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Abstract: In this study, the model Riccati equation with variable coefficients as functions, as well as a
derivative of a fractional variable order (VO) of the Gerasimov-Caputo type, is used to approximate
the data for some physical processes with saturation. In particular, the proposed model is applied
to the description of solar activity (SA), namely the number of sunspots observed over the past
25 years. It is also used to describe data from Johns Hopkins University on coronavirus infection
COVID-19, in particular data on the Russian Federation and the Republic of Uzbekistan. Finally, it is
used to study issues related to seismic activity, in particular, the description of data on the volumetric
activity of Radon (RVA). The Riccati equation used in the mathematical model was numerically
solved by constructing an implicit finite difference scheme (IFDS) and its implementation by the
modified Newton method (MNM). The calculated curves obtained in the study are compared with
known experimental data. It is shown that if the model parameters are chosen appropriately, the
model curves will give results that correlate well with real experimental data. Moreover, with other
parameters of the model, it is possible to make some prediction about the possible course of the
considered processes.

Keywords: Riccati equation; fractional derivative of variable order (VO); Gerasimov-Caputo deriva-
tive; finite-difference schemes; mathematical modeling of dynamic processes; saturation and memory
effect; COVID-19; solar activity; radon accumulation

1. Introduction

The Riccati equation is well-known and of great interest, which is confirmed by a
large number of studies, in particular, its version with a noninteger (fractional) derivative.
This topic has shown increasing interest of researchers over the past 30 years, both in
theoretical issues [1,2] and many other articles, and there are many applications of the
Riccati equation [3] in many sciences. For example: in economics, to simulate volatility in
the financial market [4]; in physics, to examine questions of inelastic hysteresis of wave
processes in media with losses and saturation [5]; and in the science of epidemiology, which
is quite relevant today—in particular, it is used by the authors of [6] to build logistic models
of the epidemic, to determine the time to reach a plateau and decline in the process.

However, before we move on to the fractional Riccati equation considered in the
work, we should give an insight into some issues and concepts that are closely related to
our problem.
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Vito Volterra is one of the pioneers in questions of the memory effect and possible
practical applications of the phenomenon of heredity, in particular to problems arising in
physics. In the books [7,8], however, V.Volterra himself notes that in fact the concept of
memory was introduced into physics by Pekar in 1907. Moreover, according to the work
of Uchaikin V.V. [9], such phenomena as fatigue of metals, delayed waves and some other
hereditary processes with some delay in time were known even earlier.

The effects of memory or heredity (in other words, hereditarity) may have various
processes with saturation, this may indicate the presence of cause-and-effect relationships
in the dynamics of such processes. In other words, the concept of heredity means that the
system stores information about its history and can then rely on it. Mathematically, this
phenomenon can be described using integro-differential equations, where the difference
integrands are memory functions [7,9].

When choosing memory functions—as power functions—we easily and naturally
pass to the mathematical apparatus of fractional calculus [10,11], namely, to derivatives of
fractional order [12–14], and also derivatives of fractional variable order, or simply “variable
order” VO according to [15,16]. Fractional differentiation and fractional integration are
generalizations of integer-order differentiation and integration, and include n-th derivatives
and n-fold integrals, where n ∈ N, as special cases.

By and large, fractional calculus is a well studied, with many applications, and is a
prominent part of mathematical theory. Apart from being included in various systems of
equations in the form of differentiation operators, it is also of considerable interest to many
mathematicians. The study of this subject has been going on for more than 300 years and
to this day. Fractional calculus has attracted the interest of many scientific minds for at
least the last 50 years, from the time of [17,18] to the present day. The study of this issue is
associated with the following names: A. Nakhushev [10], V. Uchaikin [9,13], A. Pskhu [19],
A. Kilbas [12], O. Mamchuev [20], and R. Parovik [21].

Given the above, it becomes clear that the fractional Riccati equation is called the
classical Riccati equation but with a fractional derivative. By analogy with the idea of
differentiation and integration mentioned earlier, the fractional Riccati equation is also a
generalization of the classical Riccati equation. Furthermore, the introduction of another
degree of freedom—the order of the fractional derivative—allows one to obtain a of the
experimental data of processes with saturation, more flexible than using the classical
equation. Moreover, if a fractional derivative of a variable order is introduced into the
Riccati equation, then this will make it possible to describe the experimental data even
more flexibly. This, in fact, we will show in this study.

As noted at the beginning, the fractional Riccati equation has been increasingly of
interest to researchers in recent years, including us, otherwise this work would not exist.
Relatively recently, somewhere in the early 2000s, the first works on the study of the
fractional Riccati equation appear. This article is not a review article and therefore we are
forced to skip the literature review on this subject. However, in our opinion, some of the
works that influenced this study should be briefly mentioned. The work [22] in 2012 by
Sweilam, N.H., Khader, M.M., and Mahdy, A.M.S. is of particular importance, since it was
this that attracted one of the authors, Tverdyi, D.A., to study the fractional Riccati equation.
There is also the work of the authors Min Cai and Changpin Li [23] in 2020, which helped
with the theoretical justification of numerical schemes for fractional derivatives of VO.

A more detailed analysis of the literature on the research topic is carried out by the
authors in the previous article [24], which is the theoretical justification for this article. The
following conclusions can be briefly drawn from the analysis:

• comparison is rarely made between experimental data of processes with saturation
and calculated data on a mathematical model;

• the order of the fractional derivative is often constant, which may not be enough for
our purposes;

• the issues related to the numerical solution of the fractional Riccati equation with
variable fractionality of the derivative are poorly studied.
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Additionally, as part of the research, the issues of stability and convergence of the
numerical solution are considered in the author’s work [24].

It is known that the introduction, at one time, of derivatives and partial derivatives
made it possible to describe much more complex phenomena, and in a more accurate
way. Similarly, the introduction of the fractional derivative allowed some processes to
be described more flexibly, implying the presence of a memory effect in them, which
is described by fractional operators. As a consequence, similarly, the introduction of a
derivative of a (fractional) variable order makes it possible to describe some physical
processes with memory even more flexibly, but now implying the fact that memory may
not be constant and depend on time.

In the same article, questions arose related to the use of the developed numerical
scheme IFDS for the mathematical modeling of dynamic processes with saturation and
memory effect, in order to test the adequacy of the model and in order to find the possible
practical application of the proposed fractional model.

A model is considered for describing data on solar activity (SA), expressed in the
average monthly number of sunspots, in order to give some forecast for the intensity of
this process, and, as a consequence, the approximate boundaries of the current and future
SA cycle.

A mathematical modeling of the spread of COVID-19 infection is proposed, which
takes into account many possible factors that can affect the change in the number of cases of
infection. However, it should be noted that the authors could not have taken into account
all the factors. The model describes trends: by new cases of infection, and by the total
number of infected, both in the Russian Federation and in the Republic of Uzbekistan [25].

Also with the help of mathematical modeling the process of radon accumulation in
the chamber with gas-discharge counters [26] is investigated, i.e., RVA, in order to develop
a methodology for predicting strong earthquakes based on continuous monitoring of radon
volumetric activity [27] in the subsoil air with a high degree of detail.

In terms of searching for applications of the mathematical model, a “phenomenological”
approach to the description of experimental data was chosen. Namely, this approach, a
model is created for the observed phenomena, in which they do not pay attention to the
actually occurring processes of a “lower” level.

2. Some Definitions of Fractional Calculus and Hereditarity, and Their
Mutual Connection

Consider the hereditary (memory effect) equation:∫ t

0
K(t− σ, t)u̇(σ)dσ− b(t)u(t) = f (u(t), t), (1)

where u(t) ∈ C1[0, T] is the solution function, K(t− σ, t) the sub integral memory function,
t ∈ [0, T] the current time, T > 0 the total simulation time, b(t) > 0 is a continuous function,
and f (u(t), t) is also a continuous function, which satisfies the Lipschitz condition with
respect to the variable u(t), as follows: | f (u1, t)− f (u2, t)| < L|u1 − u2|.

Remark 1. V. Voltera [7], in his works defines heredity on the interval (−∞, t), that is, considers
complete heredity. In this paper, we will consider bounded hereditarity defined on the subinter-
val (0, t).

It is a well-known fact that the process under consideration has no memory if K(t−
σ) = δ(t− σ) is a Dirac function, and vice versa, the process has full memory if K(t− σ) =
H(t− σ) is the Heaviside function.

If we use a power function as a memory function, then an intermediate case arises, and
we can go to the mathematical apparatus of fractional calculus [10,11], namely, to fractional
order derivatives [12–14,17].
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Remark 2. Power-laws are widespread in various branches of science and knowledge. A feature of
power-law memory is that the process gradually “forgets” about its prehistory.

Definition 1. Let the memory function be defined as:

K(t− σ, t) = φα(t)−1 (t− σ)−α(t)

Γ(1− α(t))
, 0 < α(t) < 1, (2)

α(t) is a function responsible for the intensity of the process under study, φ—some process con-
stant [28].

