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Abstract: In this paper, robust H∞ control for fractional-order switched systems (FOSSs) with uncer-
tainty is studied. Firstly, the fractional-order switching law for FOSSs is proposed. Then, H∞ control
for FOSSs is proven based on the switching law and linear matrix inequalities (LMIs). Moreover, H∞

control for FOSSs with a state feedback controller is extended. Furthermore, the LMI-based condition
of robust H∞ control for FOSSs with uncertainty is proven. Furthermore, the condition of robust H∞

control is proposed to design the state feedback controller. Finally, four simulation examples verified
the effectiveness of the proposed methods.

Keywords: robust H∞ control; fractional-order switched systems; fractional-order switching law;
linear matrix inequalities (LMIs); state feedback controller

1. Introduction

Switched systems, as a kind of hybrid system, are composed of multiple subsystems
and switching rules [1]. They have attracted the interest of many researchers, not only
because they are more complex than other control systems [2], but also because they are
widely used in engineering and social sciences [3,4]. A large part of control systems, such
as network-based systems [5,6], can be represented by switching systems. Stability analysis
is the most fundamental for switched systems. Hence, a large number of results have been
published in the field. Adaptive control has been studied for switched systems by using the
average dwell time approach in [7,8]. The approach is usually used to judge the stability
of switched systems [9]. Finding the Lyapunov function to guarantee the stability for all
constituent subsystems is the other typical method for switched systems [10]. Based on the
Lyapunov function method, nonlinear and linear switched systems with uncertainties were
studied in [11–14]. Tracking control is an effective control technique [15] and was studied
for switched systems in [16]. Moreover, the results of finite-time stability and sliding mode
control for switched systems were reported in [17,18], respectively.

Fractional-order systems can describe physical phenomena in the real world and are
widely considered by the academic community to be more accurate [19,20]. Since the
necessary tools for simulation verification are lacking, the development of fractional-order
theory is slow. In the past two decades, with the development of advanced computers,
many conditions have been published about the stability and stabilization of fractional-
order systems. From Figure 1, the stable area of order 0 < α < 1 is not convex. Hence,
the stability analysis of order 0 < α < 1 is more difficult than order 1 < α < 2. In [21–23],
the results based on linear matrix inequalities (LMI) were proposed to analyze stability for
order 0 < α < 1. In [21], the direct introduction of complex variables brought difficulties
to the solution process. Therefore, in [22,23], by using more real variables to replace the
complex variables, the results could solve the difficulties of complex variables, but these
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results introduce more variables. To solve these problems, Reference [24] provided new
LMI-based results to solve the stability and stabilization for order 0 < α < 2 by using
two real variables. Although Atangana–Baleanu and Riemann–Liouville definitions of
the fractional operator were used in some papers, such as [25], the Caputo definition
of the fractional operator is commonly used in the field of control [24,26], since it has a
well-understood physical sense and wide applications in engineering [27]. H∞ control is a
great method to counteract the effects of disturbances. The conditions of H∞ control for
fractional-order systems were published in [28,29]. State feedback, dynamic output, and
robust H∞ control for fractional-order systems were studied in [30–32], respectively.

Figure 1. Stable region of fractional-order systems with: (a) order 0 < α < 1; (b) order 1 < α < 2.

Recently, many researchers have tried to introduce fractional calculus into switched
systems, to more accurately describe the phenomenon and properties of switched sys-
tems. The description is indeed better than the effect of integer-order switched systems,
because the physical characteristics of the actual system are more accurately described by
the fractional order. Stability and stabilization for fractional switched systems (FOSSs) were
studied in [33–35]. State-dependent control and finite-time stability for positive FOSSs
were studied in [36–38]. Moreover, References [39–41] studied the stability and robust
stabilization for nonlinear and uncertain FOSSs. The results of observer-based and guar-
anteed cost control for FOSSs were reported in [42,43]. Fault-tolerant control is widely
used in the control field [44]. By using the Lyapunov method in [33], fault estimation was
investigated for nonlinear fractional-order systems in [45]. Furthermore, decentralized
control and state-dependent switching control of nonlinear FOSSs were reported in [46,47].

