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Abstract: The current manuscript describes the dynamics of a fractional mathematical model of
serial killing under the Mittag–Leffler kernel. Using the fixed point theory approach, we present a
qualitative analysis of the problem and establish a result that ensures the existence of at least one
solution. Ulam’s stability of the given model is presented by using nonlinear concepts. The iterative
fractional-order Adams–Bashforth approach is being used to find the approximate solution. The
suggested method is numerically simulated at various fractional orders. The simulation is carried
out for various control strategies. Over time, all of the compartments demonstrate convergence
and stability. Different fractional orders have produced an excellent comparison outcome, with low
fractional orders achieving stability sooner.
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1. Introduction

All governments throughout the globe have focused their attention on crimes, specifi-
cally serial killings. All the crime is a dignified sociological problem that has been broadly
studied in the scientific literature [1]. Every year, billions of dollars are spent around the
world to control crime. Different imprisonment and restoration centers are made to handle
the crimes of addicted persons [2]. Crime has five types, violent crime, white-collar crime,
property crime, organized crime, and consensual crime [3]. One type of violent crime is a
serial killer. Serial killer refers to one who commits the crime (murder) three times or more
with a cooling-off period between the murders [4,5]. These killers murder their targets and
create a very negative impact on society. The killers may or may not be strangers to the
target. The killers prefer the areas where they have a recognizable base and the area is
being circumscribed by their offenses [6,7].

Gangs cannot be ignored in the history of crimes. Gangs are expanding worldwide and
are involved in different types of crimes in rural and urban areas, especially violent crimes.
Globally, 48 percent of violent crimes are reportedly due to gangs. Further, 27 percent of
crimes are general in small cities, while 66 percent of general crimes in big cities due to
gangs. In order to securely carry out their perverted urges and bloodlust, a serial killer
joins a criminal organization. As such, the existence of gangs has emerged as the most
sensitive public matter [8,9].

The mathematical model provides an examination of the development of criminal-
ity and its different effects, including sociological and economic factors. Such types of
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research suggest possible strategies for decreasing and controlling crimes [10–13]. Re-
cently, several researchers have studied different models for crimes by using ordinary and
partial differential equations [2,14–17]. The model used is expressed in the form of the
following DEs:

dSh
dt

= Λ− b(β1 + β2)ShGh
N

− πSh + β4u4Jh,

dWh
dt

=
bβ1ShGh

N
− (u1 + π)Wh,

dCh
dt

= u1Wh +
bβ2ShGh

N
− (u2 + u3 + π)Ch,

dGh
dt

= u2Ch − (π + β3)Gh + β4(1− u4)Jh,

dJh
dt

= u3Ch + β3Gh − (β4 + π)Jh,

(1)

In Model (1), the total population is divided into five classes based on stages of
addiction to crimes (serial killing). The first class is the susceptible humans Sh in the
population that may or may not have contact with serial killers. Most individuals are in the
age of 14 years or greater. The Wh is the weaponized class, Ch is the active class of serial
killers, Gh is the class of gang and Jh is the serial killers detained in jail. The parameters in
Model (1) are given with complete descriptions below (Table 1).

Table 1. Meaning of parameters of the model (1).

Notation Description of the Parameter

Λ Rate of recruitment in the susceptible class
b Rate of contact of susceptible and gangs members
u1 Rate of fraction of weaponized individuals opting to serial killing
β1 Probability rate of weaponized in susceptible class
β2 Rate of probability of susceptible to be serial killer
β3 Rate of arrest members of gang
β4 Rate of sentence of jail
u2 Rate of fraction of serial killers moving to gang
u3 Rate of arrest of serial killer
π Rate of natural death

Researchers have given fractional calculus a lot of attention, and it has been applied in a variety
of disciplines. Researchers have developed mathematical models for a variety of diseases, such as
in [18–20].The majority of mathematical models are based on integer-order differential and integral
equations. Fractional differential equations (FDEs) have been extensively utilized for the last twenty
years to construct models of real processes with a higher degree of precision and accuracy [21,22].
Many scholars have utilized a variety of approaches to analyze fractional order (FO) mathematical
models qualitatively; see, for example, [23,24]. Non-linear FDEs are notoriously difficult to solve. To
deal with this problem, many mathematicians have constructed a variety of approaches for computing
approximate solutions for nonlinear systems [25–28].