Remark 3. Moreover, dependence on t leads us to the memory variable phenomenon. In practice,
this allows VO to be more flexible, to describe some physical processes with memory, than the usual
non-variable fractional derivative.

Definition 2. Operator of fractional variable order 0 < α(t) < 1, acting on a function u(t) ∈
C[0, T]:

∂
α(t)
0t u(σ) =

1
Γ(1− α(t))

∫ t

0

u̇(σ)
(t− σ)α(t)

dσ, (3)

where u̇(t) = du
dt , and t ∈ [0, T]—current time, T > 0—simulation time, Γ(x) =

∫ ∞
0 e−ttx−1dt,

x ∈ C : R(x) > 0—Euler’s gamma function, will be called the derivative of a VO 0 < α(t) < 1
Gerasimov-Caputo type [29–31].

Currently, there are dozens of definitions of the fractional derivative, but in this
manuscript we will understand it in the sense of Definition 1. For more information about
the fractional order operator (3), see [14].

Remark 4. A fairly well-known (ordinary) Gerasimov-Caputo operator [29–31], which has a
constant fractional order α, can be obtained from the Gerasimov-Caputo “type” operator (3), simply
by discarding in α(t) depending on the time t.

Remark 5. Most authors from the CIS countries and Russia refer to the VO operator (3) exactly as
the Gerasimov-Caputo operator. The authors of this article follow the same tradition. More about
this can be found in [24], adjacent to this work. At the same time, many authors from all over the
world call the Formula (3) a fractional derivative in the sense of Caputo.

Then, taking into account (2), we can write the Equation (1) in terms of the derivative
of the Gerasimov-Caputo type (3) as a fractional equation:

φα(t)−1∂
α(t)
0t u(σ)− b(t)u(t) = f (u(t), t),

Let us set the process constant φ = 1. Looking ahead, we can say that, based on the
simulation results for specific applications, this assumption turned out to be correct. Then:

∂
α(t)
0t u(σ)− b(t)u(t) = f (u(t), t), (4)

Definition 3. Equations of the form (4) with derivatives of variable fractional order (3) will be
called fractional equations.

3. Formulation of the Problem

Consider the fractional Riccati equation [32]. To do this, in the Equation (4) we put
f (u(t), t) = −a(t)u(t)2 + c(t). Then we can proceed to the following Cauchy problem:

∂
α(t)
0t u(σ) + a(t)u2(t)− b(t)u(t)− c(t) = 0, u(0) = u0, (5)



Fractal Fract. 2022, 6, 163 5 of 35

where u(t) ∈ C2[0, T]—solution function, u0—a given constant, t ∈ [0, T]—current time,
T > 0—simulation time, a(t), b(t), c(t)—given continuous functions on the segment [0, T],
and b(t) > a(t).

Definition 4. The equation in (5) will be called the fractional Riccati equation.

4. Solution Method

Since the Cauchy problem (5) is nonlinear, then using the methods of [33–35] finite
difference schemes, we will find a numerical solution to the problem.

We assume that the discretization grid is uniform, therefore we divide the segment
[0, T] into N grid nodes in equal parts with the sampling step τ = T/N. As a result,
u(t) ∈ C2[0, T], the solution function, on the grid, will take the form of a grid analogue:
u(tk) or uk, where k = 1, . . . , N. Similarly, the function 0 < α(t) < 1 will go to: α(tk) or
αk. Similarly, this is also true for: a(t), b(t), c(t)—given continuous functions of the Riccati
equation on the interval [0, T].

Replacing the variable order fraction in Equation (5) by its approximation, according
to [24], we obtain a discrete analogue of the Cauchy problem for the fractional Riccati
equation, in the form of an IFDS:

Ak

k−1

∑
j=0

wk
j

(
uk−j − uk−j−1

)
+ aku2

k − bkuk − ck = 0,

Ak =
τ−αk

Γ(2− αk)
, wk

j = (j + 1)1−αk − j1−αk ,

k = 1, . . . , N, u0 = C,

(6)

where C is a known constant.
As a result, we obtain a system of nonlinear algebraic equations represented by the

scheme (6). To solve it, we will use the MNM [24,33,36] method. It is known that the
ordinary Newton method (ONM) requires the calculation of the Jacobian matrix (that is, the
solution of a system of nonlinear algebraic equations) at each iteration. Using MNM allows
us to calculate the Jacobian only once in the initial approximation x0, but this leads to a
decrease in the order of convergence of the method (compared to ONM) to the first order.

The issues of stability and convergence of the numerical solution are considered in the
author’s work [24]. Where the following is shown:

• For the numerical solution of the Cauchy problem (5), nonlocal numerical schemes
are proposed: EFDS and IFDS. To solve IFDS, the MNM method is considered with a
modification according to (6);

• Questions about the stability, convergence of methods and approximations of a frac-
tional operator are considered. The corresponding theorems are proved;

• It is established that: IFDS is unconditionally stable and has order of convergence
O(τ2−α̂), where α̂ = max

k
(α(tk)), EFDS—conditionally (for τ ≤ (21−α̂ − 1)/b̄, b̄ =

maxk(b(tk))) is stable and has order convergence O(τ);
• Test examples and estimates of the accuracy of calculations according to the Runge

rule confirm the theoretical conclusions;
• From the set of test cases, it appears that the IFDS scheme has a maximum error that is

an order of magnitude smaller than that of EFDS. Moreover, IFDS is somewhat more
accurate than EFDS.

The above, and the last point in particular, will govern the choice of an IFDS scheme.

Remark 6. Since the EFDS circuit in question (6) conventionally converges with the first order [24].
That, as an initial approximation for MNM, to solve an IFDS, you can take the last value of uk,
obtained according to the EFDS scheme when the condition of the EFDS convergence is performed.
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Additionally, according to the results of test cases [24], for practical use, it is important
to note:

• If the coefficients in the model equation vary by harmonic law, their form resembles
the form of curves for vibrational processes;

• It can be seen from the figures that the calculated curves for the proposed model can
have an s-shaped shape, which is typical for dynamic processes in saturated media;

• It is also seen that the trend of the calculated curves increases as the steady state
is reached;

• This dynamic occurs in the economy when describing cycles and crises [37].

5. Software Package for MAPLE

In this section, we present a software package for the MAPLE 2021 symbolic math-
ematics environment, designed to solve problems: mathematical modeling, comparison
of the result with real experimental data, and visualization of the results. This software
package includes: an executable file that implements the processes described above and
defines the program logic, and the previously developed «FDREext» library containing the
functions necessary for research.

Next, as an example, we will present the code of the executable file step-by-step , using
Example 3 for the Simulation the dynamics of infection with coronavirus COVID-19 task,
discussed in the Section 8.

For the COVID-19 simulation task Section 8, all stages (subprograms) of the gen-
eralized block diagram shown in the Figure 1 are executed. However, for RVA and SA
simulation tasks, only a subprograms is needed.

Figure 1. Generalized block diagram of the software package.

5.1. Pluggable Subprograms

This library (subroutine) contains: procedures for the numerical analysis of the frac-
tional Riccati equation with a variable fractional order of the Gerasimov-Caputo type
derivative and nonconstant coefficients, and with the ability to visualize the results, more
details in [24]. Program code for «FDREext» has [38] certificate of state registration of
computer programs. The library for the solution is called using the instructions shown in
the Figure 2:

Figure 2. Library call «FDREext».
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Remark 7. Further, the variables, the result of the function and some of the arguments of the
functions, will be specified without a specific data type. This will not cause errors in most cases,
since when processing input arguments, they are converted to the desired type (for the convenience of
the user), if it is allowed. Some arguments of the functions implemented in the library, it is better to
specify already in the required data type, and we will indicate this when describing some functions.
However, note that the purpose of this section is not to describe in detail the functionality of the
«FDREext» library.

5.2. Processing of Input Data

Some «FDREext» functions, for convenience, work with global variables, such as the
variable: Path , which will contain the path to the experimental data file, including its name
and extension:

Path := cat(CreateFilePath(), "Covid_Select_Data_UZB_(to_16.09.2021).xlsx")

The library implements the ability to work with input/output files with extensions:
.txt, .xlsx.

Next, you need to read the file and extract the necessary data into the input_data vari-
able. The following code will extract from the .xlsx file the column for the given keyword,
which is contained in the first line of the file. It will also create a few auxiliary variables:

key_column := "new_cases";
input_data := ExcelExtractColumn(key_column, set_emptycell = undefined):
num_elems := nops([input_data]);
input_data_new_cases_1 := input_data:
max_1_input_data_new_cases := max([input_data_new_cases_1]);

Remark 8. It is important to remember that the MAPLE system considers the dataset: 1, 2, 3, 4, . . .
to be the data type exprseq, i.e., "sequence". However, the data set [1, 2, 3, 4, . . . ] is a list data
type, and many MAPLE functions work with the list type. We, in the development of «FDREext»,
adhered to the same principle.