However, H∞ control and robust H∞ for FOSSs with uncertainty have not been
reported yet. The main contributions of this paper are as follows:

(1) The fractional-order switching law is proven for FOSSs. From the stable region of
order α ∈ (0, 1) in Figure 1, if the fractional-order systems have positive characteristic
roots, they may be stable. The characteristic roots in the right stable region were
not considered in [45–47]. The fractional-order switching law proposed in this paper
overcomes this shortcoming. Hence, it is less conservative;

(2) H∞ control for FOSSs is proposed under the fractional-order switching law. Then,
the controller for closed-loop FOSSs is designed. Furthermore, the conditions based
on LMIs are proposed to solve the problem of robust H∞ control for FOSSs with
uncertainty.

The outline of this paper is as follows. The preliminaries and problem descrip-
tions are presented in Section 2. In Section 3, the switching law is proven for FOSSs.
In Sections 4 and 5, H∞ control and robust H∞ control for FOSSs are studied under the
switching law, respectively. In Section 6, four numerical examples are shown to prove the
effectiveness of the conditions in the paper.

Notations: In this paper, XT is the transpose of X. A > 0 denotes positive definite.
sym(X) = X + XT . spec(X) denotes the spectrum (set of all eigenvalues) of X. min{N}
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and arg min{N} are the minimum value and minimum index of the set N, and ‖G(s)‖∞

denotes the H∞-norm of G(s). Let
[

P Q
∗ P

]
=

[
P Q

QT P

]
.

2. Preliminaries and Problem Descriptions
2.1. Preliminaries

The Caputo definition [19] is shown as follows:

Dα f (t) = 1
Γ(n−α)

∫ t
0

f (n)(τ)
(t−τ)α−n+1 dτ (1)

where n− 1 < α < n and Γ(.) is the Gamma function.

Remark 1. In general, the Caputo derivative has a clear physical meaning at the initial value.
Hence, the Caputo derivative is widely used in the control field.

Consider the following fractional-order system:

Dαx(t) = Ax(t) + Bww(t)

z(t) = Cx(t) + Dw(t) (2)

where 0 < α < 1. x(t), w(t), and y(t) denote the state, exogenous input, and output vectors.
A, Bw, C, and D are appropriate dimension matrices. G(s) = C(sα I − A)−1Bw + D denotes
the transfer matrix.

Then, some lemmas and the H∞-norm definition is introduced in the following part.

Definition 1 ([29]). The H∞-norm is defined as:

‖G(s)‖∞ = sup
Re(s)≥0

σ(G(s))

Lemma 1 ([32]). For given γ > 0, System (2) is asymptotically stable and ‖G(s)‖∞ < γ iff there
exist two matrices X, Y ∈ Rn×n such that:[

X Y
−Y X

]
> 0 (3)

sym(aAX + bAY) (aX− bY)CT Bw
∗ −γI D
∗ ∗ −γI

 < 0 (4)

where a = sin(α π
2 ) and b = cos(α π

2 ).

Remark 2. Lemma 1 is different from the results in [28,29]; it avoids the trouble of solving the
complex matrix. Lemma 1 can be easier to solve by using the LMI toolbox. When α = 1, Lemma 1
is equivalent to the results of the integer order. For brevity, a and b denote sin(α π

2 ) and cos(α π
2 ) in

this paper.

Lemma 2 ([19]). For System (2), if α < 2, β is an arbitrary real number, ρ is such that πα/2 <
ρ < min{π, πα}, and C is a real constant, then:

‖Eα,β(z)‖ ≤
C

1 + ‖z‖ , (ρ ≤ ‖ arg(z)‖ ≤ π), ‖z‖ ≥ 0.
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Lemma 3 ([48]). (Schur complement) Matrices W1, W2 and W3 satisfy W1 = WT
1 , W3 > 0.

W1 + W2W−1
3 WT

2 < 0

if and only if: [
W1 W2
WT

2 −W3

]
< 0

Lemma 4 ([49]). For matrices H, E, FT(t)F(t) ≤ I, and one constant ε > 0, then:

HF(t)E + ET FT(t)HT ≤ εHHT + ε−1ETE

2.2. Problem Descriptions

Consider the following general FOSS:

Dαx(t) = Aσx(t) + Bσuσ(t) + Bσww(t)

z(t) = Cσx(t) (5)

where 0 < α < 1, σ ∈ J = {1, 2, . . . , N} is the piecewise constant switching signal. σ = i
denotes that the i-th subsystem is activated. Ai, Bi, Biw, and Ci (i ∈ J) are real matrices. The
transfer matrix between w(t) and z(t) is G(s) = Cσ(sα I − Aσ)−1Bσw.

