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Abstract: The large proportion of asymptomatic patients is the major cause leading to the COVID-19
pandemic which is still a significant threat to the whole world. A six-dimensional ODE system
(SEIAQR epidemical model) is established to study the dynamics of COVID-19 spreading considering
infection by exposed, infected, and asymptomatic cases. The basic reproduction number derived
from the model is more comprehensive including the contribution from the exposed, infected, and
asymptomatic patients. For this more complex six-dimensional ODE system, we investigate the
global and local stability of disease-free equilibrium, as well as the endemic equilibrium, whereas
most studies overlooked asymptomatic infection or some other virus transmission features. In the
sensitivity analysis, the parameters related to the asymptomatic play a significant role not only in
the basic reproduction number R0. It is also found that the asymptomatic infection greatly affected
the endemic equilibrium. Either in completely eradicating the disease or achieving a more realistic
goal to reduce the COVID-19 cases in an endemic equilibrium, the importance of controlling the
asymptomatic infection should be emphasized. The three-dimensional phase diagrams demonstrate
the convergence point of the COVID-19 spreading under different initial conditions. In particular,
massive infections will occur as shown in the phase diagram quantitatively in the case R0 > 1.
Moreover, two four-dimensional contour maps of Rt are given varying with different parameters,
which can offer better intuitive instructions on the control of the pandemic by adjusting policy-
related parameters.

Keywords: COVID-19; SEIAQR epidemic model; asymptomatic infection; Lyapunov function;
sensitivity analysis

1. Introduction

As COVID-19 continues to threaten the lives and health of all human beings, more vari-
ants emerge and exaggerate the raging of the epidemic [1–4]. Many non-pharmaceutical in-
terventions have been implemented repeatedly [5,6]. Although several vaccines have been
developed and a proportion of populations has been vaccinated, the effectiveness of the
vaccine quickly declined over a certain amount of time [7]. New variants of the virus could
escape most of the neutralizing antibodies [4,8], which implies that non-pharmaceutical in-
terventions are still in need. Thus, some authorities re-escalate the level of restrictions [9,10].
To inform the policy-makers optimizing the containment strategies, mathematical modeling
studies [11–14] are necessary to simulate the epidemic development and identify essential
factors of the disease transmission.

Compartment models offer an interpretation of the transmissible disease by partition-
ing the population into different categories with the same characteristics. Common types of
models including SIR, SEIR, and SEIR-like forms depending on the typical features of the
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infectious disease are used to analyze the transmission or evaluate the effects of intervention
measures. Since the COVID-19 outbreak at the end of December 2019, many studies based
on compartment models have been carried out to analyze the spread of COVID-19 [15–24]
and offer some guidance to control the pandemic. Most of the compartment models are
composed of ordinary differential equations(ODE), in which some limitations exist to simu-
late the real COVID-19 transmission scenarios by four-dimensional ODE systems. Several
approaches (or combinations of these methods) are adopted to overcome the limitations
of the ODE system modeling [25] such as: using the partial differential equations(PDE),
thus the compartments do not merely depend on time [26,27]; considering random effects,
and establishing stochastic differential equations (SDE) systems [28,29]; adding more com-
partments in the deterministic models to discover the essential variables of the epidemic
dynamics [30,31]. In our work, we introduced more compartments to characterize the
complex COVID-19 transmission and emphasized the effect of asymptomatic infection due
to the high proportion of asymptomatic cases [32].

Based on the compartmental models, stability analysis is performed to determine
the critical value of the reproduction number for the existence and elimination of the dis-
ease to inform the necessity of effective control strategies. There are different approaches
to investigate the dynamics of the compartmental epidemic models including geometric
method [33,34] and Lyapunov functional method [35,36]. To analyze the stability of the mod-
els using the latter method, appropriate Lyapunov functions should be constructed [37,38]
dexterously. Stability analyses for some compartment model studies have been performed
for the COVID-19 pandemic performed [39–44]. However, the impact of asymptomatic
transmission was not emphasized in these modeling studies. It is worth noting that a
large portion of asymptomatic patients are also infectious [16]. A simplified SAIR model
considered the asymptomatic infection but ignored the incubation period [41]. Batabyal [42]
raised a model including the effect of asymptomatic infection. But, the analysis was carried
out on a simplified system focusing on the differentiation of the infected population. If
taking the incubation compartment as transmissible, constructing a Lyapunov function
would be more challenging. Hence, relatively few studies completed stability analysis for
COVID transmission models with asymptomatic compartment [43–46] or lack proof for the
disease-free equilibrium [42,47,48].

In our work, a six-dimensional SEIAQR model is established to overcome the possible
limitations. The asymptomatic compartment is emphasized and the incubation period
is infectious to keep it consistent with the real COVID-19 epidemic characteristics. Thus,
it could be more difficult to perform the stability analysis but makes the study more
significant. Here, a suitable Lyapunov function is created to prove that the disease-free
equilibrium is globally asymptotic stable when the basic reproduction number R0 < 1.
The endemic equilibrium is globally asymptotic stable when R0 > 1. We accomplish the
global stability analysis for both R0 > 1 and R0 < 1, which is hardly presented in the
previous studies [39,49–51]. Since the disease-free equilibrium can only be achieved in a
few areas, the global stability for the endemic equilibrium is of great importance, which
makes this work worthwhile.

Further, sensitivity analysis should provide vital information to control the disease
transmission [52]. The importance of the model parameters is investigated by the sensi-
tivity indices to quantitively demonstrate the effectiveness of containment strategies. In
addition to the common uncertainty analysis of the reproduction number of COVID-19
model [48,53,54], it is also of great interest to conduct the sensitivity analysis of the equilib-
rium point, though often omitted in most works. The non-pharmaceutical interventions
can be adjusted to minimize the infections even the disease-free equilibrium could not be
achieved. Hence, in our study, the relative influence of the parameters is determined by the
sensitivity analysis of the endermic equilibrium.