Now, let us do the same for the second data file:

Path := cat(CreateFilePath(), "Covid_Select_Data_UZB_(to_31.12.2021).xlsx");
input_data := ExcelExtractColumn(key_column, set_emptycell = undefined):
num_elems := nops([input_data]);
input_data_new_cases_2 := input_data:
max_2_input_data_new_cases := max([input_data_new_cases_2]);

In the future, in order to compare the experimental data with the model data, in
most cases we will need to normalize the array of experimental data to the maximum.
Consider an example, let input_data_new_cases_1 be an array of data up to 16 Septem-
ber 2021, and input_data_new_cases_2 be an array of data up to 31 December 2021.
input_data_new_cases_2 has a maximum element with a value greater than the maxi-
mum element from input_data_new_cases_1. Then you need to normalize both arrays to
the maximum element with a large value.

In order not to have the situation as in (Figure 3), run the following code:
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Figure 3. An example of a case of incorrect normalization of two data sets.

if (max_2_input_data_new_cases <= max_1_input_data_new_cases) then
value_for_normalize_data := max_1_input_data_new_cases;

else
value_for_normalize_data := max_2_input_data_new_cases;

end if;

as a result, we get the normalization factor value_for_normalize_data for the first
data array.

Now, you can display the input data on the chart:

set_labels := ["t (day)", key_column]; set_color := grey;
set_linestyle := solid; set_type_plot := line;
set_legend := typeset("[data]. Num point = %1. (Input data from (.xlxs)

file).
%2 (to_16.09.2021)", num_elems, key_column):

plot_new_cases_1 := PlotData([input_data_new_cases_1], nops([input_data_
new_
cases_1]), nops([input_data_new_cases_1]),
type_plot = set_type_plot, type_linestyle =
set_linestyle, type_color = set_color,
type_labels = set_labels, type_legend =
set_legend)

Let us normalize for the first data set:

data_norm_1 := NormalizeOnValue([input_data_new_cases_1], value_for_
normalize_data):
max_data_norm_1 := max([data_norm_1]);
num_elems := nops([data_norm_1]);
data_1 := data_norm_1;

and, if desired, you can display the result on a chart using the PlotData function, which
has already been used previously.

Additionally, in «FDREext», there is a function for smoothing/reducing data. Smooth-
ing may be needed if, for example, some data fragments are missing, or we would like to
have a denser data stream, that is, for example, 100 parameter measurements every 1 h,
smooth up to 150 measurements every 45 min. Reduction, on the contrary, selects only a
part of them from the data set with some equal frequency, while maintaining the trend of
course. If necessary, then you need to uncomment the first line of the following code:

#need_extend := "No";

if (need_extend <> "No") then
num_elems_before_1 := nops([data_1]);
set_dimension_interpolation_1 := round(num_elems_before_1/2);
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data_extended_1 := ExtendedData([data_1], set_dimension_interpolation_1,
type_interpolation = cubic);

num_elems_1 := nops([data_extended_1]);
data_1 := data_extended_1;
set_labels := ["t (day)", "Rel.\n Un."]; set_color := green;

set_linestyle := solid; set_type_plot := line;
set_legend := typeset("(Extended)_[data_1]. Num point = %1. (Normalize

on max).
%2 (to_16.09.2021)", num_elems_1, key_column);

plot_extrapolaton_1 := PlotData([data_extended_1], num_elems_1, num_
elems_
before_1, type_plot = set_type_plot,
type_
linestyle = set_linestyle, type_color =
set_color, type_labels = set_labels,
type_legend = set_legend);

plot_data_1 := plot_extrapolaton_1;
plots[display](plot_norm_1, plot_extrapolaton_1); print(%);

end if:

Let us normalize for the second data set:

data_norm_2 := NormalizeOnValue([input_data_new_cases_2], value_for_
normalize_data):
max_data_norm_2 := max([data_norm_2]);
num_elems := nops([data_norm_2]);
data_2 := data_norm_2;

Similar to the case with experimental data, for comparison, in most cases we will
need to normalize to the maximum, as well as the array containing the simulation results.
However, after normalization, this array will need to be multiplied by a special coefficient
value_for_normalize_result, so as not to have a situation where the experimental data
along the vertical axis are distributed on the segment [0, 0.7], and the data of the simulation
result on the segment [0, 1]. To do this, we will execute:

if (max_data_norm_1 <= max_data_norm_2) then
value_for_normalize_result := max_data_norm_1;

else
value_for_normalize_result := max_data_norm_2;

end if;

as a result, we obtain the normalization factor value_for_normalize_data for the second
data array.

5.3. Approximation of the First Data Set

For the proposed numerical scheme (6), model (5), you need to set the following
parameters:

N = 551, T = 551, u0 = 0.0001,

αk = 0.98 sin
(

1.64πkh
T

)2
, ak =

kh
T

, b = 0.25, ck = 0.5 sin
(

exp(7kh/T)kh
T2

)2 (7)

main parameters N, T—here are determined by the dimension of the first data array.

Remark 9. As already mentioned in the introduction, the “phenomenological” approach to model-
ing is chosen, and therefore the model parameters α(t) and a(t), b(t), c(t) for approximating the
first data set will be determined “manually”. This is because, as a consequence of this approach,
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we do not know anything about the processes of a “lower” level that would determine the form of
these parameters.

In the code, the main parameters will take the form of local variables:

set_T := nops([data_norm_1]);
set_N := nops([data_1]);
set_h := evalf(set_T/set_N);
epsilon := evalf[1](10^(-4));
start_point := data_1[1];

and grid functions for the coefficients of the model equation, the form of global variables:

a_Func := k*h/T;
b_Func := 0.25;
c_Func := PeriodicFunc(set_function = [sin, 2], set_delta = 0.25,

set_theta = 0.5, set_mu = exp(7*k*h/T)/T^2);
Alpha_Func := PeriodicFunc(set_function = [sin, 2], set_delta = 0.49,

set_theta = 0.98, set_mu = 1.64*Pi/T)

the type of grid functions, to a greater extent from Alpha_Func, will also depend on the
type of model curves obtained as a result.

The function PeriodicFunc—at the output gives some periodic function with given
oscillation parameters: set_delta—axis, set_theta—amplitude, set_mu—frequency.

Remark 10. Note that the variable k is the discretization step of the (6) scheme, and at this stage
it is only declared, and it can be passed further to functions without a specific value, and already
inside functions k will take a specific value in cycles . This will not throw an error since MAPLE is
a symbolic calculation system.

Now, let us execute the function for the numerical solution of the model equation:

approx_result_1 := ApproxFractDeriv(numerical_method = "IFDS",
start_iter_MNM = "Last_EFDS",
type_operator = "alpha(t)", set_N,
set_T,
start_point, acccuracy = 10^(-4),info_
print = yes,
graphics_print = yes):

where the function arguments, define:

• numerical_method :: string—(optional) numeric scheme, default: "IFDS". Accord-
ing to the Section 4, the EFDS and IFDS schemes are implemented;

• start_iter_MNM :: string—(optional) method for calculating start iteration for
IFDS scheme, see Remark 6, default: "Last_EFDS";

• type operator :: string—(optional) modification type for fractional operator (3),
default: "alpha(t)";

• set_N :: integer—number of nodes of the calculated uniform grid;
• set_T :: integer—simulation time;
• start_point :: anything—start point, initial value of the Cauchy problem;
• acccuracy :: float—(optional) required accuracy of numerical method, default:

"10^(-4)";
• info_print :: string—(optional) flag for outputting intermediate information about

the calculation progress, default: "No";
• graphics_print :: string—(optional) flag for outputting intermediate graphic in-

formation, default: "No".
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arguments (optional), the user can ignore and not set at all, if necessary.
We visualize the obtained numerical solution, compare it on the graph together with

the experimental data and calculate the correlation coefficient between them, the result is
shown in the Figure 4:

approx_result_1 := seq(approx_result_1[i], i = 1 .. nops([approx_result_1])
- 1):
max_approx_result_1 := max([approx_result_1]);
num_elems_approx_result_1 := nops([approx_result_1]);
approx_result_norm_1_0 := NormalizeOnMax([approx_result_1]);
approx_result_norm_1 := NormalizeOnValue([approx_result_norm_1_0],

1/value_for_normalize_result);

coorelation_approx_result_1_with_data := Float(round(Float(evalf(
Statistics[Correlation]
([data_1],
[approx_result_norm_1])),4)),-4);

set_labels := ["t (day)", "Rel.\n Un."]; set_color := blue;
set_linestyle := solid; set_type_plot := line;
unassign(’T’, ’h’, ’k’);
set_legend_1 := typeset("[model curve]. (Correlaton = %2). N = %3, T = %4,

[alpha = %5], a = %6, b = %7, c = %8", set_method,
coorelation_approx_result_1_with_data,
num_elems_approx_result_1, set_T, Alpha_Func,
a_Func, b_Func, c_Func);

set_tickmarks_1 := [[1 - 1 = "15.03.20", 294 - 1 = "01.01.21",
551 - 1 = "16.09.21"], default];

plot_approx_1 := PlotData([approx_result_norm_1], num_elems_approx_result_1,
set_T, type_plot = set_type_plot,
type_tickmarks = set_tickmarks_1, type_linestyle =
set_linestyle, type_color = set_color,
type_labels =
set_labels, type_legend = set_legend_1);

plots[display](plot_approx_1, plot_data_1);

Figure 4. The result of executing the code to match.

