(
tα
n+σ‖ζn+σ‖1 + tα

n+σ‖Rn+σ
2 ‖

)
+ Chk+1

≤ Ct−α
n+σ

(
C max

0≤n≤M−1

{
‖ψn+σ

u ‖1 +
{

max
1≤s≤n

‖ψn,s
u ‖1

}}
+ M−min{rα,2}

)
+ Chk+1

≤ Ct−α
n+σ

(
M−min{rα,3−α} + M−min{rα,2}

)
+ Chk+1

≤ Ct−α
n+σ M−min{rα,3−α} + Chk+1.

(77)

Substituting (77) into (74) and using Lemma 11, we easily obtain

<α
t (‖ξu‖2)n+σ ≤

(
Ct−α

n+σ M−min{rα,3−α} + Chk+1
)
‖ξn,σ

u ‖

+

(
3c2

2
2c4

+
27c4

3

8c3
4
+ 1

)
‖ξn,σ

u ‖2 + Ch2k+2.
(78)

By virtue of Lemma 10 and (56), it yields that

‖ξn+1
u ‖ ≤ 2Eα,1(2CπAtα

n+1)

(
max

0≤i≤n

i

∑
j=0

Pi+1,σ
i−j+12

(
Ct−α

j+σ M−min{rα,3−α} + Chk+1)
+
√

πAΓ(1− α) max
0≤j≤n

{√
Ctα/2

j+1hk+1
})

≤ C max
0≤i≤n

i

∑
j=0

Pi+1,σ
i−j+1

(
ω1−α(tj+1)M−min{rα,2} + hk+1

)
+ Chk+1

≤ CM−min{rα,2} + Chk+1,

(79)

provided that the maximum time-step τM ≤
(

2πAΓ(2− α)
(

3c2
2

2c4
+

27c4
3

8c3
4
+ 1
))−1/α

. Finally,

we complete the proof of Theorem 4 by combining the above inequality with interpolation
property (14) and the triangle inequality.

5. Numerical Examples

The purpose of this section is to numerically validate the efficiency of schemes (18)
and (58) for solving the time-fractional fourth-order Equation (1) with initial singularity.
All the algorithms were implemented using MATLAB R2016a, and were run in a 3.10 GHz
PC with 16 GB RAM and a Windows 10 operating system.
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Example 1. Consider the problem (1) with c1 = c3 = c4 = 1, c2 = −1, Ω = (0, 1), T = 1,
u0(x) = 0, and the periodic boundary condition in use. In this case, the source term

f (x, t) =
(

Γ(α + 1) +
6t3−α

Γ(4− α)

)
sin(2πx) + 2π(tα + t3) cos(2πx)

+ 4π2(tα + t3) sin(2πx)− 8π3(tα + t3) cos(2πx) + 16π4(tα + t3) sin(2πx).

The analytical solution is given by u(x, t) = (tα + t3) sin(2πx). This solution displays a weak
singularity at t = 0.

To solve Example 1, we apply the nonuniform L1–LDG scheme (18) with r = (2− α)/α
in computation. The L2-norm errors and temporal convergence orders of the numerical so-
lution un

h for α = 0.4, 0.6, 0.8 and different time-steps are listed in Table 1. The convergence
orders of α = 0.4 and 0.6 are close to (2− α), which is consistent with the theoretical pre-
diction in Theorem 2. However, the accuracy of α = 0.8 is slightly lower. In Tables 2 and 3,
for fixed M = 4000 and r = (2− α)/α, we observe that the spatial convergence order
for (18) is (k + 1), which is in agreement with the theoretical analysis. The numerical
solutions of the scheme (18) for different α are given in Figures 1–3. Figure 4 depicts the
L2-norm errors versus N between the numerical solution and the exact solution for different
α at t = 1. The graphs show good agreement between the two solutions.

Table 1. The L2-norm errors and corresponding temporal convergence orders for Example 1 with
T = 1, by the scheme (18) with M = N and r = (2− α)/α.