Then, the necessary lemma is introduced as follows.

Lemma 5 ([41]). System (5) with uσ(t) = 0 is asymptotically stable iff there exist X, Y ∈ Rn×n

such that: [
X Y
−Y X

]
> 0

aAiX + bAiY + aXAT
i − bYAT

i < 0

where i ∈ J = {1, 2, . . . , N}.

Our primary aim in this paper was to design a switching law to ensure FOSSs’ stability.
In addition, H∞ and robust H∞ performance for FOSSs should be guaranteed.

3. Formal Description of the Switching Law

In this section, the switching signal should be designed. Therefore, the average matrix
can be expressed as:

Ā =
N

∑
i=1

λi Ai, i ∈ J = {1, 2, . . . , N}

We can obtain the equation below:

Ā(aX + bY) + (aX− bY)ĀT = −In

where X, Y satisfy (3). According to Lemma 5, we denote:

Pi = Ai(aX + bY) + (aX− bY)AT
i , ∀i ∈ J (6)

Assume ri ∈ (0, 1), i ∈ J, and x(t0) = x0, and set:

σ(t0) = arg min{xT
0 P1x0, . . . , xT

0 PN x0} (7)

Next, let t1 be:

t1 = {t > t0 : xT(t)Pσ(t0)
x(t) > −rσ(t0)

xT(t)x(t)}
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If the set is empty, t1 = ∞. If the set is not empty, the switching index can be defined as:

σ(t1) = arg min{xT(t1)Pix(t1)}

Therefore, we obtain:

tk+1 = {t > tk : xT(t)Pσ(tk)
x(t) > −rσ(tk)

xT(t)x(t)}

σ(tk+1) = arg min{xT(tk+1)Pix(tk+1)} k, i ∈ J = {1, 2, . . . , N} (8)

Theorem 1. Under the fractional-order switching law (8), System (5) is asymptotically stable and
well-posed.

Proof. Firstly, let i = σtk+. Based on the switching signal, we can obtain:

(1)xT(tk)Pix(tk) = minj∈J{xT(tk)Pjx(tk)}
(2)xT(tk + 1)Pix(tk + 1) ≥ −rixT(tk + 1)x(tk + 1)

According to ∑j∈J λjPj = −In, ∑j∈J λj = 1, and (1), we obtain:

xT(tk)Pix(tk) ≤ −xT(tk)x(tk) (9)

Let µ > 1, xk = x(tk), and xk+1 = x(tk+1). Then,

µ‖xk+1‖ ≥ ‖x(t)‖ (10)

where t ∈ [tk, tk+1].
From the above condition, we can define:

f (t) = xT(t)(Pi + In)x(t) (11)

Based on (9) and (2), we obtain:

f (tk) ≤ 0, f (tk+1) ≥ (1− ri)xT
k+1xk+1 (12)

Hence, we have:

ḟ (t) = xT(t)(AT
i (Pi + In) + (Pi + In)T Ai)x(t) (13)

Denote ρi = ‖AT
i (Pi + In) + (Pi + In)T Ai‖; from (10) and Lemma 3, we have:

| ḟ (t)| ≤ µ2ρixT
k+1xk+1

From (12), we can obtain:

µ2ρi(tk+1 − tk) ≥ (1− ri) (14)

that is to say,

(1− ri)/(µ2ρi) ≤ tk+1 − tk (15)

Assume (10) does not hold. Then, t∗ ∈ [tk, tk+1] can be found to satisfy:

µ‖xk+1‖ < ‖x(t∗)‖ (16)
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From the Mittag–Leffler function [19], we can obtain:

x(t∗) = Eα(Ai(t∗ − tk+1)
α)xk+1

According to (16) and Lemma 2, we can obtain C > µ and:

µ < ‖Eα(Ai(t∗ − tk+1)
α)‖ ≤ C

1 + ‖Ai(t∗ − tk+1)α‖

Then,

Dα C−µ
µ‖Ai‖

< tk+1 − t∗ ≤ tk+1 − tk ≥

In summary,

φ = sup
µ>1

min
i∈J

( (1−ri
µ2ρi

, Dα C−µ
µ‖Ai‖

) ≤ tk+1 − tk

Therefore, φ > 0, and the switching signal is well-defined.
From (6), define V(x) = xT(aX + bY)x. Then, we obtain:

V̇ = xT(t)Pσx(t) ≤ −rσxT(t)x(t) ≤ −rxT(t)x(t)

where r = min{r1, . . . , rN}. From Lemma 5, we can prove that System (5) is asymptotically
stable. Hence, we complete the proof.