The remaining part is presented as follows. In Section 2 “Formulation of the SEIAQR
model”, the establishment of the six-dimensional system is described by emphasizing the
asymptomatic compartment. Furthermore, it is proved that the solution of the system falls
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into a positively invariant set. In the section “Reproduction Number of Equilibrium”, we de-
rived the basic reproduction number R0, effective reproduction number Rt, and equilibrium
with a different range of R0. Then, we discuss the locally asymptotically stability, globally
asymptotically stability of the disease-free equilibrium, as well as those of the endemic
equilibrium. In the following section “Sensitivity Analysis”, we carry out quantitative
analysis for R0 as well as endemic equilibrium. Now that COVID-19 should hardly be com-
pletely eliminated but remain in most countries without sufficiently stringent containment
strategies, it is of great importance to analyze the sensitive indices of endemic equilibrium
to offer instructions. Then, we demonstrate the practical analysis using this model with
Japanese data in the section “Application of the Model”, followed by the conclusion.

2. The SEIAQR Model

As described above, the SEIAQR compartmental model is presented to analyze the
dynamic characteristics of the COVID-19 epidemic (Figure 1). It considers the asymptomatic
infection, a transmissible incubation period. The isolation/quarantine is regarded as
the major strategy to keep social distance. We establish the following six-dimensional
differential equations to demonstrate the propagation dynamics of the transmission system:

Region

S E

A I

QR

βeE + βiI + βaA

(1
− α)µ

αµ

δ γ

λ

ǫ

Λ

d

d

di

d

di

d

Figure 1. The flowchart of the SEIAQR model in a region.



Ṡ = Λ− βeSE− βiSI − βaSA− dS,
Ė = βeSE + βiSI + βaSA− µE− dE,
İ = αµE− γI − di I,

Ȧ = (1− α)µE− δA− εA− dA,
Q̇ = δA + γI − λQ− diQ,
Ṙ = εA + λQ− dR.

(1)

where S, E, I, A, Q and R denote the susceptible, exposed (incubation period), infected,
asymptomatic, documented confirmed (self-isolated or quarantined) and recovered indi-
viduals at time t, respectively. Λ > 0 represents the influx individuals. βe > 0, βi > 0
and βa > 0 are infection rates of susceptible by close contacting the exposed, symptomatic
infected and asymptomatic infected populations, respectively. 1

µ is the average time of
the exposed period. α represents the proportion of the symptomatic infected patients and
1− α represents the asymptomatic ones. γ > 0 is the confirmed portion of symptomatic
infected cases and δ > 0 represents the confirmed portion of asymptomatic cases. ε > 0 and
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λ > 0 are the rates of transition from asymptomatic infections into recovered individuals,
and from confirmed infections into recovered individuals, respectively. d > 0 is the natural
mortality rate. di > 0 denotes the death rate of confirmed individuals which satisfies
0 < d ≤ di, as COVID-19 should result in excess deaths [55]. The population size of this
system is varying and di are considered in these variable-population-size models [56,57].
In our model, di participates in the dynamics of the system by affecting the I compartment.

There does not exist a negative solution for the system (1) with non-negative initial
conditions (the infections can’t be negative).

Lemma 1. The solution (S, E, I, A, Q, R) of system (1) with the positive initial condition is positive
and every forward solution (S, E, I, A, Q, R) of system (1) eventually enters

Ω =

{
(S, E, I, A, Q, R) ∈ R6

+ : 0 ≤ S + E + I + A + Q + R ≤ Λ
d

}
. (2)

Then, Ω is a positively invariant set for system (1).

Proof. The solution (S, E, I, A, Q, R) is assumed to available and be unique on [0, T], where
T ≤ ∞. Set

}(t) = βeE + βi I + βa A. (3)

Therefore, the first equation of system (1) can be expressed as

Ṡ = Λ− }(t)S− dS ≥ −}(t)S− dS, (4)

we have
S ≥ S(0)e−

∫ t
0 (}(σ)+d)dσ > 0, 0 ≤ t < T. (5)

Hence, E(t) > 0 is hold for 0 ≤ t < T. Otherwise, there will exist a t′ ∈ (0, T)
satisfying E(t′) = 0 and E(t) > 0 for 0 < t < t′. Therefore,

İ = αµE− γI − di I ≥ −γI − di I, 0 < t < t′ (6)

and
Ȧ = (1− α)µE− δA− εA− dA ≥ −δA− εA− dA, 0 < t < t′. (7)

Integrating these two inequalities from 0 to t yields

I ≥ I(0)e−(γ+di)t > 0 (8)

and
A ≥ A(0)e−(δ+ε+d)t > 0 (9)

for all t ∈ (0, t′). Under the prerequisite S > 0, E > 0, I > 0 and A > 0 for all t ∈ [0, t′],
the following inequalities are hold

Ė = βeSE + βiSI + βaSA− µE− dE ≥ −µE− dE, (10)

and
E(t′) ≥ E(0)e−(µ+d)t′ > 0, (11)

which contradict to E(t′) = 0. Therefore, E(t) > 0 for 0 ≤ t < T is always hold. According
to (8) and (9), I > 0 and A > 0 can be verified for all t ∈ [0, T). By the last two equation of
the system (1), we obtain

Q ≥ Q(0)e−(λ+di)t > 0 (12)

and
R ≥ R(0)e−dt > 0 (13)

for all t ∈ [0, T). Hence, the solution of system (1) is positive with a positive initial condition.