Let ua denormalize the input data and the result in order to obtain the graphs presented
on the initial scale of the experimental data:

set_labels := ["t (day)", "New cases of infected"];
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approx_result_norm_1_DE := seq(approx_result_norm_1[i]*value_for_normalize_
data,
i = 1 .. nops([approx_result_norm_1]));

num_elems_approx_result_1_DE := nops([approx_result_norm_1_DE]);
plot_approx_1_DE := PlotData([approx_result_norm_1_DE], num_elems_approx_

result_1_DE,
set_T, type_plot = set_type_plot, type_
tickmarks =
set_tickmarks_1, type_linestyle = set_
linestyle,
type_color = set_color, type_labels = set_
labels,
type_legend = set_legend_1);

5.4. Forecasting Process Behavior

Now, based on the mathematical model (5), with refined modeling parameters based
on the approximation of the first data array, we can predict the possible course of the
process, in our case, the change in the number of new cases of COVID-19 infection.

Redefine (7) modeling parameters:

N = 657, T = 657, u(0) = 0.0001,

αk = 0.98 sin
(

1.96πkh
T

)2
, ak =

1.1923kh
T

, b = 0.25, ck = 0.5 sin
(

exp(8.78kh/T)kh
T2

)2 (8)

which in code will look like:

unassign(’add_model_time’, ’k’, ’set_h’, ’set_T’, ’set_N’);
add_model_time := 106;
add_model_time := 106
set_T := nops([data_norm_1]) + add_model_time;
set_N := nops([data_1]) + add_model_time;
set_h := evalf(set_T/set_N);
unassign(’k’, ’h’, ’T’, ’N’, ’a_Func’, ’b_Func’, ’c_Func’, ’Alpha_Func’):
a_Func := 1.1923*k*h/T;
b_Func := 0.25;
c_Func := PeriodicFunc(set_function = [sin, 2], set_delta = 0.25, set_theta

= 0.5,
set_mu = exp(8.78*k*h/T)/T^2);

Alpha_Func := PeriodicFunc(set_function = [sin, 2], set_delta = 0.49,
set_theta = 0.98, set_mu = 1.96*Pi/T);

Remark 11. It is necessary to redefine the simulation parameters so that the model curve predicting
the behavior of the process coincides with the model curve approximating the first data array, in a
common area for them.

Let us solve the model equation again numerically:

approx_result_2 := ApproxFractDeriv(numerical_method = "IFDS",
start_iter_MNM = "Last_EFDS",
type_operator = "alpha(t)", set_N,
set_T,
start_point, acccuracy = 10^(-4),info_
print = yes,
graphics_print = yes):

Visualize:
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approx_result_2 := seq(approx_result_2[i], i = 1 .. nops([approx_result_2]) - 1);
max_approx_result_2 := max([approx_result_2]);
num_elems_approx_result_2 := nops([approx_result_2]);
approx_result_norm_2_0 := NormalizeOnMax([approx_result_2]);
approx_result_norm_2 := NormalizeOnValue([approx_result_norm_2_0],

1/value_for_normalize_result);
set_labels := ["t (day)", "Rel.\n Un."]; set_color := red;
set_linestyle := solid; set_type_plot := line;
unassign(’T’, ’h’, ’k’);
set_legend_2 := typeset("[Prediction model curve]. N = %1+%7, T = %2+%7,

[alpha = %3],
a = %4, b = %5, c = %6", num_elems_approx_result_2 -
add_model_time, set_T - add_model_time, Alpha_Func,
a_Func, b_Func, c_Func, add_model_time);

set_tickmarks_2 := [[1 - 1 = "15.03.20", 294 - 1 = "01.01.21", 551 - 1 =
"16.09.21",
(551 - 2) + add_model_time = "31.12.21"], default];

plot_approx_2 := PlotData([approx_result_norm_2], num_elems_approx_result_2,
set_T, type_plot = set_type_plot, type_tickmarks
=set_tickmarks_2, type_linestyle = set_linestyle,
type_color = set_color, type_labels = set_labels,
type_legend = set_legend_2);

plots[display](plot_approx_2, plot_data_1);

If desired, in a similar way, you can denormalize the input data and the result.

5.5. Checking the Forecast on the Second Data Set

Now, let us check how close to reality the predicted (Figure 5, red curve) results turned
out to be. To do this, we compare the experimental data from the second array with the
simulation results for the parameters (8) specified for the prediction of the first data array.

Figure 5. Visualization result.

There is no point in calculating a model for approximating the second data array, since
now, the dimension of the simulation result for the forecast of the first data array coincides
with the dimension of the second data array (after all, we predicted it). For the convenience
of continuing the logic of the previous code blocks, let us copy the result of the forecast
into a new variable:

approx_result_3 := approx_result_2:
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and now we can check the forecast, for which we calculate the correlation coefficient
between them. We visualize this in the same way (as for the forecast), except that the new
variables will have the number 3 at the end, for example plot_approx_3.

To present the results, it can be convenient to display graphs: approximation, predic-
tion and verification, on one canvas:

plots[display](plot_data_2, plot_data_1, plot_approx_3, plot_approx_2,
plot_approx_1);

5.6. «RVAMM» Library, and RVA Simulation

Additionally, within the framework of the software package for numerical modeling
using the fractional Riccati equation, based on «FDREext», the «RVAMM» library (abbrevia-
tion for Radon Volumetric Activity Mathematical Modeling), the following was developed
to solve the problem of modeling the dynamics of radon accumulation in the accumulative
camera discussed in Section 9. The library is called using the instructions shown in the
Figure 6:

Figure 6. Library call «RVAMM».

The «RVAMM» library is based on the function: MakarovModelRVA(), which imple-
ments the solution of the classical model (15). The function has the following arguments:

• A_0_local :: anything—parameter A0;
• A_max_local :: anything—parameter Amax, due to normalization always = 1;
• lambda_0 :: anything—parameter λ0;
• set_N :: integer—number of nodes of the calculated uniform grid;
• set_T :: integer—simulation time;

about the meaning of the described parameters from the (15) model, see Section 9 for
more details.

By means of «RVAMM», the possibility of automatic selection of modeling parameters
is implemented: λ0 and α(t) (constant), which is reflected in the following library functions:

1. LambdaAnalysisRVA()—the range and step of changing the λ0 parameter are specified
in the arguments, and using MakarovModelRVA() it calculates a number of solutions,
from which the best one is selected by the best correlation coefficient with the given
experimental data value λ0;

2. AlphaConstAnalysisRVA()—sets the range and step of changing the α(t) parameter,
and using the ApproxFractDeriv() function of the «FDREext» library, calculates a
number of solutions, from which the best one is selected , according to the correlation
coefficient, the value of α(t).

These two procedures are performed on experimental data reduced using the
ExtendedData() function to increase performance. Moreover, the dimension of the data
and the parameter set_N must match.

The code of the executable file for the implementation of numerical experiments
Section 9.2 of RVA simulation is generally identical to the code described above in Sec-
tions 5.2 and 5.3, is schematically represented by the block diagram in the Figure 7, but
there are differences:
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• only one data file is processed for matching;
• only the approximation stage is used for this task, Section 5.3;
• to automatically override the λ0 parameter, LambdaAnalysisRVA() is used, and for the

fractional model (5) parameter α(t) = α, AlphaConstAnalysisRVA() will be used , af-
ter which the approximation stage Section 5.3 starts again until the optimal parameters
are found;

• at the stage of plotting and calculating the correlation, results are needed: both for
the proposed fractional model (5) and for the known model (15) implemented in the
MakarovModelRVA() function.

Figure 7. Block diagram, executable file for RVA simulation task.

5.7. Notes on the Code Used to Simulation SA

The code of the executable file for the implementation of numerical experiments
Section 7.2 of SA simulation is generally identical to the code described above in Sections 5.2
and 5.3, is schematically represented by the block diagram in the Figure 8, but there are
differences:

• only one data file is processed for matching;
• only the approximation stage is used for this task Section 5.3;
• the parameters α(t), a(t), b(t), c(t) are redefined manually, after which the approxima-

tion stage Section 5.3 is started again until the optimal parameters are found.