4. H∞ Control

In this section, H∞ control for FOSSs is studied. According to Theorem 1 and Lemma 1
proposed in the paper, the following theorems are derived.

Theorem 2. Given any constant γ > 0, N, matrices X, Y, and scalars λi ≥ 0(i ∈ J =
{1, 2, . . . , N}), ∑N

i=1 λi = 1, System (5) is asymptotically stable, and ‖G(s)‖∞ < γ, if:[
X Y
−Y X

]
> 0 (17)sym(aĀX + bXĀT) (aX− bY)C̄T B̄w
∗ −γI 0
∗ ∗ −γI

 < 0 (18)

where:

Ā =
N

∑
i=1

λi Ai, B̄w =
N

∑
i=1

√
λiBiw, C̄ =

N

∑
i=1

√
λiCi

i ∈ J = {1, 2, . . . , N}.

Then, the switching law is:

σ(t) = arg min
i∈J
{xT(Ai(aX + bY)

+ (aX− bY)AT
i + γ−1BiwBT

iw

+ γ−1(aX− bY)CT
i Ci(aX + bY))x} (19)

Proof. From Theorem 1, (19) can be proven easily. Then, we prove that System (5) is
asymptotically stable, and ‖G(s)‖∞ < γ.
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Suppose that {(tk, rk)|rk ∈ J, k = 1, 2, . . . , N} is the switching sequence in [0, T). Then,
from Lemma 3, (18) is equivalent to the following equation:[

sym(aĀX + bXĀT) (aX− bY)C̄T

∗ −γI

]
+

1
γ

[
B̄w
0

][
B̄T

w 0
]
< 0 (20)

Owing to the existing matrices X and Y, Inequality (20) is equivalent to Inequality (21),
when Inequality (20) is multiplied by γ.

γ

[
sym(aĀX + bXĀT) (aX− bY)C̄T

∗ 0

]
+

[
B̄w B̄T

w 0
0 −γ2 I

]
< 0 (21)

Let P = Xγ and Q = Yγ, to make the proof simple. From (21), we have:[
ĀT C̄T

In 0

]T([ 0 aP + bQ
aP− bQ 0

]
⊗ Im

)
[

ĀT C̄T

In 0

]
+

[
B̄w B̄T

w 0
0 −γ2 I

]
< 0 (22)

where a = sin(α π
2 ) and b = cos(α π

2 ).
According to Lemmas 1 and 2 in [28], when 0 < α < 1, let ‖G(s)‖∞ < γ, and consider

the curve:

Γ11 = (

[
0 aP + bQ

aP− bQ 0

]
, 0).

Since Γ11(s) ⊂ {sα : Re(s) ≥ 0}, we can obtain:

H̄(λ) = (λI − ĀT)−1C̄T

and we have: [
H̄(λ)

In

]T[B̄w B̄T
w 0

0 −γ2 I

][
H̄(λ)

In

]
< 0 (23)

Unfolding Equality (23), we can obtain:

H̄T(λ)B̄w B̄T
wH̄(λ)− γ2 I < 0 (24)

From Equality (24):

[C̄(λI − Ā)−1B̄w][C̄(λI − Ā)−1B̄w]T − γ2 I < 0 (25)

According to Equality (25):

γ > ‖G(s)‖H∞ = sup
Re(s)≥0

[C̄(sα I − Ā)−1B̄w]

≥ sup
λ∈Γ11

[C̄(sα I − Ā)−1B̄w] (26)

The proof is complete.