Fractal Fract. 2022, 6, 197 5 of 21

Note that N = S + E + I + A + Q + R, where N represents overall populations at
time t, and

Ṅ = Λ− d(S + E + A + R)− di(I + Q) (14)

The natural mortality rate is no greater than the COVID-19 death rate, i.e., d ≤ di,
which leads to

Ṅ ≤ Λ− d(S + E + A + R + I + Q) = Λ− dN. (15)

When the epidemic is eradicated,

lim
t→∞

N(t) = N0 =
Λ
d

. (16)

As N > N0, dN
dt < 0, which implies that Ω is positively invariant with respect to

system (1). Lemma 1 is proved.

3. Equilibrium and Reproduction Number

First, all the derivatives in the system are set to zero in order to find the disease-free
equilibrium (DFE). The following solution is achieved.

Ṡ = Ė = İ = Ȧ = Q̇ = Ṙ = 0. (17)

A DFE of the system (1) always exists at

E0 =

(
Λ
d

, 0, 0, 0, 0, 0
)

. (18)

By the general calculation procedure of the basic reproduction number in [58], the new
infection matrix F and the M-matrix, V , of the transition terms are proposed as

F =

βeN0 βi N0 βaN0
0 0 0
0 0 0

 (19)

and

V =

 µ + d 0 0
−αµ γ + di 0

−(1− α)µ 0 δ + ε + d

. (20)

Then, the basic reproduction number of system (1) is obtained as the spectral radius of
FV−1 [58]. R0 = ρ(FV−1), i.e.,

R0 = βe
Λ

d(µ + d)
+ βi

αµΛ
d(γ + di)(µ + d)

+ βa
(1− α)µΛ

d(δ + ε + d)(µ + d)
(21)

and the effective reproduction number

Rt =
S(t)
N(t)

R0, (22)

which represent the transmission potential of the infectious disease. As can be seen, R0
is composed of three parts comprising the transmission from the exposed, symptomatic
infected and asymptomatic infected patients. It is more complex and accurate than other
simplified models. When R0 < 1, system (1) claims to have a unique DFE at E0. On the
other hand, when R0 > 1, the positive solution of (17) yields



Fractal Fract. 2022, 6, 197 6 of 21

S∗ =
Λ

R0 − 1
,

E∗ =
Λ

(µ + d)R0
(R0 − 1),

I∗ =
αµ

γ + di

Λ
(µ + d)R0

(R0 − 1),

A∗ =
(1− α)µ

δ + ε + d
Λ

(µ + d)R0
(R0 − 1),

Q∗ =
1

λ + di
(δA∗ + γI∗),

R∗ =
1
λ
(εA∗ + λQ∗).

(23)

Note that when R0 = 1, system (1) reaches the DFE at E0. The system (1) reaches a
unique endemic equilibrium (EE) at E∗ = (S∗, E∗, I∗, A∗, Q∗, R∗) when R0 > 1. Therefore,
the system (1) has a unique DFE at E0 as R0 6 1 and a unique EE at E∗ as R0 > 1. In the
next section, we discuss both local and global asymptotically stability of the DFE and EE.

4. Stability Analysis of the DFE

First, we investigate the local stability of the DFE in the case R0 6 1. The stability of
higher-order complex systems is difficult to be determined by algebraic calculation. Thus,
the following Lemma will be applied for discussing the local stability of DFE.

Lemma 2 ([59]). A is stable if there exist positive definite matrix P = PT satisfying

PA + AT P < 0. (24)

Theorem 1. The DFE E0 of system (1) is locally asymptotically stable if only if R0 < 1.

Proof. Since equations Q̇ and Ṙ don’t interfere with the other equations, the sub-system
composed of the first four equations in System (1) is linearized at equilibrium point E′0.
The Jacobian matrix J(E′0) of the sub-system is

J(E′0) =


−d −βeS0 −βiS0 −βaS0
0 βeS0 − µ− d βiS0 βaS0
0 αµ −γ− di 0
0 (1− α)µ 0 −δ− ε− d

 (25)

It is obvious that J(E′0) has always one negative eigenvalue, λ1 = −d. The other
eigenvalues of J(E0) should be achieved out of the following 3× 3 matrix

M =

βeS0 − µ− d βiS0 βaS0
αµ −γ− di 0

(1− α)µ 0 −δ− ε− d

 = F − V (26)

where F and V are given in (19) and (20).
Set ν is the eigenvector of V with satisfying

λ̄ν = Vν (27)

where λ̄ > 0 is the eigenvalue of V . Give following expression

νT PMν + νT MT Pν = νT P(FV−1 − I)Vν + νT(V−1)T(FV−1 − I)T Pν (28)

By Equation (27), we have

νT PMν + νT MT Pν = λ̄νT P(FV−1 − I)ν + λ̄νT(FV−1 − I)T Pν. (29)
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matrix (FV−1− I) is stable due to R0 = ρ(FV−1) < 1. Thus, there exists a positive definite
matrix P subject to

PM + MT P = λ̄P(FV−1 − I) + λ̄(FV−1 − I)T P < 0. (30)

According to Lemma 2, the matrix M is stable.
Therefore, the system DFE is locally asymptotically stable if and only if R0 < 1.

Theorem 2. The DFE E0 of system (1) is globally asymptotically stable if and only if R0 6 1.

Proof. Since exposed individuals, symptomatic and asymptomatic infected patients are
able to spread the COVID-19 disease. The Lyapunov function can be constructed by the
variables (E, I, A) to illustrate the dynamic characteristics of the DFE. Hence, the Lyapunov
function is given by

V(E, I, A) =
1

µ + d

(
βe +

βiαµ

γ + di
+

βa(1− α)µ

δ + ε + d

)
E +

βi
γ + di

I +
βa

δ + ε + d
A (31)

Then, the total derivative of V(E, I, A) is obtained with the following description.