Figure 8. Block diagram, executable file for SA simulation task.

The developed program using the functions of the «FDREext» library generalizes
the functionality of the previously used other program of the author «MMDCSA» for



Fractal Fract. 2022, 6, 163 16 of 35

modeling the dynamics of solar activity at the ascent stage, for which there are several
implementation acts and there is a certificate [39] on state registration computer programs.

6. Background to Modeling Processes with Saturation and Memory by the Fractional
Riccati Equation

As noted earlier in the introduction, there are few works in which saturation processes
are modeled and the calculated data are compared with experimental ones. In this chapter,
this thesis can be developed as follows:

• these works mainly have a bias in the physical (real) modeling of the process, but with
an attempt to preliminarily build a certain theoretical basis for verification;

• there are even fewer (or almost zero) similar studies for saturation processes and the
memory effect;

• there are even fewer works, with a more mathematical bias, involving the apparatus
of fractional differentiation and integration, numerical analysis, which would be more
in line with the subject and direction of this study.

For example, in the work of the author Landis, C.M. [40], the question of the condi-
tions of deformation saturation of polycrystalline ferroelastic materials is considered. A
phenomenological governing law of deformation has been developed; to verify the law,
micromechanical self-consistent modeling is carried out on several single crystals. Which
shows the adequacy of the proposed model (law) and the fact that such a phenomenologi-
cal theory is able to capture the complex defining behavior of ferroelastic materials. The
work of the authors Pudeleva, O.A. and Semenov, A.S. [41] continues these ideas, but for
polycrystalline ferro-piezoceramics, which is a promising multinational material [42] used
in sensors, vibration dampers, micromotors, memory elements, and so on.

In [43], authors John M. Bayldon and Isaac M. Daniel conduct a simulation of the
flow used in vacuum-based liquid composite molding processes. The authors note that
modeling methods for molding liquid composites depends on a good understanding of
closely related internal phenomena, and also note a number of important pressure-related
and other physical features of this process. Additionally, the fact that the previously
presented models, as a result, had a number of assumptions due to which the model was
not confirmed in real experiments. The authors also propose an improved compaction
model that includes the dependence of compaction pressure on saturation. It is shown that
the model gives more physically realistic results.

However, studies close to our work were nevertheless carried out, for example, in
the work of Buraev A.V. [44], where the dynamics of solar activity in the period 1998–2010
was studied and its connection with mudflows in the Kabardino-Balkarian Republic was
established. Moreover in [44], based on data on SA dynamics, it is shown that the rise and
fall of SA occur along a curve very close to the generalized logistic curve [45–47], and this
process is nonlinear and fractal [48,49] . However, in this work, the model Riccati equation
with a fractional derivative was with constant coefficients.

In our study, based on the physical assumptions of the nonlinearity and fractality of
the process, mathematical models (5) are built based on the fractional Riccati equation,
since the Riccati equation well describes processes that obey the logistic law [50], and an
arbitrary order of the fractional derivative gives a wide range for refining the mathematical
model with saturation and takes into account the effect of the variable memory of the
dynamic system.

7. Simulation the Dynamics of Solar Activity
7.1. Formulation of the Problem

Studies of solar-terrestrial connections—the reactions of the outer shells of the Earth, in-
cluding the biosphere—to changes in solar activity, have been actively pursued throughout
the 20th century. The Earth receives not only light and heat from the Sun, but is also exposed
to UV and X-ray radiation, solar wind, etc. Variations in the power of these factors with a
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change in the level of solar activity cause a chain of phenomena in interplanetary space, the
outer shells of the Earth, and changes in the magnetosphere are especially noticeable.

A link is statistically established: an increase in the number of accidents in the United
States of America power grids close to the auroral zone in the wake of the level of geo-
magnetic activity. However, in years of minimal activity, the probabilities of accidents in
hazardous and safe areas are practically equalized [51]. It is also assumed that there is a
connection between the level of solar and geomagnetic disturbance and the course of a
number of processes in the Earth’s biosphere, such as: the dynamics of animal populations,
epidemics, the number of cardiovascular crises, etc.

The study of solar-terrestrial relations is not only a fundamental scientific problem,
but also has great predictive value. Forecasts of the state of the magnetosphere and other
shells of the Earth are extremely necessary for solving practical problems in the field of
astronautics, radio communications, transport, meteorology and climatology, agriculture,
biology and medicine.

The strongest and most noticeable manifestation of solar activity (SA) is a powerful
flare on the Sun, and the consequences of the flare begin to affect the near-Earth space
relatively quickly. In particular, particles accelerated in a flare, invading the ionosphere
and stratosphere of polar latitudes, cause a long-term deterioration of short-wave radio
communications, for 10s of hours, and contribute to the depletion of the ozone layer. The
solar flare itself is caused by the compression of plasma under the influence of a magnetic
field, hence the interest in observing the activity of the Sun’s magnetosphere.

Spots on the Sun are an obvious sign of its activity, the formation of which is associated
with the Sun’s magnetic field. After 17 years of observations, Heinrich Schwabe found that
the number of sunspots changes over time. Years of minimum sunspots on the surface of
the Sun may be zero; in years of maximum sunspots, their number is measured in tens.
Highs and lows alternate on average every 11 years (from 7 to 17 years); however, there
may be longer SA cycles.

Since the change in the number of sunspots is the most studied type of solar activity,
we can apply the described (5) model to approximate data on the average monthly number
of sunspots in the period from May 1996 to August 2021, i.e., 23, 24 and beginning of 25–
SA cycles, with a step of 1 month.

The data on the CA process presented in the graph in Figure 9, were obtained from
the World Data Center database for the production, preservation and dissemination of
the international sunspot number, from the Royal Belgian Observatory website, project:
Sunspot Index and Long-term Solar Observations [52], and published on the website
www.sidc.be (accessed on 15 August 2021).

Figure 9. Monthly sunspot data from May 1996 to August 2021 in 1-month increments.

7.2. Numerical Experiment for SA

The modeling parameters used were calculated with different variations in the values
of the modeling parameters, from which the most appropriate combination was selected
according to the maximum correlation coefficient with the experimental ones.

www.sidc.be
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For the input data, we will normalize the number of sunspots to the maximum;
therefore, the experimental data are in relative units. The simulation results were not
standardized.

Example 1. We will approximate (Figure 10, blue curve) the input data with the model (5), with
the parameters:

N = 304, T = 304, u0 = 0.031109,

α(t) = −0.5 exp
(
−t
T

)
cos
(

2.2πt
T

)2
+ 0.25− 0.125t

T
+ 0.25 exp

(
−t
T

)
,

a(t) =
2.85t

T
, b = 0.01,

c(t) = −0.5 exp
(
−t
T

)
cos
(

2.2πt
T

)2
+ 0.25− 0.125t

T
+ 0.25 exp

(
−t
T

)
.

(9)

Let us carry out the proposed model (5), forecasting (Figure 10, red curve) the average monthly
sunspot number for 10 years, from August 2021 to August 2031, with the parameters:

N = 424, T = 424, u0 = 0.031109,

α(t) = −0.5 exp
(
−1.3947t

T

)
cos
(

3.068πt
T

)2
+ 0.25− 0.1743t

T
+ 0.25 exp

(
−1.3947t

T

)
,

a(t) = 1.394
2.85t

T
, b = 0.01,

c(t) = −0.5 exp
(
−1.3947t

T

)
cos
(

3.068πt
T

)2
+ 0.25− 0.1743t

T
+ 0.25 exp

(
−1.3947t

T

)
.

(10)

Figure 10. Numerical experiment for SA. Correlation coefficient 87.4%.

7.3. Comparison and Conclusions

It is shown that with the optimal (9) choice of the corresponding simulation parameters:
α(t) and a(t), b(t), c(t), the calculated curves are in good agreement with the smoothed
experimental data for SA cycles. Additionally, with slightly different parameters (10), the
model (5) is able to give some forecast of the possible number of sunspots and, as a result,
approximate boundaries of the current and future SA cycle. It has been shown that solar
activity is decreasing.

Furthermore, from (Figure 11) it can be seen that the results obtained by the mathemat-
ical model (5) are in good agreement with the known models and the results of solar activity
forecasts. The graphs in (Figure 11) are provided by the site www.spaceweatherlive.com,
accessed on 10 February 2022.

www.spaceweatherlive.com
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Figure 11. Solar cycle progression-Sunspot number.

