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Abstract: Pantograph, a device in which an electric current is collected from overhead contact wires,
is introduced to increase the speed of trains or trams. The work aims to study the stability properties
of the nonlinear fractional order generalized pantograph equation with discrete time, using the Hilfer
operator. Hybrid fixed point theorem is considered to study the existence of solutions, and the
uniqueness of the solution is proved using Banach contraction theorem. Stability results in the sense
of Ulam and Hyers, and its generalized form of stability for the considered initial value problem are
established and we depict numerical simulations to demonstrate the impact of the fractional order
on stability.
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Liouville derivative (4 = 0) as particular cases. Some recent works on fractional order
Hilfer derivatives can be found in [13-18]. Perturbation techniques are powerful tools
in nonlinear analysis for studying diverse aspects of the solution of nonlinear dynamical
systems. They are useful in describing, predicting and demonstrating the nonlinear effects
caused in vibrating systems. Hybrid fixed point theory is a common approach to tackle
perturbed nonlinear equations. Hybrid differential equations are nonlinear differential
equations with perturbation of the equation involving multiplication or division by a
term (quadratic perturbation) [19]. Hybrid equations of fractional order have attracted
researchers in recent times to the extent that they embrace various dynamic systems as
particular cases [20-25]. The existence of results for the solution of the hybrid pantograph
equation with fractional order, given by

p [ v@© ]
Do+ {f(érv(é),v(éé))} O(g,v(2),0(00), 0< ¢ <1, o
v(0) =0,
was studied in [2]. The generalized hybrid fractional pantograph equation
/i v(Q) B
0. [ szt gy | = O OpED 0 < <, ®

v(0) =0,

was considered to study the existence of solution in [26].

Discrete time fractional order calculus was enriched by the contributions of Atici et
al. [27-29], Anastassiou [30], Goodrich [31,32], Holm [33], and so on. The definition of
Hilfer fractional sum and differences are proposed in [34]. As for hybrid equations with
discrete fractional operators, the authors in [35] considered the hybrid fractional sum-
difference equations and investigated the existence of solutions. The qualitative properties
of the discrete fractional hybrid equations are yet to be explored. The stability analysis of
Hilfer type hybrid fractional equations has not been studied, to fill this gap, we consider
an application of Hilfer fractional sum and difference to generalized hybrid pantograph
equation and perform stability analysis.

The paper is formatted as follows: Essential definitions and lemmas are provided
in Section 2 and the mathematical representation of the discrete time hybrid fractional
pantograph equation is presented in Section 3. The existence of a unique solution for the
Hilfer type discrete fractional generalized hybrid pantograph equation is illustrated in
Section 4. Sections 5 and 6 present the stability results and application of the main result is
demonstrated with a numerical example, respectively.

2. Prerequisites

Definition 1 ([31]). (yth Fractional Sum ) Let y > 0 and p : Ny — R. Then the delta fractional
sum of p is

gy
A, p(0) = z; hy1(G, 0 (0))p(£), )

— 0
where hy (g, 1) = -6 is the nth fractional Taylor monomial, o(¢) = £+ 1 and {1 =

I'(n+1)
rg+1 . ) . .
——2——— is the falling factorial function.
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Definition 2 ([28]). The nth— Riemann—Liouville type fractional difference of function p is de-
fined by

ATp(Q) = ™A " (p(2)),
g+
= Z hM—ﬂ—l(g/(Tw))p(Z)/ Vi e N)\‘Fm*ﬂ/
{=A

whereny > 0,p: Ny = Randm —1 <5 <mform e Ny.

Theorem 1 ([36]). Let p,171 > 0and p : N — R. Then the inequalities
(1). ATM[APp(g)] = A~ ETMIp(g) = AP[ATTR(D)],

—g)(m-1)
(2. AN MAp(Z) = AATIp(L) — w

o) p(a),

hold.

Definition 3 ([37]). The nth— Caputo type fractional difference of function p is defined by

CAlp(g) = ;" AT (p(2)),
{—(m—n)
= Z hm—;y—l (C, 0'(())Amp(€) Vg e N?\+m717r
{=A

whereny > 0,p: Ny = Randm —1 <y <mform € Ny.

Definition 4 ([34]). The Hilfer fractional difference of order m —1 <y < mand type 0 < u <1
of function p is defined by

Yp(g) = a0 AT (D)), for ¢ € Ny, (5)

wherep : Ny — R.

Lemma 1 ([34]). Assume0 <n < 1,0 <y <1, and functionp : Ny, = R, then for { € N, 4
the composition properties are

0. 830 (a7 (@)] = Ayl an T (p(g)),

(). A/\+1 W[AW (¢ )} A=) A(’?+V W)(p(@)_

A1+(1 w)(1=1)
. AT [879@)] = 80 AT (D).

) e
(av). a1, [8,70(0)] = p( > AT oA 1= p (= )y gy 1 (G A+ (1
1))-

Theorem 2 ([38]). (Banach Contraction Mapping Principle)
A contraction mapping on a complete metric space has exactly one fixed point.