V̇ = 1
µ+d

(
βe +

βiαµ
γ+di

+ βa(1−α)µ
δ+ε+d

)
(βeSE + βiSI + βaSA)− (βeE + βi I + βa A)

= (βeE + βi I + βa A)

[
βe

1
µ+d + βi

αµ

(γ + di)(µ + d)
+ βa

(1− α)µ

(δ + ε + d)(µ + d)

]
S

−(βeE + βi I + βa A)
≤ (βeE + βi I + βa A)(R0 − 1) ≤ 0

(32)

It is known that V̇ = 0 holds if and only if E = I = A = 0 or R0 = 1. Obviously,
the single point set {E0} is a Maximum invariant set in

{
(S, E, I, A, Q, R) ∈ R6

+|V̇ = 0
}

.
Therefore, the necessary and sufficient condition of globally asymptotically stability for the
system’s DFE E0 is R0 6 1.

5. Stability Analysis of EE

Definition 1. System (1) is said to be uniformly persistent if there exists a constant 0 < c < Λ
d

such that any solution (S, E, I, A) with (S(0), E(0), I(0), A(0)) ∈ Ω̊ satisfies

min{lim inf
t→∞

S(t), lim inf
t→∞

E(t), lim inf
t→∞

I(t), lim inf
t→∞

A(t)} > c (33)

where Ω̊ denotes the interior of Ω [60].

Let X be a locally compact metric space with metric D. Let Γ be a closed nonempty
subset of X with boundary ∂Γ and interior Γ̊. Clearly, ∂Γ is a closed subset of Γ. Let Πt be
a dynamical system defined on Γ. Then, a set ∆ in X is said to be invariant if Π(∆, t) = ∆.
Define M∂ := {x ∈ ∂Γ : Πtx ∈ ∂Γ, ∀t > 0}.

Lemma 3 ([61,62]). Assume

A1. Πt has a global attractor;

A2. There exists an M = {M1, · · · , Mk} of pair-wise disjoint, compact, and isolated invariant set
on ∂Γ such that

b1. ∪x∈M∂
ω(x) ⊂ ∪k

j=1Mj;
b2. No subsets of M form a cycle on ∂Γ;
b3. Each Mj is also isolated in Γ;
b4. Ws(Mj) ∩ Γ = ∅ for each 1 6 j 6 k, where Ws(Mj) is the stable manifold of Mj.

Then Πt is uniformly persistent with respect to Γ.



Fractal Fract. 2022, 6, 197 8 of 21

By applying Lemma 3, set Γ = Ω, Γ̊ := {(S, E, I, A) ∈ Γ : E, I, A > 0} and ∂Γ = Γ/Γ̊.
It is easy to verify that M∂ = ∂Γ. On the boundary ∂Γ, system (1) reduce to

Ṡ = Λ− dS. (34)

Then
S→ Λ

d
, t→ ∞. (35)

Obviously, M = {E0} and ω(x) = {E0} for all x ∈ M∂, which implies that assump-
tions (b1) and (b2) hold. If R0 > 1, the DFE is unstable from the Theorem 4 and we can
obtain Ws(Mj) = ∂Γ, which means Assumptions (b3) and (b4) hold. The ultimate bound-
edness of all solutions to system (1) guarantees the existence of a global attractor making
(A1) true. Therefore, the following Theorem 3 holds.

Theorem 3. For system (1), the infectious disease will be extinct when R0 6 1 and persistent when
R0 > 1.

Next, we will discuss the stability of EE in the case R0 > 1, which can demonstrate the
transmission dynamics in long term.

Theorem 4. The endemic equilibrium E∗ is locally asymptotically stable if R0 > 1.

Proof. We introduce an auxiliary variable Y satisfying

S + E + I + A + Q + R + Y =
Λ
d

, (36)

then,
Ẏ = −Λ + d(S + E + A + R) + di(I + Q) (37)

and
Y∗ =

Λ
d
− S∗ − E∗ − I∗ − A∗ −Q∗ − R∗. (38)

We have S = Λ
d − E− I − A−Q− R−Y from Equation (36). Substituting S into the

first equation in system (1), we get the following system

Ė = βeSE + βiSI + βaSA− µE− dE
İ = αµE− γI − di I

Ȧ = (1− α)µE− δA− εA− dA
Q̇ = δA + γI − λQ− diQ
Ṙ = εA + λQ− dR
Ẏ = −Λ + d(S + E + A + R) + di(I + Q)

, (39)

We will prove the local stability of the EE of system (1) when R0 > 1 instead by sys-
tem (39) by following the method given in [63,64], adopting the Krasnoselskii technique [65].
Consider the differential system

˙̄x = ψ(x̄). (40)

The local asymptotic stability of an equilibrium point x̄0 of the system (40) is equivalent
to the linearized system

˙̄Z =
dψ(x̄)

dx̄

∣∣∣∣
x̄=x̄0

Z̄ (41)

has no solution of the form
Z̄ = Z̄0eωt (42)
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with Z̄0 ∈ Cn − {0}, ω ∈ C and Re ω > 0, where Cn is the n-dimensional complex
coordinate space. By this method, the solution of EE of system (39) is substituted by the
form (42). Then, the linear equations are obtained.