7.4. Implementation of Research Results

1. The Federal State Budgetary Institution of Science, the Institute of Cosmophysical
Research and Radio Wave Propagation, Far Eastern Branch of the Russian Academy
of Sciences, confirms that in the course of carrying out research work under the
RFBR grant No. the program “MMDCSA program—mathematical modeling of the
dynamics of solar activity cycles” and registered in Rospatent [39] on 25 December
2019 No. 2019667403.
The program allows one to simulate the dynamics of solar activity at the stage of
rise, to visualize the simulation. The fractional Riccati equation with derivatives of
Gerasimov-Caputo fractional orders is taken as a model equation. With the help of a
numerical algorithm, solutions of the model are obtained. The 23rd and 24th cycles of
solar activity were studied, the model parameters were refined using experimental
data, and it was shown that solar activity is decreasing.

2. The Institute of Applied Mathematics and Automation, a branch of the Federal State
Budgetary Scientific Institution “Federal Scientific Center” “Kabardino-Balkarian
Scientific Center of the Russian Academy of Sciences”, confirms that when per-
forming research work on the topic “Mathematical Modeling of the Processes of
Geophysics and Physics of Elementary Particles” (No. AAAA -A19-119013190079-5)
prepared and published the article [53] D. A. Tverdy “Non-local Cauchy problem
for the Riccati equation with a fractional derivative as a mathematical model of solar
activity dynamics”.
The paper investigates a mathematical model of solar activity dynamics at the ascent
stage, which is based on the Cauchy problem for the Riccati equation of fractional
order. The solution obtained by Newton’s method is compared with observational
data. It is shown that the proposed model is in good agreement with the dynamics
of solar activity in the specified period, which allows the identification of trends and
detection of memory effects.
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8. Simulation the Dynamics of Infection with COVID-19
8.1. Review of Literature and Experimental Data of the Process

In January 2020, according to WHO, in the Chinese city of Wuhan, the authorities
identified a new virus (2019-nCoV) that later became known as SARS-CoV-2. The virus
caused pneumonia of unknown etiology.

A month later, on 11 February 2020, ICTV organized an attempt to study the issue
from a mathematical point of view, in the work of the authors Tian-Mu Chen, Jia Rui,
Qiu-Peng Wang, Ze-Yu Zhao, Jing-An Cui, and Ling Yin [54]. This study aimed to develop
a model that mathematically shows the transmissibility of the virus, that is, that the disease
is caused by parasites, bacteria or viruses and transmitted by vectors. As a result, it was
shown that, probably, bats could act as carriers of infection to humans. The result was also
obtained that the transmissibility of SARS-CoV-2 is higher or lower than MERS in various
countries and regions of the world.

Since in this study we will carry out graphical modeling of the dynamics of infection
of COVID-19, we were interested in the article by Alguliyev, R., Aliguliyev, R. and Yusifov
F. [55]. In this scientific work, the authors proposed a conceptual model for the COVID-19
epidemic, which could take into account many factors that could influence the change
(growth) in the number of infected people. However, the authors note that this model failed
to take into account all factors.

Today, an important task is to study the mathematical foundations of the COVID-
19 epidemic, and the subsequent development of various mathematical models of the
dynamics of processes associated with COVID-19. Of particular interest are the models
based on the mathematical formalism of fractional: differentiation and integration [56–63].
Fractional calculus makes it possible to take into account the heredity of epidemiological
processes in the model. The memory effect, as is known, is the property of a dynamic
system to remember the previous states of the system. In particular, derivatives of fractional
orders allow, for example, to describe that a person with a disease goes through a certain
incubation period, and the symptoms may not appear immediately, but after some time
the infection will enter the active phase. In other words, the fractional orders will be
responsible for the intensity of such a dynamic process.

An analysis of the literature on the topic [56–63] and other sources, leads to the
following conclusions:

• the most part these are theoretical works, regarding the existence and uniqueness of a
solution to a boundary value problem or the Cauchy problem, for model systems of
differential equations, or with different definitions of fractional derivative operators,
must be taken into account.;

• the mathematical models under consideration are both difficult to construct a numeri-
cal algorithm and further computer implementation;

• as a result, there are no comparisons between model results and experimental data on
the COVID-19 epidemic.

In this study [25], we offer a relatively simple mathematical model (5) of the dynamic
system of the COVID-19 epidemic, which is based on the fractional Riccati equation, for
the following reasons:

• The Riccati equation, as shown in [50], can give good results for describing processes
obeying the logistic law, to discover what might be true about the COVID-19 epidemic;

• variable orders of the fractional derivative will allow us to take into account how
the effect of variable memory affects the dynamic system. This will allow modeling
more complex ongoing epidemiological subprocesses and clarifying the mathemati-
cal model.

In this part of the study, which is devoted to the issue of application to the description
of the dynamic process of the COVID-19 epidemic, we, using the proposed model (5), will
approximate the known data on various processes of the COVID-19 coronavirus epidemic.
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In particular, for new cases of COVID-19 infection and for the total number of infected
in the Russian Federation, Figures 12 and 13, as well as in the Republic of Uzbekistan,
Figures 14 and 15. The experimental data [64] used for comparison was obtained from the
“Our World in Data” project with the support of CSSE at JHU.

Figure 12. Experimental data: for new cases of COVID-19 infection in the Russian Federation, from
31 January 2020 to 31 December 2021, in 1 day increments.

Figure 13. Experimental data: for new cases of COVID-19 infection in the Russian Federation, from
31 January 2020 to 31 December 2021, in 1 day increments.

Figure 14. Experimental data: for new cases of COVID-19 infection in the Republic of Uzbekistan,
from 15 March 2020 to 31 December 2021, with a step of 1 day.
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Figure 15. Experimental data: for total cases of COVID-19 infection in the Republic of Uzbekistan,
from 15 March 2020 to 31 December 2021, with a step of 1 day.

The data is provided as a .xlsx file and is available on the project website ourworldindata.
org [64,65]. The file is a table, where each column represents a measurement of one of the
observed parameters in increments of one day. The data of this project, with the assistance
of JHU, is updated once a day and is publicly available. This publicly available information
comes from sources such as national agencies and governments around the world.

Experimental data, as well as the results obtained in the course of numerical simulation,
reflect the number of infected people. These data must be coordinated, and therefore
nondimensionalized, because mathematics prefers to work only with such quantities,
unlike physics. Therefore, normalization is carried out to the maximum, all data on the
number of infected people. Further, the results on the vertical axis of the graphs are
indicated in relative units.

8.2. Numerical Experiments for COVID-19

Example 2. Let us compare the simulation result with data on new cases of infection in the Russian
Federation from 31 January 2020 to 16 September 2021, with a step of 1 day (Figure 16, blue curve).
We will approximate the input data with the (5) model with parameters:

N = 595, T = 595, u0 = 0.00006

α(t) = 0.98 sin
(

2.7πt
T

)2
, a(t) = 0.8 sin

(
2πt
T

)2
− 0.1,

b = 0.2, c(t) = 0.5 sin
(

1.82πt
T

)2
+ 0.25.

Let us carry out the proposed model (5), forecasting (Figure 16, red curve) for new cases of
infection in the Russian Federation from 16 September to 31 December 2021. Main parameters:

N = 701, T = 701, u0 = 0.00006,

α(t) = 0.98 sin
(

3.181πt
T

)2
, a(t) = 0.8 sin

(
2.356πt

T

)2
− 0.1,

b = 0.2, c(t) = 0.5 sin
(

2.14πt
T

)2
+ 0.25.

(11)

ourworldindata.org
ourworldindata.org


Fractal Fract. 2022, 6, 163 23 of 35

Figure 16. Russian Federation. Model curve: (blue)—approximation, with a correlation coefficient:
76.2%; (red)—forecast, through 31 December 2021; (orange)—verification of the forecast with the
correlation coefficient: 39.2%. The red curve and the orange curve are obviously the same.

Now, in this work, let us check how close to reality the predicted (Figure 16, red curve) results
turned out to be. To do this, we compare the experimental data until 31 December 2021 and the
data obtained by the predictive model (5) with the parameters (11), and also calculate the correlation
coefficient between them. The result is visible in (Figure 16, orange curve).

Example 3. Let us compare the simulation result with the data on the total number of infected in
the Russian Federation from 31 January 2020 to 16 September 2021, with a step of 1 day (Figure 17,
blue curve). We will approximate the input data with the model (5) with parameters:

N = 595, T = 595, u0 = 2.812680012× 10−7,

α(t) = 0.2, a(t) = 0.2 sin
(

3πt
T

)2
, b = 0.05, c(t) = 0.25 sin

(
0.33πt

T

)2
.

Let us carry out the proposed model (5), forecasting (Figure 17, red curve) for new cases of
infection in the Russian Federation from 16 September to 31 December 2021. Main parameters:

N = 701, T = 701, u0 = 2.812680012× 10−7,

α(t) = 0.2, a(t) = 0.2 sin
(

3.534πt
T

)2
, b = 0.05, c(t) = 0.25 sin

(
0.3887πt

T

)2
.