To address the shortcomings of the ordinary operator, a variety of fractional order derivatives
have been designed [29]. Riemann–Liouville constructed the definition of the fractional derivative
(FD). Later on, Caputo subsequently redefined and enhanced the definition of FD. The definition
of Caputo FD is based on the singular power-law kernel. The study of real problems using FDs
frequently results in singularities that are unsatisfactory for mathematical model dynamics. After
many decades, a new FD known as the Caputo–Fabrizio (CF) operator was defined through a non-
singular kernel to avoid such a problem [30]. In this operator, there is the kernel’s locality problem.
To address these limitations, Atangana and Baleanu (AB) [31] introduced a novel type of FD through
the nonsingular and nonlocal kernel, which we call the Mittag–Leffler kernel. The new derivative
operator was also employed, ensuring that the kernel has neither singularity nor localization. The
AB operator has many applications in the applied sciences. For instance, Rahman et al. used the AB
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operator to analyze the TB disease with incomplete treatment [32]. Ahmad et al. investigated the
tumor-immune-vitamins model using the AB fractional operator [33]. The Kawahara equation has
been studied under the AB operator by Rahman et al. in [34].

In this paper, we examine a novel fractional mathematical model of serial killing. This model,
reported in [35], has not been studied for particular crimes in the sense of ABC FO. This new work
provides qualitative and quantitative results regarding the dynamics of serial killing in terms of
different strategies. The proposed model under theABC operator is expressed as follows:

ABCD℘
t Sh = Λ− b(β1 + β2)ShGh

T
− πSh + β4u4Jh,

ABCD℘
t Wh =

bβ1ShGh
T

− (u1 + π)Wh,

ABCD℘
t Ch = u1Wh +

bβ2ShGh
T

− (u2 + u3 + π)Ch,

ABCD℘
t Gh = u2Ch − (π + β3)Gh + β4(1− u4)Jh,

ABCD℘
t Jh = u3Ch + β3Gh − (β4 + π)Jh,

(2)

along with initial conditions:

Sh(0) = Sh(0) ≥ 0, Wh(0) = Wh(0) ≥ 0, Ch(0) = Ch(0) ≥ 0, Gh(0) = Gh(0) ≥ 0,

Jh(0) = Jh(0) ≥ 0.
(3)

2. Preliminaries
In this section, few fundamental results and definitions are given, which may be useful for

readers [31]. Let FD and FI denote the fractional derivative and integral, respectively.

Definition 1. TheABC FD of order 0 < ℘ ≤ 1 for a function X (t) ∈ H1[0, T] is given as:

ABCD℘
t (X (t)) =

N(℘)

1− ℘

∫ t

0
E℘

[
−℘

1− ℘

(
t− η

)℘] d
dη

X (η)dη, (4)

whereN(℘) denotes the normalization function such thatN(0) = N(1) = 1, and E℘ is given by:

E℘(y) =
∞

∑
k=0

yk

Γ(℘k + 1)
,

where Γ(.) denotes the Gamma function and Re(℘) > 0.

Definition 2. TheAB fractional integration of X ∈ L1(0, T) is defined as:

ABC I℘t X (t) =
1− ℘

N(℘)
X (t) +

℘

N(℘)

1
Γ(℘)

∫ t

0
(t− η)(℘−1)X (η)dη, t > 0. (5)

Lemma 1. Let us consider:

ABCD℘
t X (t) = Ψ(t),

X (0) = X0, (6)

then:

X (t) = X0 +
1− ℘

N(℘)
Ψ(t) +

℘

N(℘)

1
Γ(℘)

∫ t

0
(t− η)℘−1Ψ(η)dη. (7)

Proof. Applying fractional integration to both side of Equation (6), we have:

ABC
0 It

[
ABCD℘

t X (t)
]

= ABC
0 It

[
Ψ(t)

]
,

we get:
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X (t)−X (0) =
1− ℘

N(℘)
Ψ(t) +

℘

N(℘)

1
Γ(℘)

∫ t

0
(t− η)(℘−1)Ψ(η)dη,

or:

X (t) = X (0) +
1− ℘

N(℘)
Ψ(t) +

℘

N(℘)

1
Γ(℘)

∫ t

0
(t− η)(℘−1)Ψ(η)dη.

Hence proved.

Theorem 1. Assume O denotes a Banach space and Q ⊂ O be a bounded and convex closed set. Let ψ : Q→ Q

be a continuous mapping. If ψD ⊂ O and ψD is relatively compact, then at least one fixed point will be exists of
the operator in D.

3. Qualitative Study of the Proposed Model
3.1. Existence Theory

Utilizing the popular theorems of fixed point theory, we present the existence, uniqueness of
solution, and stability results of the studied Model (2) in this portion of the article. We rewrite the
model under consideration in the following way to get the required results.