ωZ1 =
[

βe(
Λ
d − E∗ − I∗ − A∗ −Q∗ − R∗ −Y∗)− (βeE∗ + βi I∗ + βa A∗)− (µ + d)

]
Z1

+
[

βi(
Λ
d − E∗ − I∗ − A∗ −Q∗ − R∗ −Y∗)− (βeE∗ + βi I∗ + βa A∗)

]
Z2

+
[

βa(
Λ
d − E∗ − I∗ − A∗ −Q∗ − R∗ −Y∗)− (βeE∗ + βi I∗ + βa A∗)

]
Z3

−(βeE∗ + βi I∗ + βa A∗)Z4 − (βeE∗ + βi I∗ + βa A∗)Z5
−(βeE∗ + βi I∗ + βa A∗)Z6

ωZ2 = αµZ1 − (γ + di)Z2
ωZ3 = (1− α)µZ1 − (δ + ε + d)Z3
ωZ4 = γZ2 + δZ3 − (λ + di)Z4
ωZ5 = εZ3 + λZ4 − dZ5
ωZ6 = (di − d)Z2 + (di − d)Z4 − dZ6

(43)

where Zi ∈ C, i = 1, · · · , 6, E∗, I∗,A∗,Q∗,R∗ and Y∗ are the coordinates of the endemic
equilibrium of system (39). According to the system (17) and Rt > 1, we define three
variables and the following equations hold.

ζ := βe(−
Λ
d
+ E∗ + I∗ + A∗ + Q∗ + R∗ + Y∗) + (βeE∗ + βi I∗ + βa A∗) + (µ + d)

=

[
αµβi N0

(γ + di)R0(R0 − 1)
+

(1− α)µβaN0

(δ + ε + d)R0(R0 − 1)
+ d
]
(R0 − 1) > 0

, (44)

ϕ :=
Λ
d
− E∗ − I∗ − A∗ −Q∗ − R∗ −Y∗ =

N0

R0
> 0 (45)

and
ρ := βeE∗ + βi I∗ + βa A∗ > 0. (46)

Then, solving the equations in (43) and making some manipulations, we can obtain

(1 + Gi(ω))Zi = (HU)i, (47)

where U = (Z1, Z2, Z3, Z4, Z5, Z6)
T and

G1(ω) =
ω + ρ(ψ1 + ψ2 + ψ3 + ψ4 + ψ5)

ς
, G2(ω) =

ω

γ + di
. (48)

G3(ω) =
ω

δ + ε + d
, G4(ω) =

ω

λ + di
, G5(ω) =

ω

d
, G6(ω) =

ω

d
(49)

and H is the matrix

H :=



0 βi ϕ βa ϕ 0 0 0
αµ

γ + di
0 0 0 0 0

(1− α)µ

δ + ε + d
0 0 0 0 0

0
γ

λ + di

δ

λ + di
0 0 0

0 0
ε

d
λ

d
0 0

0
di − d

d
0

di − d
d

0 0


(50)

where

ψ1 :=
αµ

γ + di + ω
, ψ2 :=

(1− α)µ

δ + ε + d + ω
,

ψ3 :=
γ

λ + di + ω

αµ

γ + di
+

δ

λ + di + ω

(1− α)µ

δ + ε + d + ω
,
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ψ4 :=
ε

d + ω

(1− α)µ

δ + ε + d + ω
+

λ

d + ω

(
γ

λ + di + ω

αµ

γ + di
+

δ

λ + di + ω

(1− α)µ

δ + ε + d + ω

)
and

ψ5 :=
di − d
d + ω

αµ

γ + di
+

di − d
d + ω

(
γ

λ + di + ω

αµ

γ + di
+

δ

λ + di + ω

(1− α)µ

δ + ε + d + ω

)
Obviously, the elements of H are non-negative. X̄∗ = (E∗, I∗, A∗, D∗, R∗, Y∗) satisfies

X̄∗ = HX̄∗ (51)

Further, on condition that the positive coordinates of X̄∗, if X̄∗ is a solution of (47),
there must be a minimal positive s which depends on Z̄ satisfying

|Z̄| ≤ sX̄∗ (52)

where | · | is the norm in C.
Further, to verify that Re ω < 0, we discuss two different scenarios: ω = 0 and ω 6= 0.

If ω = 0, the determinant of system (47) can be derived as

∆ = 1 + G1(0) > 0. (53)

Thus, the system (47) has only a trivial solution implying ω 6= 0.
In the other scenario, we assume that ω 6= 0 and Re ω > 0. Let

G(ω) = min{|1 + Gi(ω)|, i = 1, · · · , 6}. (54)

It can be determined that |1 + Gi(ω)| > 1 for any i. Thus, G(ω) > 1. We calculate the
norms of (47). Considering H is non-negative, it can be achieved:

G(ω)|Z̄| 6 H|Z̄|. (55)

Combining (51) and (52) yields

G(ω)|Z̄| 6 sHX̄∗ = sX̄∗, (56)

which implies

|Z̄| 6 sX̄∗

G(ω)
< sX̄∗. (57)

The result is contradicting the minimality of s. Hence, Re ω is negative. Above theorem
is proved.

Theorem 5. The endemic equilibrium E∗ is globally asymptotically stable if R0 > 1.

Proof. We let
V(ς) =

∫ ς

ς∗

τ − ς

τ
dτ, ς > 0 (58)

where ς∗ > 0. Clearly, V(ς) > 0 with the equality holding if and only if ς = ς∗. V(ς) is ap-
plied to prove the globally asymptotically stability by replaced S, E, I or A. Differentiating
the four functions V(S), V(E), V(I) and V(A) along the solution of system (1) and using
the inequality 1− x + ln x 6 0 for x > 0 with equality holding if and only if x = 1 yield
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V̇(S) =
S− S∗

S
(βeS∗E∗ + βiS∗ I∗ + βaS∗A∗ + dS∗ − βeSE− βiSI − βaSA− dS)

= −d(S− S∗)2

S
+ βeS∗E∗

(
1− S∗

S
+

E
E∗
− SE

S∗E∗

)
+βiS∗ I∗

(
1− S∗

S
+

I
I∗
− SI

S∗ I∗

)
+ βaS∗A∗

(
1− S∗

S
+

A
A∗
− SA

S∗A∗

) (59)