Based on Theorem 2, H∞ control of FOSSs with the state feedback controller is given
as follows.
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Theorem 3. Given any constant γ > 0, N, matrices X, Y, Z, and scalars λi ≥ 0(i ∈ J =
{1, 2, . . . , N}), ∑N

i=1 λi = 1, System (5) with state feedback uσ(t) = Kx(t) is asymptotically
stabilizable, and ‖G(s)‖∞ < γ, if:[

X Y
−Y X

]
> 0 (27)sym(aĀX + bXĀT + B̄Z) (aX− bY)C̄T B̄w
∗ −γI 0
∗ ∗ −γI

 < 0 (28)

where:

Ā =
N

∑
i=1

λi Ai, B̄w =
N

∑
i=1

√
λiBiw, C̄ =

N

∑
i=1

√
λiCi,

i ∈ J = {1, 2, . . . , N}.

Then, the gain matrix is:

K = Z(aX + bY)−1 (29)

The switching law is:

σ(t) = arg min
i∈J
{xT((Ai + BiK)(aX + bY)

+ (aX− bY)(Ai + BiK)T

+ γ−1(aX− bY)CT
i Ci(aX + bY)

+ γ−1BiwBT
iw)x} (30)

Proof. Let Â = Ā + B̄K; the proof of Theorem 3 is directly derived from Theorem 2.

5. Robust H∞ Control

In this section, robust H∞ control of FOSSs with uncertainty is studied.
Consider the following FOSS with uncertainty:

Dαx(t) = (Aσ + ∆A)x(t) + (Bσ + ∆B)uσ(t)

+ Bσww(t)

z(t) = Cσx(t) (31)

where G(s) = Cσ(sα I − Aσ − ∆A)−1Bσw. ∆A and ∆B are the norm-bounded uncertainties,
and: [

∆A ∆B
]
= MF(t)

[
N1 N2

]
(32)

where M, N1 and N2 are constant matrices of appropriate dimensions. F(t) satisfies
FT(t)F(t) ≤ I.

According to Theorem 1, Theorem 2, and Lemma 5, the following theorem is derived.
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Theorem 4. Given any constant γ > 0, N, matrices X, Y, and scalars λi ≥ 0(i ∈ J =
{1, 2, . . . , N}), ∑N

i=1 λi = 1, ε, System (31) is quadratically stable, and ‖G(s)‖∞ < γ, if:[
X Y
−Y X

]
> 0 (33)

Π11 (aX− bY)C̄T B̄w N1(aX + bY)
∗ −γI 0 0
∗ ∗ −γI 0
∗ ∗ ∗ −εI

 < 0 (34)

where:
Π11 = sym(aĀX + bXĀT) + εMMT ,

Ā =
N

∑
i=1

λi Ai, B̄w =
N

∑
i=1

√
λiBiw, C̄ =

N

∑
i=1

√
λiCi,

i ∈ J = {1, 2, . . . , N}.

Then, the switching law is:

σ(t) = arg min
i∈J
{xT(Ai(aX + bY)

+ (aX− bY)AT
i + γ−1BiwBT

iw

+ γ−1(aX− bY)CT
i Ci(aX + bY))x} (35)

Proof. Let Ā = Aσ + ∆A, and substitute Ā into Theorem 2. We can obtain:Φ11 (aX− bY)C̄T B̄w
∗ −γI 0
∗ ∗ −γI

 < 0

where Φ11 = a(Ā + ∆A)X + bX(Ā + ∆A)T + b(Ā + ∆A)Y− bY(Ā + ∆A)T .
Then, by applying Lemma 4, the above inequality can be expressed as (34). Theorem 4

can be easily proven.

Based on Theorems 2 and 4, robust H∞ control of FOSSs with the state feedback
controller and uncertainty is given as follows.