ABCD℘
t Sh(t) = G1(t, Sh, Wh, Ch, Gh, Jh),

ABCD℘
t Wh(t) = G2(t, Sh, Wh, Ch, Gh, Jh),

ABCD℘
t Ch(t) = G3(t, Sh, Wh, Ch, Gh, Jh),

ABCD℘
t Gh(t) = G4(t, Sh, Wh, Ch, Gh, Jh),

ABCD℘
t Jh(t) = G5(t, Sh, Wh, Ch, Gh, Jh),

(8)

where: 

G1(t, Sh, Wh, Ch, Gh, Jh) = Λ− b(β1 + β2)ShGh
T

− πSh + β4u4Jh,

G2(t, Sh, Wh, Ch, Gh, Jh) =
bβ1ShGh

T
− (u1 + π)Wh,

G3(t, Sh, Wh, Ch, Gh, Jh) = u1Wh +
bβ2ShGh

T
− (u2 + u3 + π)Ch,

G4(t, Sh, Wh, Ch, Gh, Jh) = u2Ch − (π + β3)Gh + β4(1− u4)Jh,

G5(t, Sh, Wh, Ch, Gh, Jh) == u3Ch + β3Gh − (β4 + π)Jh.

(9)

Next, we express Models (2) and (3) as:

ABCD℘
t Ψ(t) = Ω(t, Ψ(t)),

Ψ(0) = Ψ0, (10)

where: 
Ψ :=

(
Sh, Wh, Ch, Gh, Jh

)T ,

Ψ(0) :=
(
Sh(0), Wh(0), Ch(0), Gh(0), Jh(0)

)T ,

Ω(t, Ψ(t)) := Gi
(
t, Sh, Wh, Ch, Gh, Jh

)T , i = 1, 2, 3, 4, 5.

(11)

Note that (.)T presents the transpose of vector. Using Lemma 1, the system (10) converts to:

Ψ(t) = Ψ0 +
1− ℘

N(℘)
Ω(t, Ψ(t)) +

℘

N(℘)Γ(℘)

∫ t

0
(t− η)℘−1Ω(η, Ψ(η))dη. (12)

Let Υ = C([0, T], R). Let us define a Banach space z = (Υ5, ‖Ψ‖) with norm
‖Ψ‖ = supt∈[0,T]

(
|Sh|+ |Wh|+ |Ch|+ |GH |+ |Jh|

)
.

Now, we explore the existence results for the proposed Models (2) and (3) with the help of the
“Schauder’s fixed point theorem”.
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Theorem 2. Let Ω ∈ z be a continuous function and ∃ M > 0, 3 |Ω(t, Ψ(t))| ≤ M(1 + |Ψ|), ∀
0 ≤ t ≤ T and Ψ ∈ z. If:

∇1 =

(
(1− ℘)Γ(℘)M+MT℘

N(℘)Γ(℘)

)
< 1, (13)

then the model under consideration has at least one solution.

Proof. We define Y : z→ z as:

(YΨ)(t) = Ψ0 +
1− ℘

N(℘)
Ω(t, Ψ(t)) +

℘

N(℘)Γ(℘)

∫ t

0
(t− η)℘−1Ω(η, Ψ(η))dη. (14)

Let Bv = {Ψ ∈ Ω : ‖Ψ ≤ v, v > 0‖} be convex and closed ball with v ≥ ∇2
1−∇1

, where:

∇2 = |Ψ0|+
1− ℘

N(℘)
M+

T℘

N(℘)Γ(℘)
M. (15)

First, we have to show that (YBv) ⊂ Bv , ∀ 0 ≤ t ≤ T. One can get:

|(YΨ)(t)| ≤ |Ψ0|+
1− ℘

N(℘)
|Ω(t, Ψ(t))|+ ℘

N(℘)Γ(℘)

∫ t

0
(t− η)℘−1|Ω(η, Ψ(η))|dη,

≤ |Ψ0|+
1− ℘

N(℘)
N(1 + |Ψ(t)|) + ℘

N(℘)Γ(℘)

∫ t

0
(t− η)℘−1N(1 + |Ψ(t)|)dη. (16)

Again since Ψ ∈ Bv , one may write:

‖(YΨ)(t)‖ ≤ |Ψ0|+
1− ℘

N(℘)
M(1 + ‖Ψ(t)‖) + T℘

N(℘)Γ(℘)
M(1 + ‖Ψ(t)‖),

≤ |Ψ0|+
1− ℘

N(℘)
M+

T℘

N(℘)Γ(℘)
M+

[
1− ℘

N(℘)
M+

T℘

N(℘)Γ(℘)
M
]

ρ,

≤ ∇2 +∇1v ≤ v.