V̇(E) =
E− E∗

E
(βeSE + βiSI + βaSA− µE− dE)

= βeS∗E∗
(

1 +
SE

S∗E∗
− E

E∗
− S

S∗

)
+ βiS∗ I∗

(
1 +

SI
S∗ I∗

− E
E∗
− SIE∗

S∗ I∗E

)
+βaS∗A∗

(
1 +

SA
S∗A∗

− E
E∗
− SAE∗

S∗A∗E

) (60)

Hence,

V̇(S) + V̇(E) 6 βeS∗E∗
(

2− S
S∗
− S∗

S

)
+ βiS∗ I∗

(
2− S∗

S
+

I
I∗
− E

E∗

− SIE∗

S∗ I∗E

)
+ βaS∗A∗

(
2− S∗

S
+

A
A∗
− E

E∗
− SAE∗

S∗A∗E

)
6 βiS∗ I∗

(
I
I∗
− ln

I
I∗

+ ln
E
E∗
− E

E∗

)
+βaS∗A∗

(
A
A∗
− ln

A
A∗

+ ln
E
E∗
− E

E∗

)
(61)

Similarly, one can verify that

V̇(I) =
I − I∗

I
(αµE− γI − di I)

=
I − I∗

I

(
αµE− αµE∗

I
I∗

)
= αµE∗

(
1 +

E
E∗
− I

I∗
− I∗E

IE∗

)
6 αµE∗

(
E
E∗
− ln

E
E∗

+ ln
I
I∗
− I

I∗

)
(62)

and
V̇(A) =

A− A∗

A
[ξµE− δA− εA− dA]

=
A− A∗

A

[
ξµE− (1− α)µE∗

A
A∗

]
= ξµE∗

(
1 +

E
E∗
− A

A∗
− A∗E

AE∗

)
6 ξµE∗

(
E
E∗
− ln

E
E∗

+ ln
A
A∗
− A

A∗

)
,

(63)

where ξ = 1− α. Furthermore, we choose that

V = V(S) + V(E) +
βiS∗ I∗

αµE∗
V(I) +

βaS∗A∗

ξµE∗
V(A) (64)

as a Lyapunov function for system (1). Clearly, V > 0 and

V̇ 6 0 (65)

with the equality holding if and only if (S, E, I, A) = (S∗, E∗, I∗, A∗). And it is easily
to verify that the single point set {(S∗, E∗, I∗, A∗)} where V = 0 hold is the maximum
invariant set. Thus, the globally asymptotically stability of the EE in Ω is proved.
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6. Sensitivity Analysis
6.1. Sensitivity Analysis of R0

To optimize effective COVID-19 containment measures, it is critical to determine the
relative influence of the different factors on transmission and prevalence. In this section,
we carried out the sensitivity analysis to quantitatively evaluate the impact of transmission
parameters from different compartments (E, I and A) and confirmation rates (γ and δ)
on the reproduction number and equilibrium. The definition of elasticity is given by
the percentage change in R0 with respect to the percentage change in the infection or
confirmation rates. And the sensitivity or elasticity is proposed by [66] as

ε
p
R0

=
∂R0

∂p
/

R0

p
=

p
R0

∂R0

∂p
. (66)

By applying the Equation (66) into the reproduction number Rt which takes the form
of (21), we have

εΛ
R0

= 1. (67)

According to the epidemic characteristics of COVID-19, µ� d, γ� di and δ + ε� d.

R0 ≈ βe
Λ
dµ

+ βi
αΛ
dγ

+ βa
(1− α)Λ
d(δ + ε)

(68)

Then, we have the sensitivity descriptions as

εd
R0
≈ −1 (69)

ε
βe
R0
≈ βe

Λ
dµ

1
R0

< 1 (70)

ε
βi
R0
≈ βi

αΛ
dγ

1
R0

< 1 (71)

ε
βa
R0
≈ βa

(1− α)Λ
d(δ + ε)

1
R0

< 1 (72)

ε
µ
R0
≈ −βe

Λ
dµ

1
R0

(73)

ε
γ
R0
≈ −βi

αΛ
dγ

1
R0

(74)

and

εδ
R0
≈ −βa

(1− α)Λ
d(δ + ε)

1
R0

(75)

The number of ε
p
R0

represent that 1% increase in each parameter p will result in ε
p
R0

%
increase in R0. For instance, the reproduction number R0 will increase or decrease by 1%
corresponding to 1% increase Λ and d ((67) and (69)).

6.2. Sensitivity Analysis of EE

Except for the reproduction number, sensitivity analysis is also performed for the
EE point in this subsection. When the reproduction number is unable to be controlled
to less than 1 (which is the common case all over the world), the disease will remain
endemic as proved previously. The EE point E∗ = (S∗, E∗, I∗, A∗, Q∗, R∗) is directly related
to the severity of COVID-19 transmission, I∗ in particular. The sensitivity analysis of
EE should evaluate the significance of model parameters for endemic disease prevalence.
Therefore, to determine the optimal strategy to minimize infected cases, several tests
are carried out thus the parameters are selected that play a significant influence on the
dynamics of the system. Few studies used similar methods to find the important input
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parameter for the EE point [52]. To simplify the expression for the sensitivity function,
the EE point (S∗, E∗, I∗, A∗, Q∗, R∗) has been replaced by (u1, u2, u3, u4, u5, u6) and the
parameters (Λ, d, βa, βe, βi, µ, γ, δ) have been replaced by (v1, v2, v3, v4, v5, v6, v7, v8). Then,
the sensitivity indices of the EE point, ui, to the system parameter, vj is given by