Theorem 5. Given any constant γ > 0, N, matrices X, Y, Z, W, and scalars λi ≥ 0(i ∈ J =
{1, 2, . . . , N}), ∑N

i=1 λi = 1, ε, System (31) with state feedback uσ(t) = Kx(t) is quadratically
stabilizable, and ‖G(s)‖∞ < γ, if:[

X Y
−Y X

]
> 0 (36)

Π11 (aX− bY)C̄T B̄w N1(aX + bY) + N2W
∗ −γI 0 0
∗ ∗ −γI 0
∗ ∗ ∗ −εI

 < 0 (37)

where:
Π11 = sym(aĀX + bĀY + B̄Z) + εMMT ,

Ā =
N

∑
i=1

λi Ai, B̄w =
N

∑
i=1

√
λiBiw, C̄ =

N

∑
i=1

√
λiCi

i ∈ J = {1, 2, . . . , N}.
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Then, the gain matrix is:

K = Z(aX + bY)−1 (38)

The switching law is:

σ(t) = arg min
i∈J
{xT((Ai + BiK)(aX + bY)

+ (aX− bY)(Ai + BiK)T

+ γ−1(aX− bY)CT
i Ci(aX + bY)

+ γ−1BiwBT
iw)x} (39)

Proof. Let Â = (Aσ + ∆A) + (Bσ + ∆B)K; substitute Â into Theorem 2, and set W =
K(aX + bY). Theorem 5 is directly derived from Theorems 2 and 5.

6. Examples
6.1. Example 1

Consider System (5) with order α = 0.5, N = 2, and:

A1 =

[
−1.9 1

2 1

]
, A2 =

[
−3 −4.3
−1 −0.5

]
, B1 =

[
1 1
0 1

]

B2 =

[
0 −1
1 1

]
, B1w =

[
0.5
1

]
, B2w =

[
1

0.1

]
C1 =

[
−1 2

]
, C2 =

[
2 1

]
Set λ1 = 0.7, λ2 = 0.3 and the disturbance attenuation level γ = 0.8, according to

Theorem 3; we can obtain:

X =

[
0.7717 0.0430
0.0430 0.0024

]
, Y =

[
0 −0.0024

0.0024 0

]

K =

[
2.5946 −3.1100
−2.5777 −0.9836

]
Let:

Pi = (Ai + BiK)(aX + bY)

+ (aX− bY)(Ai + BiK)T

+ γ−1(aX− bY)CT
i Ci(aX + bY)

+ γ−1BiwBT
iw

Then, obtain the switching law:

σ(t) = i =

{
1, xT(P1 − P2)x < 0;
2, xT(P1 − P2)x ≥ 0

Figure 2 shows that the state trajectory converges to zero, and the designed controllers
make the associated subsystems asymptotically stable by the switching strategy (30).
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Figure 2. State trajectories of Example 1.

6.2. Example 2

Consider System (5) with order α = 0.23, N = 2, and:

A1 =

−1 1 −2
2 1 1
0 2 2

, A2 =

−3 −2 −2
−1 −2 1
−1 −1 2

, B1 =

1
2
1



B2 =

 0
−1
1

, B1w =

2
1
2

, B2w =

 1
0.5
1


C1 =

[
−1 2 2

]
, C2 =

[
1 2 1

]
Set λ1 = 0.4, λ2 = 0.6 and the disturbance attenuation level γ = 1.2; from Theorem 3,

we can obtain:

X =

 13.6532 3.6714 −0.0721
3.6714 3.5815 −2.0306
−0.0721 −2.0306 −1.0467

, Y =

 0 0.0721 2.0306
−0.0721 0 1.0467
−2.0306 −1.0467 0


K =

[
−4.4841 −96.8927 −77.1058

]
Let:

Pi = (Ai + BiK)(aX + bY)

+ (aX− bY)(Ai + BiK)T

+ γ−1(aX− bY)CT
i Ci(aX + bY)

+ γ−1BiwBT
iw

Then, we obtain the switching law:

σ(t) = i =

{
1, xT(P1 − P2)x < 0;
2, xT(P1 − P2)x ≥ 0

Figure 3 shows that the state trajectory converges to zero, and the designed controllers
make the associated subsystems asymptotically stable by the switching strategy (30).
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Figure 3. State trajectories of Example 2.

Remark 3. The characteristic roots of A2 + B2K are {−3.0638, 9.9254 + 20.4436i, 9.9254 −
20.4436i} and |arg(9.9254 + 20.4436i)| = 1.1188 > 0.23π

2 = 0.3613. Although there are positive
real roots, the second subsystem is stable under our results. Hence, compared with the results
in [45–47], the results in this paper are less conservative.