α = 0.4 α = 0.6 α = 0.8

M Error Order Time(s) Error Order Time(s) Error Order Time(s)

320 2.24 × 10−5 ∗ 11.79 3.16 × 10−5 ∗ 17.26 4.11 × 10−5 ∗ 32.11
640 7.66 × 10−6 1.55 46.20 1.75 × 10−5 0.85 60.55 2.69 × 10−5 0.61 131.45

1280 3.06 × 10−6 1.32 198.90 8.53 × 10−6 1.04 247.78 1.58 × 10−5 0.77 546.24
2560 1.14 × 10−6 1.42 1.32 × 103 3.90 × 10−6 1.13 1.05 × 103 8.96 × 10−6 0.82 2.11 × 103

5120 4.05 × 10−7 1.49 1.11 × 104 1.67 × 10−6 1.22 4.30 × 105 4.82 × 10−6 0.89 5.80 × 103

Table 2. The L2-norm errors and corresponding spatial convergence orders for Example 1 with T = 1,
by the scheme (18) with M = 4000, r = (2− α)/α and k = 1.

α = 0.4 α = 0.6 α = 0.8

N Error Order Time(s) Error Order Time(s) Error Order Time(s)

8 3.86 × 10−2 ∗ 43.2 3.86 × 10−2 ∗ 130.68 3.86 × 10−2 ∗ 131.23
16 9.32 × 10−3 2.05 48.96 9.32 × 10−3 2.05 144.60 9.32 × 10−3 2.05 144.72
32 2.30 × 10−3 2.02 55.94 2.30 × 10−3 2.02 187.88 2.30 × 10−3 2.02 170.32
64 5.71 × 10−4 2.01 70.67 5.71 × 10−4 2.01 215.64 5.71 × 10−4 2.01 215.34
128 1.42 × 10−4 2.01 124.49 1.42 × 10−4 2.01 310.24 1.42 × 10−4 2.01 309.78

Table 3. The L2-norm errors and corresponding spatial convergence orders for Example 1 with T = 1,
by the scheme (18) with M = 4000, r = (2− α)/α and k = 2.

α = 0.4 α = 0.6 α = 0.8

N Error Order Time(s) Error Order Time(s) Error Order Time(s)

8 2.86 × 10−3 ∗ 108.24 2.86 × 10−3 ∗ 139.64 2.86 × 10−3 ∗ 66.67
16 3.57 × 10−4 3.00 143.79 3.57 × 10−4 3.00 124.51 3.57 × 10−4 3.00 59.16
32 4.46 × 10−5 3.00 214.65 4.46 × 10−5 3.00 203.55 4.46 × 10−5 3.00 104.89
64 5.58 × 10−6 3.00 253.46 5.58 × 10−6 3.00 168.07 6.07 × 10−6 2.88 234.49
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Figure 1. The numerical solution the scheme (18) for Example 1 with α = 0.4, N = 8, M = 4000,
r = (2− α)/α and T = 1.

Figure 2. The numerical solution by the scheme (18) for Example 1 with α = 0.6, N = 8, M = 4000,
r = (2− α)/α, and T = 1.
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Figure 3. The numerical solution by the scheme (18) for Example 1 with α = 0.8, N = 8, M = 4000,
r = (2− α)/α and T = 1.
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Figure 4. L2-norm errors versus N with different values of α, M = 4000, r = (2− α)/α, k = 1 and
T = 1.

Example 2. The purpose of this example is to investigate the accuracy and efficiency of the proposed
nonuniform L2-1σ–LDG method (57). For simplicity, the equation in Example 1 is still regarded
as a test problem, but it is solved by the scheme (57). The L2-norm errors at time t = 1 and
convergence orders in the temporal direction with different α and r are shown in Tables 4–6. The
orders of convergence displayed indicate that the order of convergence is O(M−min{rα,2}), which
coincides with Theorem 4. From Tables 5 and 6, we can also see that the grading parameter r ≥ 2/α
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yields the temporal optimal second-order accuracy. Then, we refine the spatial step size with a fixed
temporal step size M = 2000. The L2-norm errors at time t = 1 and convergence orders in the
spatial direction are shown in Table 7. The results imply that the algorithm (57) has an accuracy of
O(hk+1) in space.

Table 4. The L2-norm errors and corresponding temporal convergence orders for Example 2 with
T = 1, by the scheme (57) with N = 2000 and r = 1.