(12)

Now, in this work, let us check how close to reality the predicted (Figure 17, red curve) results
turned out to be. To do this, we compare the experimental data until 31 December 2021 and the
data obtained by the predictive model (5) with the parameters (12), and also calculate the correlation
coefficient between them. The result is visible in (Figure 17, orange curve).
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Figure 17. Russian Federation. Model curve: (blue)—approximation, with a correlation coefficient:
99.4%; (red)—forecast, through 31 December 2021; (orange)—verification of the forecast with the
correlation coefficient: 98.2%. The red curve and the orange curve are obviously the same.

Example 4. Let us compare the simulation result with data on new cases of infection in the Republic
of Uzbekistan from 15 March 2020 to 16 September 2021, with a step of 1 day (Figure 18, blue
curve). We will approximate the input data with the (5) model with parameters:

N = 551, T = 551, u0 = 0.0001,

α(t) = 0.98 sin
(

1.64πt
T

)2
, a(t) =

t
T

, b = 0.25, c(t) = 0.5 sin
(

exp(7t/T)t
T2

)2

Additionally, we will carry out the proposed model (5), forecasting (Figure 18, red curve) for
new cases of infection in the Republic of Uzbekistan from 16 September to 31 December 2021. Main
parameters:

Figure 18. The Republic of Uzbekistan. Model curve: (blue)—approximation, with a correlation
coefficient: 82.5%; (red)—forecast, through 31 December 2021; (orange)—verification of the forecast
with the correlation coefficient: 80.4%. The red curve and the orange curve are obviously the same.
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N = 657, T = 657, u(0) = 0.0001,

α(t) = 0.98 sin
(

1.96πt
T

)2
, a(t) =

1.1923t
T

, b = 0.25, c(t) = 0.5 sin
(

exp(8.78t/T)t
T2

)2 (13)

Now, in this work, let us check how close to reality the predicted (Figure 18, red curve) results
turned out to be. To do this, we compare the experimental data until 31 December 2021 and the
data obtained by the predictive model (5) with the parameters (13), and also calculate the correlation
coefficient between them. The result is visible in (Figure 18, orange curve).

Example 5. Let us compare the simulation result with the data on the total number of infected
people in the Republic of Uzbekistan, from 15 March 2020 to 16 September 2021, with a step of
1 day (Figure 19, blue curve). We will approximate the input by the (5) model, with the parameters:

N = 551, T = 551, u0 = 6.000816111× 10−6,

α(t) = 0.15, a(t) = 0.4 sin
(

2πt
T

)2
, b = 0.15, c(t) = 0.25 sin

(
0.5πt

T

)2
.

Let us carry out the proposed model (5), forecasting (Figure 19, red curve) on the total number
of infected in the Republic of Uzbekistan from 16 September to 31 December 2021. Main parameters:

N = 657, T = 657, u0 = 6.000816111× 10−6,

α(t) = 0.15, a(t) = 0.4 sin
(

2.385πt
T

)2
, b = 0.15, c(t) = 0.25 sin

(
0.595πt

T

)2
.

(14)

Figure 19. The Republic of Uzbekistan. Model curve: (blue)—approximation, with a correlation
coefficient: 98.3%; (red)—forecast, through 31 December 2021; (orange)—verification of the forecast
with the correlation coefficient: 95.2%. The red curve and the orange curve are obviously the same.

Now, in this work, let us check how close to reality the predicted (Figure 19, red curve) results
turned out to be. To do this, we compare the experimental data until 31 December 2021 and the
data obtained by the predictive model (5) with the parameters (14), and also calculate the correlation
coefficient between them. The result is visible in (Figure 19, orange curve).
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8.3. Conclusions and Some Remarks

The results obtained by the model (5) presented on (Figures 16–19, blue curve), as well
as presented on (Figures 16–19, red curve), were previously obtained by the author [25]
and published on 3 October 2021.

As can be seen from the Figures 16–19 (blue curve), when choosing the appropriate
parameters: α(t) and a(t), b(t), c(t), mathematical model (5), is able to give results close to
real data. This indicates the possibility of using fractional equations to describe processes
of this type.

This paper shows that our prediction for new infections, from 3 October 2021
(Figures 16 and 18, red curve), visually gives fairly good agreement with experimen-
tal data, which is confirmed for the Republic of Uzbekistan in Example 3 on (Figure 18,
orange curve) and for the Russian Federation in Example 1 (Figure 16, orange curve).

As a result, we can say that the model, with the selection of appropriate parameters, is
able to give some forecast for some parameters of the spread of COVID-19, in particular in
terms of the number of new infected people in the countries of the world considered.

Note that the modeling parameters used for (5) may not fully reflect the reality, since:

• the study uses a “phenomenological” approach to show the applicability of fractional
calculus, in particular the fractional Riccati equation, to the description of processes of
this kind;

• in each of the examples, the model curves were calculated for different variations
in the values of the simulation parameters, from which the most appropriate com-
bination was selected according to the maximum correlation coefficient with the
experimental ones.

which can be clearly seen in (Figure 16, orange curve), where there is some lag between the
model curve and the data being approximated.

In continuation of the work, then it is necessary to compose and solve the correspond-
ing inverse problem in order to clarify the parameters of the mathematical model and their
meaning in the context of the problem.

9. Simulation the Dynamics of Radon Volumetric Activity in the
Accumulation Chamber
9.1. Formulation of the Problem

Today, the main idea is that during the preparation of the future earthquake source,
changes in the regional stress fields of the matter of the Earth’s crust occur, which leads
to changes in pressure and temperature gradients, changes (increase) in permeability and
porosity. Which, in turn, leads to a change in the rate of radon migration to the surface.

This means that if at the boundary of the lithosphere-atmosphere continuous moni-
toring of RVA (and other parameters of radon fields) in the subsoil air is conducted with
a high degree of detail, then this will make it possible to judge the geophysical processes
occurring in the Earth’s crust. At least about such processes that could cause a change
in the RFD radon flux density from the surface as a source to the atmosphere [66,67], as
well as anomalous variations in (recorded) radon concentration. At the same time, one
should not forget about the existence of various meteorological and atmospheric values,
freezing of the upper layer of soil, and so on, paramaters which affect the flow of radon
into the atmosphere.

This suggests the conclusion that measurements of the radon content (more precisely,
continuous monitoring of RVA) in the upper soil layer, data processing and subsequent
mathematical modeling of RVA are of great interest, for example, in the development of
various methods for predicting strong earthquakes. RVA monitoring, for such purposes,
has been carried out at the Petropavlovsk-Kamchatka geodynamic test site since 1997 [27].

The concentration of radon is recorded by gas-discharge counters inside storage
chambers installed on the ground. For more information on how radon parameters are
monitored and the organization of monitoring points, see [27]. Let us just note that the
areas of increased radon flow into the atmosphere are characterized by zones with narrow
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localization, and their search makes it necessary to quickly evaluate RFD using an accessible
method. An example of such a method is also described in detail in [27]. This method was
tested in practice in Kamchatka at various points for monitoring subsoil gases [27].

However, when describing the process of radon accumulation in the accumulation
chamber, from the point of view of mathematics, in [27], a number of assumptions were
made to simplify the solution of the problem, in particular, the accumulation process was
assumed to be stationary, that is, when the AER and RFD conditions from the soil surface
under the camera, did not change dramatically. This probably means that the factors
affecting the speed of this flow were not taken into account, at least atmospheric changes:
temperature, pressure and weather conditions. These terms and conditions are expressed
in the following model, authored by Firstov, P.P. and Makarov, E.O. [27]:

u(t) = umax

(
1− e−λ0t

)
+ u0e−λ0t. (15)

It should be noted that the articles [68,69] provide mathematical modeling of the
process of radon transfer in porous soil, due to convection and diffusion, taking into
account the hereditary nature of the medium. In some sources, such methods of radon
transfer may be called superdiffusion, subdiffusion or anomalous diffusion [13]. We, in
this study, will use a slightly different memory effect in the process of radon migration in
the chamber.

We, in this work, with the help of mathematical modeling, also investigate the process
of radon accumulation in the accumulation chamber in order to determine RFD from the
surface. Additionally, in order to more accurately model the accumulation processes, we
have improved the existing model, using:

• the introduction of the fractional differential Riccati equation as a model for describing
the process of radon accumulation, which will now allow us to take into account
heredity, the memory effect of the process;

• introducing a nonlinear function into the model equation, which is responsible for the
mechanisms of radon entry into the chamber.

Consider the following law of accumulation of radon volumetric activity RVA (Radon
Volumetric Activity) in the chamber:

1
Γ(1− α)

∫ t

0

u̇(σ)
(t− σ)α

dσ = F(u, σ), u(0) = u0, (16)

where the left side of the relation is the fractional derivative of the Gerasimov-Caputo
constant 0 < α < 1 [29–31], according to Remark 3, and u̇ = du

dt .
Now choose a more general function: F(u, σ) = −a(t)u(t)2 + b(t)u(t) + c(t), where

a(t) = c(t)—functions are continuous on the interval [0, T]. Then we arrive at the following
Cauchy problem, for the fractional Riccati equation:

∂α
0tu(σ) + a(t)u2(t)− b(t)u(t)− c(t) = 0, u(0) = u0, (17)

where the term—a(t)u(t)2 of the ratio on the right side, describes the deceleration of radon
accumulation in the chamber. More details in the work of the authors [26].