Hence (YBv) ⊂ Bv . Now, our next task is to verify that Y is continuous. Let {Ψn} be a sequence
3 Ψn → Ψ in Bv as n→ ∞. Now, one may get:

∣∣(YΨn)(t)− (YΨ)(t)
∣∣ ≤ −℘+ 1

N(℘)

∣∣Ω(t, Ψn(t))−Ω(t , Ψ(t))
∣∣+ ℘

N(℘)Γ(℘)
×∫ t

0
(t− η)℘−1∣∣Ω(η, Ψn(η))−Ω(η, Ψ(η))

∣∣dη

≤ 1− ℘

N(℘)
‖Ω(t, Ψn(t))−Ω(t , Ψ(t))‖+

T℘

N(℘)Γ(℘)
‖Ω(η, Ψn(η))−Ω(η, Ψ(η))‖.

It follows that:

‖(YΨn)− (YΨ)‖ → 0 as n→ ∞.

This verifies the continuity of Y in Bv . Now, we have to show that YBv is a relatively compact.
Since, we have proved that (YBv) ⊂ Bv , its easy to show the uniform boundedness of (YBv). Finally,
we show the equi-continuity of operator Y on Bv . To do so let Ψ ∈ Bv and t1, t2 ∈ [0, T] with t1 < t2.
Then we have:

‖(YΨ)(t2)− (YΨ)(t1)‖ ≤ 1− ℘

N(℘)

∣∣Ω(t2, Ψ(t2))−Ω(t1, Ψ(t1))
∣∣

+
℘

N(℘)Γ(℘)

∣∣∣∣[ ∫ t2

0
(t2 − η)℘−1 −

∫ t1

0
(t1 − η)℘−1

]
Ω(η, Ψ(η))dη

∣∣∣∣
≤ 1− ℘

N(℘)

∣∣Ω(t2, Ψ(t2))−Ω(t1, Ψ(t1))
∣∣+ ℘

N(℘)

M(1 + ‖Ψ‖)
Γ(℘+ 1)

(t℘2 − t℘1 ).

Apparently, the right side ‖YΨ(t2)− YΨ(t1)‖ → 0 as t2 → t1. By “Arzela-Ascoli theorem”,
(YBv) is a relatively compact operator and so Y is completely continuous. By Theorem 1, at least one
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fixed point of the operator will exists. Consequently, the fractional order considered model has at
least one solution.

3.2. Stability Result
In this portion, we discuss the Ulam’s type stability of the given Model (2) for the concept of

stability through Ulam–Hyer’s techniques by considering a perturbation term Ω(t), which mostly
depend on the solution of the system along with initial condition Ω(0) = 0 as follows:

• |Ω(t)| ≤ ε for ε > 0.
• ABC

0 D℘
t Ψ(t) = y(t, Ψ) + Ω(t).

Lemma 2. The solution of:

ABC
0 D℘

t Ψ(t) = y(t, Ψ(t)) + Ω(t), 0 < ℘ ≤ 1 t ∈ [0, T],

Ψ(0) = Ψ0, (17)

satisfies:∣∣∣∣Ψ(t) −
(

Ψ0(t) + [y(t, Ψ(t)) + Ω(t)]
(1− ℘)

N(℘)
+

℘

N(℘)Γ(℘)

∫ t

0
(t− η)℘−1[y(η, Ψ(η)) + Ω(η)]dη

)∣∣∣∣,
≤ (1− ℘)Γ(℘+ 1) + ℘T℘

N(℘)Γ(℘+ 1)
ε = Λε, (18)

where:

Λ =
(1− ℘)Γ(℘+ 1) + ℘T℘

N(℘)Γ(℘+ 1)
.

Theorem 3. Let Ω ∈ z and ∃ X > 0 3
∣∣Ω(t, Ψ)−Ω(t, Ψ̃)

∣∣ ≤ X
∣∣Ψ− Ψ̃

∣∣, ∀ t ∈ [0, T] and Ψ ∈ z with:

1 >
(1− ℘)Γ(℘+ 1)X + ℘T℘

N(℘)Γ(℘+ 1)
.

Let Ψ and Ψ̃ be the solutions for model (10) and:{
ABCD℘Ψ̃(t) = Ω(t, Ψ̃(t)),

Ψ̃(0) = Ψ0 ≥ 0,
(19)

where: 
Ψ̃ =

(
S̃H , W̃H , C̃H , G̃H , X̃H

)T

Ψ0 =

(
Sh(0), Wh(0), Ch(0), Gh(0), Xh(0)

)T

Ω(t, Ψ̃(t)) = Gi
(
S̃H , W̃H , C̃H , G̃H , X̃H

)T , i = 1, 2, 3, 4, 5.