α = 0.4 α = 0.6 α = 0.8

M Error Order Time(s) Error Order Time(s) Error Order Time(s)

8 4.35 × 10−2 ∗ 1.86 3.03 × 10−2 ∗ 1.73 1.34 × 10−2 ∗ 1.73
16 3.32 × 10−2 0.39 3.52 2.03 × 10−2 0.58 3.46 8.05 × 10−3 0.74 3.48
32 2.52 × 10−2 0.40 16.09 1.34 × 10−2 0.60 7.42 4.63 × 10−3 0.80 6.91
64 1.91 × 10−2 0.40 44.95 8.80 × 10−3 0.61 14.28 2.62 × 10−3 0.82 14.27
128 1.44 × 10−2 0.41 88.86 5.76 × 10−3 0.61 30.28 1.46 × 10−3 0.84 30.04
256 1.09 × 10−2 0.40 96.78 3.75 × 10−3 0.62 66.12 7.96 × 10−4 0.88 124.61

Table 5. The L2-norm errors and corresponding temporal convergence orders for Example 2 with
T = 1, by the scheme (57) with N = 2000 and r = 2/α.

α = 0.4 α = 0.6 α = 0.8

M Error Order Time(s) Error Order Time(s) Error Order Time(s)

8 7.31 × 10−2 ∗ 1.76 5.78 × 10−2 ∗ 5.15 4.38 × 10−2 ∗ 5.23
16 2.47 × 10−2 1.57 3.53 1.66 × 10−2 1.80 10.31 1.16 × 10−2 1.92 10.38
32 7.06 × 10−3 1.81 15.48 4.41 × 10−3 1.91 20.77 2.96 × 10−3 1.97 20.87
64 1.88 × 10−3 1.91 43.15 1.13 × 10−3 1.96 42.93 7.50 × 10−4 1.98 42.60
128 4.84 × 10−4 1.96 89.74 2.87 × 10−4 1.98 89.82 1.89 × 10−4 1.99 90.16
256 1.23 × 10−4 1.98 195.20 7.26 × 10−5 1.98 197.98 4.77 × 10−5 1.99 195.35

Table 6. The L2-norm errors and corresponding temporal convergence orders for Example 2 with
T = 1, by the scheme (57) with N = 2000 and r = (3− α)/α.

α = 0.4 α = 0.6 α = 0.8

M Error Order Time(s) Error Order Time(s) Error Order Time(s)

8 9.97 × 10−2 ∗ 1.83 7.66 × 10−2 ∗ 5.04 5.19 × 10−2 ∗ 5.14
16 3.77 × 10−2 1.40 3.62 2.32 × 10−2 1.72 10.19 1.40 × 10−2 1.90 10.22
32 1.14 × 10−2 1.73 17.98 6.27 × 10−3 1.89 20.05 3.58 × 10−3 1.96 20.85
64 3.11 × 10−3 1.88 37.18 1.62 × 10−3 1.95 41.64 9.06 × 10−4 1.98 42.06
128 8.08 × 10−4 1.94 89.39 4.12 × 10−4 1.98 88.55 2.28 × 10−4 1.99 88.94
256 2.06 × 10−4 1.97 175.39 1.04 × 10−4 1.99 169.03 5.76 × 10−5 1.98 109.57

Table 7. The L2-norm errors and corresponding spatial convergence orders for Example 2 with T = 1,
by the scheme (57) with M = 2000, r = (3− α)/α and k = 1.

α = 0.4 α = 0.6 α = 0.8

N Error Order Time(s) Error Order Time(s) Error Order Time(s)

8 3.86 × 10−2 ∗ 975.25 3.86 × 10−2 ∗ 1.22 × 103 3.86 × 10−2 ∗ 1.73e+03
16 9.32 × 10−3 2.05 969.18 9.32 × 10−3 2.05 1.16 × 103 9.32 × 10−3 2.05 689.66
32 2.30 × 10−3 2.02 939.20 2.30 × 10−3 2.02 1.70 × 103 2.30 × 10−3 2.02 686.89
64 5.74 × 10−4 2.00 945.52 5.72 × 10−4 2.01 1.82 × 103 5.72 × 10−4 2.01 733.29
128 1.46 × 10−4 1.97 1.44 × 103 1.44 × 10−4 1.99 2.63e+03 1.43 × 10−4 2.00 761.07
256 3.90 × 10−5 1.90 4.71 × 103 3.72 × 10−5 1.95 1.45e+03 3.65 × 10−5 1.97 800.52
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6. Concluding Remarks

In this paper, we studied the numerical algorithms for the time-fractional fourth-
order equation with an initial singularity. In the temporal direction, two types of finite
difference schemes were proposed and analyzed, including the nonuniform L1 scheme
and nonuniform L2-1σ scheme. In the spatial direction, the LDG method was utilized.
Detailed proofs of L2 stability and optimal error estimates for the schemes were derived
using the discrete fractional Gronwall-type inequalities. Finally, some numerical examples
were presented to verify the theoretical results.
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