ε
vj
u∗i

=
∂u∗i
∂vj
· vj

u∗i
, i = 1, · · · , 6, j = 1, · · · , 8. (76)

7. Application of the Model

Further, to optimize the containment strategy and understand the COVID-19 transmis-
sion dynamics, we apply the model associated with analysis methods using the Japanese
COVID-19 data from 27 March 2020 to 1 August 2020 as a realistic case exploration. The
period is divided into three different stages according to the varied policies enforced by
the government. Stage 1 is from 27 March to 6 April; stage 2 is from 7 April to 25 May
(rigorous infection control measures with “declaration of a state of emergency”); stage 3
is from 26 May to 1 August (lifting of the state of emergency). The basic reproduction
number R0 is adopted in a stage without containment strategies and the effective repro-
duction number Rt changes due to the different control strategies in stage 2 and stage 3.
The model parameter d = 3.0× 10−5 and Λ = 2391 are estimated by [67], µ = 0.2 [68] and
ε = 0.0714 [69]. The fatality rate due to COVID-19 is estimated as 0.0013 based on the real
data [70] as shown in Figure 2.

Figure 2. Determination of mortality and recovery rate. (a) Daily mortality rate; (b) Daily mortality
rate; (c) Daily average mortality rate. (d) Daily average recovery rate. The first average mortality
and recovery rate are statistically averaged over the period of stage 1, the second mortality rate is
averaged over the period data of stage 2 and stage 3.
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The parameters in the system βe, βi, βa, δ, γ, α are collected by fitting using the least
square method. The fitting of cumulative cases is demonstrated in Figure 3a. The goodness
of fitting [71] are 0.926 in stage 1; 0.939 in stage 2 and 0.939 in stage 3. The model parameters
were determined by the least-square method. The confidential interval of cumulative
infected cases was estimated in the following procedure (similar approach in a previous
study [72]): (1) The initial simulated daily cases ID(t) are fitted with real Poisson noises on
ID(t), we achieve the numerical daily infected cases ND(t). Then, the numerical cumulative
cases NC(t) are determined by taking the sum of ND(t). (2) The least sum of squares of
the difference between IC(t) and NC(t) are calculated and model parameters are estimated.
(3) Using the estimated parameters, cumulative and daily cases are calculated. (4) The
processes (1)–(3) are repeated 1000 times to achieve a range of simulated data. 95% of the
simulated data range are set as the confidential interval for Figure 3a,b. The parameters
collected by fitting in the three stages are listed in Table 1. The outbreak and the spread of
the epidemic are random events. A model characterized by stochastic differential equations
(SDE) describes the COVID-19 transmission process more accurately than the ODE system.
A better fitting by SDE model is expected with the cumulative or daily infected cases. The
deterministic ODE system is established based on the assumption that the population
size is large enough and the population is homogenous. It is relatively convenient to
analyze the significance of asymptomatic infection in the COVID-19 development. Also,
in the next section, a simple sensitivity analysis is adopted to analyze the prevention and
control strategies for incubation period infection, symptomatic infection, and asymptomatic
infection specifically. In order to understand the impact of the containment strategies,
the investigation based on the ODE model is effective. It could be more difficult to conduct
similar work for this point using the SDE model. Numerical methods should be used.
To better implement strategies seeking a balance between economic development and
epidemic prevention and control, it is more important to study SDE models. We will
modify our model in the future work.

Figure 3. Application of the model with Japanese data. The duration of COVID-19 infection is
separated into three stages. Stage 1 is the initial transmission period. Stage 2 is the period with highly
restrictive measures in the state of emergency. Stage 3 is the period when the state of emergency
is lifted. (a) Fitting of the cumulative infected cases. (b) Fitting of the daily infected cases. The red
dots represent the real data points. The blue areas represent the confidential interval simulated by
the model.

Table 1. Model parameters by fitting.

Parameters Stage 1 Stage 2 Stage 3

βe 0.0663 0.0001 0.0713
βi 0.1804 0.0006 0.1499
βa 0.2665 0.019 0.2335
α 0.1092 0.5554 0.1205
γ 0.7373 0.16468 0.1323
δ 0.0595 0.1372 0.0721

Rt 2.1014 0.3824 1.8004
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As we proved in the section 4 , COVID-19 will be eradicated with R0 < 1. We
simulate the development of the point (E, I, A), the number of exposed, infected, and
asymptomatic cases with R0 < 1 (Figure 4a). The simulation adopts R0 in stage 2 when a
state of emergency is declared. At every initial conditions, (E, I, A) will converge to (0, 0, 0).
The pandemic will reach an endemic equilibrium as Figure 4b shows the convergence point
of (E, I, A) with R0 > 1. The simulation in Figure 4b uses R0 in stage 1 with a weak control
strategy. Figure 4c demonstrates the converging point with R0 > 1 in stage 3 after the
lifting of the stringent control policy. The highest number of infected cases can be affected
by the starting point either for R0 < 1 or R0 > 1. The peak infections, if without control,
can reach nearly 10% of the population at a single day with R0 > 1 (upper right), which will
bring tremendous burden to the healthcare system. Thus, even the disease free equilibrium
cannot be achieved (R0 > 1), the asymptomatic transmission rate must be reduced to avoid
large portion of infections.

Figure 4. Three-dimensional phase portrait of (E, I, A) trends. (a) All (E, I, A) lines starting from
different initial conditions approach to the origin with Rt = 0.3824 (stage 2) which illustrate the
vanish of COVID-19. (b) The (E, I, A) lines reach a non-zero point which demonstrate the endemic
equilibrium with R0 = 2.1014 (stage 1). (c) The (E, I, A) lines reach another non-zero point which
demonstrate endemic equilibrium with Rt = 1.8004 (stage 3).