(20)

Then,

‖Ψ− Ψ̃‖ ≤
[

1− (1− ℘)Γ(℘+ 1)X + ℘T℘

N(℘)Γ(℘+ 1)

]−1

. (21)

Proof. Since the equivalent form of the system (19) is:

Ψ̃(t) = Ψ0 + ε +
1− ℘

N(℘)
Ω(t, Ψ̃(t)) +

℘

N(℘)Γ(℘)

∫ t

0
(t− η)℘−1Ω(η, Ψ̃(η))dη, (22)

Now, ∀ t ∈ [0, T], consider:
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|Ψ(t)− Ψ̃(t)| ≤ |ε|+ 1− ℘

N(℘)

∣∣Ω(t, Ψ(t))−Ω(t, Ψ̃(t))
∣∣+ ℘

N(℘)Γ(℘)

×
∫ t

0
(t− η)℘−1∣∣Ω(η, Ψ(η))−Ω(η, Ψ̃(η))

∣∣dη,

≤ |ε|+ 1− ℘

N(℘)
J
∣∣Ψ(t)− Ψ̃(t)

∣∣+ ℘

N(℘)Γ(℘)

×
∫ t

0
(t− η)℘−1X

∣∣Ψ(η)− Ψ̃(η)
∣∣dη,

≤ |ε|+
[

1− ℘

N(℘)
+

℘T℘

N(℘)Γ(℘+ 1)

]
X‖Ψ− Ψ̃‖.

We have:

‖Ψ− Ψ̃‖ ≤ |ε|+
[
(1− ℘)Γ(℘) + ℘T℘

N(℘)Γ(℘+ 1)

]
G‖Ψ− Ψ̃‖.

Hence:

‖Ψ− Ψ̃‖ ≤
[

1− (1− ℘)Γ(℘+ 1)X + ℘T℘

N(℘)Γ(℘+ 1)

]−1

|ε|. (23)

This finishes the proof.

4. Numerical Scheme
The numerical solutions of the proposed systems (2) and (3) are investigated in this part of

the paper. The numerical results are produced using the suggested technique. One may write the
considered model by using FI as:

Sh(t)− Sh(0) =
AB I

℘
0K1(t, Sh(t)),

Wh(t)−Wh(0) =
AB I

℘
0K2(t, Wh(t)),

Ch(t)− Ch(0) =
AB I

℘
0K3(t, Ch(t)),

Gh(t)−Gh(0) =
AB I

℘
0K4(t, Gh(t)),

Jh(t)− Jh(0) =
AB I

℘
0K5(t, JJ(t)).

(24)

We have:

Sh(t)− Sh(0) =
1− ℘

N(℘)
K1(Sh(t), t) +

℘

Γ(℘)N(℘)

∫ t

0
(t− η)℘−1K1(Sh(η), η)dη,

Wh(t)−Wh(0) =
1− ℘

N(℘)
K2(Wh(t), t) +

℘

Γ(℘)N(℘)

∫ t

0
(t− η)℘−1K2(Wh(η), η)dη,

Ch(t)− Ch(0) =
1− ℘

N(℘)
K3(Ch(t), t) +

℘

Γ(℘)N(℘)

∫ t

0
(t− η)℘−1K3(Ch(η), η)dη,

Gh(t)−Gh(0) =
1− ℘

N(℘)
K4(Gh(t), t) +

℘

Γ(℘)N(℘)

∫ t

0
(t− η)℘−1K4(Gh(η), η)dη,

Jh(t)− Jh(0) =
1− ℘

N(℘)
K5(Jh(t), t) +

℘

Γ(℘)N(℘)

∫ t

0
(t− η)℘−1K5(Jh(η), η)dη.

(25)

To derive numerical results, put t = t℘+1 for ℘ = 0, 1, 2, . . . , into the system (25), we have:
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Sh(t℘+1)− Sh(0) =
1− ℘

N(℘)
K1(Sh(t℘), t℘) +

℘

N(℘)Γ(℘)

℘

∑
κ=0

∫ tκ+1

tκ
(t℘+1 − η)℘−1K1(Sh(η), η)dη,

Wh(t℘+1)−Wh(0) =
1− ℘

N(℘)
K2(Wh(t℘), t℘) +

℘

N(℘)Γ(℘)

℘

∑
κ=0

∫ tκ+1

tκ
(t℘+1 − η)℘−1K2(Wh(η), η)dη,

Ch(t℘+1)− Ch(0) =
1− ℘

N(℘)
K3(Ch(t℘), t℘) +

℘

N(℘)Γ(℘)