Note that if in (16) we choose the function F(u, σ) = SD − λ0u(t), where λ0 is AER,
SD = λ0umax—RVA mechanism, umax = max

t

(
û(t)

)
—maximum RVA value over time T

obtained from experimental data û(t), then we get the results of [70].
Now, let us compare the initial data, the proposed model (17) and the classic model

(15). The values on the graphs are given in relative units, since, for the RVA simulation
results and input experimental data, normalization to the maximum is carried out.
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9.2. Numerical Experiment for RVA

To determine the parameters of the model, observational data on radon accumulation
at many observation points were used, for example: at the PRTR point (Kamchatka), the
USSR point on Sakhalin Island [71] and GL (Kamchatka) [27].

The modeling parameters used were calculated with different variations in the values
of the modeling parameters, using the automated procedures described in Section 5.6,
from which the most appropriate combination was selected according to the maximum
correlation coefficient with the experimental ones.

9.3. RVA Modeling Conclusions

As can be seen from the Figures 20–30, the proposed model from [26], which takes
into account non-linearity (17), can give results that are closer to real data compared to the
known model (15) from [27].

Example 6 (Viewpoint MP3, camera 1). We will approximate the input data with general
parameters: N = 46, T = 46, umax = 1, u0 = 0.2979249012, λ0 = 0.1. The proposed model (17)
with α = 0.95 with the rest of the parameters: a = λ0umax, b = 0.001, c = λ0umax, and the classic
model (15).

Figure 20. Correlation coefficients: 89.9% for the proposed (17) model (blue), and 86.9% for the
classic (15) model (black).

Example 7 (Viewpoint MP3, camera 2). We will approximate the input data with the parameters:
N = 46, T = 46, umax = 1, u0 = 0.3353140047, λ0 = 0.085. The proposed model (17) with
α = 0.85 with other parameters: a = λ0umax, b = 0.001, c = λ0umax, and the classic model (15).

Figure 21. Correlation coefficients: 98.6% for the proposed (17) model (blue), and 99% for the classic
(15) model (black).

Example 8. Observation point PRT, camera 1. We will approximate the input data with the
parameters: N = 2700, T = 45, umax = 1, u0 = 0.2554126137, λ0 = 0.1. The proposed model
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(17) with alpha = 0.95 with other parameters: a = λ0umax, b = 0.001, c = λ0umax, and the
classic model (15).

Figure 22. Correlation coefficients: 97.9% for the proposed (17) model (blue), and 96% for the classic
(15) model (black).

Example 9 (Observation point PRT, camera 2). We will approximate the input data with the
parameters: N = 2640, T = 44, umax = 1, u0 = 0.3813700918, λ0 = 0.1. The proposed model
(17) with α = 0.95 with other parameters: a = λ0umax, b = 0.001, c = λ0umax, and the classic
model (15).

Figure 23. Correlation coefficients: 98% for the proposed (17) model (blue), and 95% for the classic
(15) model (black).

Example 10 (Observation point PRT, camera 3). We will approximate the input data with the
parameters: N = 2700, T = 45, umax = 1, u0 = 0.3081783500, λ0 = 0.1. The proposed model
(17) with α = 0.95 with other parameters: a = λ0umax, b = 0.001, c = λ0umax, and the classic
model (15).

Figure 24. Correlation coefficients: 98.2% for the proposed (17) model (blue), and 96.4% for the
classic (15) model (black).
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Example 11 (Observation point PRT 21, camera 1). We will approximate the input data with
the parameters: N = 97, T = 97, umax = 1, u0 = 0.7189650259, λ0 = 0.045. The proposed model
(17) with α = 0.85 with other parameters: a = λ0umax, b = 0.001, c = λ0umax, and the classic
model (15).

Figure 25. Correlation coefficients: 96.1% for the proposed (17) model (blue), and 96.8% for the
classic (15) model (black).

Example 12 (Observation point PRT 21 only stream, camera 1). We will approximate the input
data with the parameters: N = 121, T = 121, umax = 1, u0 = 0.7189650259, λ0 = 0.045. The
proposed model (17) with α = 0.85 with other parameters: a = λ0umax, b = 0.001, c = λ0umax,
and the classic model (15).

Figure 26. Correlation coefficients: 96.5% for the proposed (17) model (blue), and 97.1% for the
classic (15) model (black).

Example 13 (Observation point PRT 21 t stream, camera 2). We will approximate the input
data with the parameters: N = 121, T = 121, umax = 1, u0 = 0.8117815770, λ0 = 0.04. The
proposed model (17) with α = 0.8 with other parameters: a = λ0umax, b = 0.001, c = λ0umax,
and the classic model (15).

Figure 27. Correlation coefficients: 92.5% for the proposed (17) model (blue), and 93.7% for the
classic (15) model (black).
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Example 14 (Sakhalin observation point, camera 1). We will approximate the input data with
the parameters: N = 320, T = 160, umax = 1, u0 = 0.2383330133, λ0 = 0.06. The proposed
model (17) with α = 0.9 with other parameters: a = λ0umax, b = 0.001, c = λ0umax, and the
classic model (15).

Figure 28. Correlation coefficients: 98.6% for the proposed (17) model (blue), and 98.9% for the
classic (15) model (black).

Example 15 (Observation point GLL stream, camera 2). We will approximate the input data
with the parameters: N = 657, T = 1314, umax = 1, u0 = 0.2407407407, λ0 = 0.01. The
proposed model (17) with α = 0.85 with other parameters: a = λ0umax, b = 0.001, c = λ0umax,
and the classic model (15).

Figure 29. Correlation coefficients: 92% for the proposed (17) model (blue), and 90% for the classic
(15) model (black).

Example 16 (Observation point GLL stream, camera 1). We will approximate the input data
with the parameters: N = 657, T = 1314, umax = 1, u0 = 0.4844827586, λ0 = 0.1. The
proposed model (17) with α = 0.25 with other parameters: a(t) = (1−λ0umax)t

T , b = 0.001,
c(t) = (1−λ0umax)t

T , and the classic model (15).

Figure 30. Correlation coefficient: 89.7% for the proposed (17) model (blue), and 17% for the classic
(15) model (black).
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10. Conclusions

Various possible applications of the fractional Riccati equation for modeling dynamic
processes with saturation and memory effect have been proposed. In particular: SA
speakers, RVA speakers in a storage room, as well as the dynamics of infection with
COVID-19 in different countries around the world. With the help of the developed library
in the Maple 2021 symbolic mathematics environment, the above processes were simulated.
The parameters of the proposed mathematical model were selected in the best way based
on comparison with smoothed and complete experimental data of these processes. Good
results were obtained by comparing the obtained model curves and complete experimental
data. This indicates that, as a model equation, the fractional Riccati equation with a VO
derivative of the Gerasimov-Caputo type and non-constant coefficients as functions is
adequate and applicable to saturation processes taking into account dynamic memory.

Theoretical results [24] on numerical methods of solution, the results of mathematical
modeling of some physical processes, as well as the developed programs, were obtained,
carried out and created, within the framework of the PhD dissertation in physical and
mathematical sciences. All three of these points are necessary requirements for the scien-
tific novelty of the dissertation, for successful defense and obtaining a PHd degree. The
introduction mentions that there are a number of gaps in the literature on this topic, and
this PhD thesis is devoted to filling these gaps, and the results constitute a scientific novelty.

11. Patents

As part of the study “Mathematical modeling using the fractional Riccati equation
of some dynamic processes with saturation and memory effects”, which includes the
work [24] and this article, for the Maple 2021 symbolic computer mathematics environment,
the «FDREext» library was developed. This program code implements: numerical methods
and algorithms required for model calculations (5); algorithms for numerical analysis of the
numerical methods used; algorithms for extracting, processing and recording experimental
and calculated data for their comparison; functions for data visualization.
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VO variable order
EFDS Explicit Finite-difference Method
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IFDS Implicit Finite-difference Method
ONM ordinary Newton Method
MNM Modified Newton Method
UV Ultraviolet
SA Solar Activity
WHO World Health Organization
SARS-CoV-2 Severe acute respiratory syndrome-related coronavirus 2
ICTV International Committee on Taxonomy of Viruses
MERS Middle East Respiratory Syndrome
COVID-19 COronaVIrus Disease 2019
CSSE Center for Systems Science and Engineering
JHU Johns Hopkins University
RVA Radon Volumetric Activity (Bq/m3)
Rn Radon
RFD Radon Flux Density
AER Air Exchange Rate
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