6.3. Example 3

Consider System (31) with order α = 0.3, N = 2, and:

A1 =

−1 0 1
2 1 2
2 1 0

, A2 =

2 −1 1
0 2 1
0 1 1

, B1 =

0 1 1
1 0 1
1 1 1



B2 =

0 −1 1
1 0 −1
1 1 1

, B1w =

 0.5
1

0.75

, B2w =

0.2
0.5
0.1


C1 =

[
−1 0 1

]
, C2 =

[
0 1 1

]

M =

−2 2 2
−3 −2 2
−2 −2 −4

, N1 = I3, N2 =

 0.1 0.15 0.2
0.2 0.1 0.1
0.15 0.25 0.3


Set λ1 = 0.8, λ2 = 0.2 and the disturbance attenuation level γ = 1.2; according to

Theorem 5, we can obtain:

X =

1.0667 0.0976 0.2477
0.0976 −0.1708 0.1370
0.2477 0.1370 −0.1728



Y =

 0 −0.2477 −0.1370
0.2477 0 0.1728
0.1370 −0.1728 0



K =

 −9.3285 108.9177 240.5395
−255.9823 317.2618 521.5005
149.9447 −279.5623 −481.4994
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Let:

Wi = (Ai + BiK)(aX + bY)

+ (aX− bY)(Ai + BiK)T

+ γ−1(aX− bY)CT
i Ci(aX + bY)

+ γ−1BiwBT
iw

Then, we obtain the switching law:

σ(t) = i =

{
1, xT(W1 −W2)x < 0;
2, xT(W1 −W2)x ≥ 0

Figure 4 shows that System (31) with gain K is quadratically stable by switching
strategy (39), when the system initializes at x(0) =

[
0.7 0.4 −0.5

]T .

Figure 4. State trajectories of Example 3.

6.4. Example 4

Consider System (31) with order α = 0.63, N = 2, and:

A1 =

−2 2 1.5
1.2 0.1 2.1
2 1 1

, A2 =

 1.2 −2.1 0.2
0.12 2.2 1.1
0.3 1.2 1.5

, B1 =

1
1
1



B2 =

 0
−1
1

, B1w =

 1.5
1

2.75

, B2w =

 1
2.5
1


C1 =

[
−1 2 1

]
, C2 =

[
3 1 1

]

M =

1.2 0.2 2.2
1.3 0.2 1.2
1.2 0.2 2.4

, N1 =

0.1 0.2 0.1
0.2 0.1 0.3
0.1 0.2 0.3

, N2 =

0.21 0.13 0.12
0.23 0.21 0.11
0.35 0.22 0.31
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Set λ1 = 0.25, λ2 = 0.75 and the disturbance attenuation level γ = 2.5; according to
Theorem 5, we can obtain:

X =

2.4811 2.3268 1.2724
2.3268 17.5209 −16.7539
1.2724 −16.7539 −10.0580



Y =

 0 −1.2724 16.7539
1.2724 0 10.0580
−16.7539 −10.0580 0


K =

[
41.8007 27.9848 22.9541

]
Let:

Wi = (Ai + BiK)(aX + bY)

+ (aX− bY)(Ai + BiK)T

+ γ−1(aX− bY)CT
i Ci(aX + bY)

+ γ−1BiwBT
iw

Then, we obtain the switching law:

σ(t) = i =

{
1, xT(W1 −W2)x < 0;
2, xT(W1 −W2)x ≥ 0

Figure 5 shows that System (31) with gain K is quadratically stable by the switching
strategy (39).

0 1 2 3 4 5

t[s]

-4

-3

-2

-1

0

1

2

3
State Diagram

x1

x2

x3

Figure 5. State trajectories of Example 4.

7. Conclusions

In this paper, the fractional-order switching law was derived for fractional-order
switched systems (FOSSs) with order 0 < α < 1. Under the above switching law, stability
and well-posedness can be proven for FOSSs. Then, the conditions of H∞ control and
controller design for FOSSs were proposed based on linear matrix inequalities (LMIs) in
the paper, which can ensure the H∞ performance for closed-loop FOSSs. Furthermore,
the LMI-based conditions of robust H∞ control and performance analysis were proven for
FOSSs with uncertainty. Four the numerical simulation, results were given to verify the
validity of the results proposed in this paper.
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In the future, output feedback H∞ control for FOSSs and robust H∞ control for FOSSs
with poly-topic uncertainty are the desired research directions.
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