℘

∑
κ=0

∫ tκ+1

tκ
(t℘+1 − η)℘−1K3(Ch(η), η)dη,

Gh(t℘+1)−Gh(0) =
1− ℘

N(℘)
K4(Gh(t℘), t℘) +

℘

N(℘)Γ(℘)

℘

∑
κ=0

∫ tκ+1

tκ
(t℘+1 − η)℘−1K4(Gh(η), η)dη,

Jh(t℘+1)− Jh(0) =
1− ℘

N(℘)
K5(Jh(t℘), t℘) +

℘

N(℘)Γ(℘)

℘

∑
κ=0

∫ tκ+1

tκ
(t℘+1 − η)℘−1K5(Jh(η), η)dη.

(26)

Now, we approximate the functionsK1
(
Sh(η), η

)
,K2

(
Wh(η), η

)
,

K3
(
Ch(η), η

)
,K4

(
Gh(η), η

)
andK5

(
Jh(η), η

)
on the interval [tκ , tκ+1] by using two points interpo-

lation, we have:

K1(Sh(η), η) ∼=
K1(Sh(tκ), tκ)

h̄
(t − tκ−1) +

K1(Sh(tκ−1), tκ−1)

h̄
(t − tκ),

K2(Wh(η), η) ∼=
K2(Wh(tκ), tκ)

h̄
(t − tκ−1) +

K2(Wh(tκ−1), tκ−1)

h̄
(t − tκ),

K3(Ch(η), η) ∼=
K3(Ch(tκ), tκ)

h̄
(t − tκ−1) +

K3(Ch(tκ−1), tκ−1)

h̄
(t − tκ),

K4(Gh(η), η) ∼=
K4(Gh(tκ), tκ)

h̄
(t − tκ−1) +

K4(Gh(tκ−1), tκ−1)

h̄
(t − tκ),

K5(Jh(η), η) ∼=
K5(Jh(tκ), tκ)

h̄
(t − tκ−1) +

K5(Jh(tκ−1), tκ−1)

h̄
(t − tκ).

(27)

We get:

Sh(tg+1) = Sh(0) +
1− ℘

N(℘)
K1(Sh(tg), tg) +

℘

N(℘)Γ(℘)

g

∑
κ=0

(
K1(Sh(tκ), tκ)

h̄
Iκ−1,℘

+
K1(Sh(tκ−1), tκ−1)

h̄
Iκ,℘

)
,

Wh(tg+1) = Wh(0) +
1− ℘

N(℘)
K2(Wh(tg), tg) +

℘

N(℘)Γ(℘)

g

∑
κ=0

(
K2(Wh(tκ), tκ)

h̄
Iκ−1,℘

+
K2(Wh(tκ−1), tκ−1)

h̄
Iκ,℘

)
,

Ch(tg+1) = Ch(0) +
1− ℘

N(℘)
K3(Ch(tg), tg) +

℘

N(℘)Γ(℘)

g

∑
κ=0

(
K3(Ch(tκ), tκ)

h̄
Iκ−1,℘

+
K3(Ch(tκ−1), tκ−1)

h̄
Iκ,℘

)
,

Gh(tg+1) = Gh(0) +
1− ℘

N(℘)
K4(Gh(tg), tg) +

℘

N(℘)Γ(℘)

g

∑
κ=0

(
K4(Gh(tκ), tκ)

h̄
Iκ−1,℘

+
K4(Gh(tκ−1), tκ−1)

h̄
Iκ,℘

)
,

Jh(tg+1) = Jh(0) +
1− ℘

N(℘)
K5(Jh(tg), tg) +

℘

N(℘)Γ(℘)

g

∑
κ=0

(
K5(Jh(tκ), tκ)

h̄
Iκ−1,℘

+
K5(Jh(tκ−1), tκ−1)

h̄
Iκ,℘

)
,

(28)

where:

Iκ−1,℘ =
∫ tκ+1

tκ
(t − tκ−1)(tg+1 − t)℘−1dt ,

and:
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Iκ,℘ =
∫ tκ+1

tκ
(t − tκ)(tg+1 − t)℘−1dt .

Now, we simplify the integrals Iκ−1,℘ and Iκ,℘ as follows:

I−1+κ,℘ = − 1
℘

[
(−t−1+κ + tκ+1)(tg+1 − tκ+1)

℘ − (−t−1+κ + tκ)(−tκ + tg+1)
℘
]

− 1
℘(−1 + ℘)

[
(−t1+κ + tg+1)

℘+1 − (−tκ + tg+1)
1+℘

]
,

Iκ,℘ = − 1
℘

[
(t1+κ − tκ)(t1+g − t1+κ)

℘
]
− 1

℘(−1 + ℘)

[
(−t1+κ + t1+g)

1+℘ − (−tκ + t1+g)
1+℘

]
.