7.1. Sensitivity Analysis of R0 to the Parameters

The sensitivity analysis of R0 in response to the variation of model parameters are
preformed for the three different stages (Figure 5). As can be seen in Table 2, the sensitivity
indices ε

βa
R0

(0.821 in stage 1, 0.994 in stage 2 and 0.726 in stage 3) are higher than the indices

ε
βi
R0

(0.166, 0.001 and 0.198, respectively ) and ε
βe
R0

.

Table 2. Sensitivity indices of R0 in response to the variation of model parameters using reported
data in three stages

Parameters Stage 1 Stage 2 Stage 3

βe 0.01652 0.00078 0.19788
βi 0.01335 0.00520 0.07596
βa 0.82103 0.99402 0.72622
γ −0.01335 −0.00520 −0.07590
δ −0.82103 −0.99402 −0.72622

In this model, βi represents the transmission rate of the infected compartment. βe rep-
resents the transmission rate of the exposed compartment. βa represents the transmission
rate of the asymptomatic compartment. Thus, controlling the asymptomatic transmission
rates should be more effective in reducing R0 [53]. δ and γ represent the confirmation
rate of the symptomatic and asymptomatic infected cases by testing. During the state of
emergency (stage 2), it can be found that the εδ

R0
which corresponds to the control of the

infected cases is greatly reduced. But the sensitivity indices related to the asymptomatic



Fractal Fract. 2022, 6, 197 16 of 21

transmission and the confirmation of the asymptomatic cases increased. Hence, even
during the period when intensive restrictions are imposed, it is still of high importance to
precisely control the asymptomatic cases.

Figure 5. The sensitive indices determined with realistic data. Sensitivity indices of R0 to the model
parameters in the three stages.

7.2. Sensitivity Analysis of EE to the Parameters

In stage 1 and stage 3 (before and after the state of emergency), R0 and Rt are greater
than 1. The sensitivity indices of the EE point (E, I, A) with respect to the model parameters
are determined (as can be seen in Table 3 and a graphical illustration Figure 6). The relative
significance of these parameters can also be determined to the endemic point (the expected
overall cases represent the severity of the pandemic). In stage 1 and stage 3, it can be
seen that positive sensitive parameters are transmission rates βi, βe, βa. Reducing these
transmission rates by control policies can decrease the total number of cases. Among the
three different transmission rates, the sensitive parameter associated with βa is larger than
βi, βe for the EE point (E, I, A). The negative sensitive parameters are confirmation rate
δ and γ(confirmation rate of the infected and asymptomatic cases). Reducing δ and γ
should increase the final infected number at the endemic equilibrium. It can be found
that sensitive indices for E, A to γ are larger than sensitive indices for E, A to δ. Also, the
sensitive indices for I to gamma are relatively large. Thus, the controlling the asymptomatic
transmission and detecting the asymptomatic cases are of great influence in contributing
to the severity of the COVID-19 endemic equilibrium. To decrease the final number of
infections, the asymptomatic cases must be precisely determined.
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Table 3. Sensitivity indices of endemic equilibrium (E, I, A) in response to the model parameters in
three stages.

Stage 1 E I A

βe 0.16536 0.16536 0.16536
βi 0.01332 0.01332 0.01332
βa 0.81919 0.81919 0.81919
γ −0.33744 −0.33744 −0.74865
δ −0.01332 −1.01055 −0.01332

Stage 3 E I A

βe 0.24717 0.24717 0.24717
βi 0.09482 0.09482 0.09482
βa 0.90663 0.90663 0.90663
γ −0.41626 −0.41626 −0.87463
δ −0.09474 −1.08393 −0.09474

Figure 6. Sensitivity indices of EE to the model parameters in (a) stage 1 with R0 = 2.1014 and
(b) stage 3 with Rt = 1.8004.

7.3. Contour Graph of Convergence Points and Illustration of Rt Distribution

Then, we simulate the change of Rt with the variation of transmission rates and other
model parameters. Six layers of different fixed Rt are illustrated with varying βi, βe and βa
(Figure 7a). Further, the three transmission rates are combined as β, the distribution of Rt is
given as the change of confirmation rate of the symptomatic, asymptomatic cases and the
combined transmission rate(Figure 7b). The confirmation rate of the asymptomatic cases leads
to a higher variation of Rt. Taking intensive restrictions should decrease the transmission rates
β. However, these restrictions may hardly persist with huge economic and social pressure.
Taking actions by controlling the asymptomatic transmission should effectively reduce the Rt
less than 1. The figure showing different Rt provides a recommendation for the policy-makers.

Figure 7. Three-dimensional curved surface of Rt. (a)The distribution of Rt vary with βa, βe and
βi. (b) The distribution of Rt vary with β, δ and γ. β represents the combined effect of βa, βe and βi.
The stricter control policy corresponds to a smaller β.
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8. Conclusions

To better simulate the dynamics of COVID-19 transmission, we developed a SEIAQR
model incorporating the infections by asymptomatic patients as well as the population
during the incubation period. The stability of the six-dimensional system was investigated
by the Lyapunov method. As illustrated in the numerical simulation, different control
strategies in Japan should lead to different final outcomes in view of the convergence
points. Further, the sensitivity analysis was performed to analyze the impact of various
transmission approaches on the disease spreading in the model. The parameters associ-
ated with the asymptomatic transmission could greatly affect the change of the effective
reproduction number. Therefore, imposing effective containment policies to restrict asymp-
tomatic infections should be of crucial significance as manifested by this work. The analysis
using the system of ODEs offer general guidance on the containment of COVID-19 at a
macro level, which lesser emphasizes the influence of spatial distribution. The dynamics
of systems based on space-time PDEs will be explored in our future work to consider
regional-related effects.
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