By setting tκ = ih̄, one can easily deduce:

Iκ−1,℘ = − h̄℘+1

℘(℘+ 1)

[
(−κ + g + 1)℘(−κ + g + 2 + ℘) (29)

−(−κ + g)℘(−κ + 2℘+ g + 2)
]

, (30)

and:

Iκ,℘ =
h̄℘+1

℘(℘+ 1)

[
(g + 1−κ)℘+1 − (g−κ)℘(℘+ 1 + g−κ)

]
. (31)

Plugging Equations (29) and (31) into (28), one can get:

Sh(tg+1) = Sh(t0) +
(1− ℘)

N(℘)

[
K1(Sh(tg), tg)

]
+

℘

N(℘)

g

∑
κ=0

(
K1(Sh(tg), tg)

℘(℘+ 2)

×h̄℘
[
(−κ + g + 1)℘(g−κ + ℘+ 2)− (g−κ)℘(−κ + g + 2 + 2℘)

]
−
K1(Sh(t−1+g), t−1+g)

℘(℘+ 2)
h̄℘ (32)

×
[
(−κ + 1 + g)1+℘ − (−κ + g)℘(g−κ + 1 + ℘)

])
, (33)

Wh(tg+1) = Wh(t0) +
(1− ℘)

N(℘)

[
K2(Wh(tg), tg)

]
+

℘

N(℘)

g

∑
κ=0

(
K2(Wh(tg), tg)

℘(℘+ 2)

×h̄℘
[
(−κ + g + 1)℘(g−κ + ℘+ 2)− (g−κ)℘(−κ + g + 2 + 2℘)

]
−
K2(Wh(tg−1), t−1+g)

℘(℘+ 2)
(34)

×h̄℘
[
(−κ + 1 + g)1+℘ − (−κ + g)℘(g−κ + 1 + ℘)

])
, (35)

Ch(tg+1) = Ch(t0) +
(1− ℘)

N(℘)

[
K3(Ch(tg), tg)

]
+

℘

N(℘)

g

∑
κ=0

(
K3(Ch(tg), tg)

℘(℘+ 2)

×h̄℘
[
(−κ + g + 1)℘(g−κ + ℘+ 2)− (g−κ)℘(−κ + g + 2 + 2℘)

]
−
K3(Ch(tg−1), t−1+g)

℘(℘+ 2)
(36)

h̄℘
[
(−κ + 1 + g)℘+1 − (−κ + g)℘(g−κ + 1 + ℘)

])
, (37)
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Gh(tg+1) = Gh(t0) +
(1− ℘)

N(℘)

[
K4(Gh(tg), tg)

]
+

℘

N(℘)

g

∑
κ=0

(
K1(Gh(tg), tg)

℘(℘+ 2)

×h̄℘
[
(−κ + g + 1)℘(g−κ + ℘+ 2)− (g−κ)℘(−κ + g + 2 + 2℘)

]
−
K4(Gh(tg−1), t−1+g)

℘(℘+ 2)
(38)

h̄℘
[
(−κ + 1 + g)℘+1 − (−κ + g)℘(g−κ + 1 + ℘)

])
, (39)

Jh(tg+1) = Jh(t0) +
(1− ℘)

N(℘)

[
K5(Jh(tg), tg)

]
+

℘

N(℘)

g

∑
κ=0

(
K5(Jh(tg), tg)

℘(℘+ 2)

×h̄℘
[
(−κ + g + 1)℘(g−κ + ℘+ 2)− (g−κ)℘(−κ + g + 2 + 2℘)

]
−
K5(Jh(tg−1), t−1+g)

℘(℘+ 2)
(40)

h̄℘
[
(−κ + 1 + g)℘+1 − (−κ + g)℘(g−κ + 1 + ℘)

])
. (41)

5. Numerical Simulations and Discussion
In this section, we establish the approximate solution of our considered Model (2) using various

parameters given in Table 2 for verification of the proposed scheme. The initial values for all cases
of the given system are Sh(0) = 1000, Wh(0) = 20, Ch(0) = 20, Gh(0) = 10 and Jh(0) = 10. We
have taken four different sets of parameter, one without control and the remaining three simulated
by applying some control strategies for all of the compartments in problem (2) and at a different
fractional order of ℘. Figure 1a–d represents the the dynamics of susceptible humans (free of crimes)
Sh(t) at a different fractional order of ℘ before and after control strategies. Figure 1a is the plot before
control parameters in which the susceptible people are decreasing and transferring to the serial killers.
While Figure 1b–d are the plots after we applied the control strategies by changing the values of the
most affected parameter, as given in Table 2. In these three figures, the susceptible class is controlled
and increasing. Figure 1e is the combined graph. Figure 2a–d show the dynamics of weaponization
in humans Wh(t) at different fractional-orders of ℘ before and after control strategies. Figure 2a is
the plot before the control parameters in which the weaponized people are increasing and, thus, the
number of serial killers also increases. While Figure 2a–d are the graphs after applying the control
strategies by changing the values of most affected parameters as given in Table 2. The weapons class
is controlled, reduced, and approaching zero in these three figures. Figure 2e is the combined graph.
In Figure 3a–d, the dynamics of serial killer humans Ch(t) have been shown at different fractional-
orders of ℘ before and after control strategies. Figure 1a is the plot before the control parameters in
which the serial killers are increasing and converging. While Figure 3b–d are the simulations after
applying control strategies by changing the values of most affected parameters, as given in Table 2.
In these three figures, the serial killers’ class is controlled, decreasing, and tends to zero. Figure 3e is
the combined graph. In Figure 4a–d, the dynamics of gang member humans Gh(t) have been shown
at different fractional-orders of ℘ before and after control strategies. Figure 4a is the plot before the
control parameters in which the gang members are increasing and diverging. While Figure 4b–d
are the simulations after applying the control strategies by changing the values of the most affected
parameters, as given in Table 2. In these three figures, the gang member class is controlled, decreased,
and tends to zero. Figure 4e is the combined graph. In the first four subfigures (a–d) of Figure 5,
the behavior of serial killers detained in jail Jh(t) have been shown at different fractional-orders of
℘ before and after control strategies. Figure 5a is the plot before control parameters in which the
jailed members are extremely increasing and diverging. The Figure 5b–d are the representations of
jailed members after applying the control strategies by changing the values of the most influencing
parameters, as given in Table 2. In these three figures, the gang member class is controlled, decreased,
and tends to zero. Figure 5e is the combined graph.
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Table 2. Values of the parameters used in Model (2) with different control strategies.

Parameter Value Control Strategy Control Strategy-I Control Strategy-II

b 0.29 0.1 0.02 0.01
µ1 0.001 0.001 0.001 0.001
µ2 0.005 0.005 0.005 0.005
µ3 0.003 0.007 0.008 0.009
µ4 0.05833 0.58 0.59 0.78
β1 0.056 0.006 0.001 0.0001
β2 0.0093 0.0093 0.0093 0.0093
β3 0.067 0.08 0.089 0.09
β4 0.0027 0.0027 0.0027 0.0027
Λ 0.09586 0.09586 0.09586 0.09586
π 0.00039 0.00039 0.00039 0.00039

(a) (b)

(c) (d)

(e)

Figure 1. (a–e) Plots of Sh(t) having four different sets, before and after control strategies in the
problem under analysis (2) at various arbitrary orders.
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(a) (b)
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Figure 2. (a–e) Plots of Wh(t) having four different sets, before and after control strategies in the
problem under analysis (2) at various arbitrary orders.

(a) (b)

Figure 3. Cont.
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(c) (d)

(e)

Figure 3. (a–e) Plots of serial killers Ch(t) having four different sets, before and after control strategies
in the problem under analysis (2) at various arbitrary orders.

(a) (b)

(c) (d)

Figure 4. Cont.
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(e)

Figure 4. (a–e) Plots of gang members Gh(t) having four different sets, before and after control
strategies in the problem under analysis (2) at various arbitrary orders.

(a) (b)

(c) (d)
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Figure 5. (a–e) Plots of Jh(t) having four different sets, before and after control strategies in the
problem under analysis (2) at various arbitrary orders.
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6. Conclusions
In the current paper, we have studied a fractional-order mathematical model of serial killing

under the ABC operator. We have proved the existence of the solution to the problem under
examination by using the fixed point theorem. We used the Adams–Basforth method to attain an
approximate solution to the given model. We showed the stability of the given model through the
nonlinear concepts of Ulam–Hyers. We performed numerical simulations for two different cases to
support our analytical findings. We discussed the given model for control with and without control
strategies. All components of the presented model have attained stability and convergence. The
stability of the decay process adjusts quickly to small fractional orders, whereas the stability of the
growth process adjusts quickly to higher orders. The given model provided global information due
to fractional analysis of an extra degree of freedom. Thus, the fractional-order Model (2) is superior
to the integer-order Model (1). In the future, more global and generalized operators might be used to
investigate the given model.
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