Theorem 3 ([20]). (Hybrid Fixed Point Theorem)
Let Y be the nonempty, closed, bounded and convex subset of Banach algebra B. Let the operators be
P1:B— B,P:Y — Bsuch that

(i). Py is Lipschitz continuous with constants 0.
(ii). Py is completely continuous.

(iii). v=P1wvPy=ve)YVyec).

(iv). 6A <1, where A = ||P(Y)]-

then, P1vPov = v has a solution.
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—(y+u—mn) (+u—np)
Brraopim®

—(n+p—nu)
Brs(1-n)(1-p)

Theorem 4 ([39]). (Arzela-Ascoli Theorem) A set of functions in C([a, b]) with supremum norm
is relatively compact if, and only if, it is uniformly bounded and equicontinuous on [a, b].

3. Discrete Fractional Hybrid Pantograph Equation

This section is devoted to the description of the hybrid pantograph model and ap-
proximate solution. Stability analysis of fractional hybrid equations by [40] and works on
the hybrid pantograph equation by [2,26] have inspired and motivated us to investigate
the stability of initial value Hilfer type discrete fractional generalized hybrid pantograph
equation (HDFGHPE). Let us denote D = [A, T]NN,. Let 9 =y +p —puwith0 < <1,
0 <u <1.Wehave

i v(g o 1 1 B
AA{@(m@%wwxnﬂ“(5+W Lo(@+n-1),v(e(C+n-1))), o
A*(lfﬂ) U()\ +1-— 19) A
Yoo e T b+ T8 up(A+1-9))]

where{ € [A+1—7,T|NNy 1, withA € RandT € NwhereN; = {j,j +1,...},j €
R. Here A" is Hilfer type fractional difference operator of order 77 and type i, A € R, 9, ¢ :
D—101],0:DxRxR—R\{0} and w: D x R x R — R are continuous functions.

Lemma2 Let 0 < <1,0<pu<1,0:DxRxR—-R\{0}andw:DxRxR — R
Then HDFGHPE (6) with initial condition has an unique solution
v(Z) = O(Zu(Z), v(y(2))) [Ahg-1(Z,A +1—8)

. )
+ 037 @@+ =10+ =1),0(pC +1 - 1)),

for £ € D.

=1

Proof. Applying A, -y

for (6), we have

—1 0 U(@) AT
Ay {A)z} {m” =A@+ =1, 0@+ = 1), 0(e(C +1 —1)))). 8)

Apply Lemma (1) to left-hand side of (8) to obtain

v(g _ At A v(g

A)T—?—l—;y [AK'% {@(Q,U(C),v(lﬁ(é)))” A(1=n) (1) ZA [®(C,U(€)IU(‘P(§)))}

Now, consider

v({) A—® —(1-9) v(¢
A b(@v(@»v@(@))] = Aira-o A {@)(Crv(é),v(w(é)))]'
Using the Theorem (1) yields
(7-+p—np) v(g) _ v(0) B B
A [@)(@,v(@),v(w(é)))} =800, vy Mo @A F1=0)

Thus, Equation (7) holds. This completes the proof. [J

4. Fixed Point Operators of HDFGHPE (6)

This section defines a fixed point operator and establishes the existence of an unique
solution of (6). Let B with norm ||v|| = sup|v({)| be the space of all functions v({). Clearly,
4330

B is a Banach space.
Let us define the operator Y : B — B by

Yu(Z) =0(Z,v(2), v(¥(2))) [Ahg-1(Z,A +1 - 8)

i, ©)
+A @@+ =L o(@+y = 1), v(eC+1-1))))],
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for € D.
Forall v,v* € Rand ¢ € D, we make the following assumptions

(J1): There exists x(Z) € C(D,R™") such that
[w(@+n =100 +1=1),v(e(+1=1)))] < xw(f)-
(J2): There exist &({) € C(D,R™) with bound &; such that

1©(Z,v(2),v(¥(2))) = O(Z,v"(2), v ()| < ¢1(8) max{[v(Z) — v ()], [v(¥(Z)) — v (Y (D))}
(J3) : There exist &({) € C(D,R™) with bound &, such that

lw(@+n—1Lo(@+n—1),v(e(l+1—-1))—w@+n—-Lv(C+n-1),0(e(f+n—-1)))]
< & () max{|v(Z) — v*(Q)], [v(e(2)) — v (@(0)]}-

4.1. Uniqueness of Solution of HDFGHPE (6)
Theorem 5. Assume that (J1), (J2), (J3) hold and there exists xo({) € C(D,R") such that

O(¢,v(), v($(2))] < xe(2), (10)

Vv € Rand { € D. Then v({) is a unique solution of hybrid fractional difference Equation (6) if

—A-1) —A—=1)

a-¢ [Aha_ﬂm“l—ﬂ)ww(m” L R PV L e e

T(y+1) XOS2 T 1 1) (11)

Proof. Let .o = max|x«(¢)] and xo = max|xe ()|
ceb [€S))

We aim to prove that the mapping Y defined in (9) is a contraction. For v, v* € R and
{ € D, we have

[Yo(Z) = Yv* ()| 2‘9(6 v(0),v(())) [Ahg-1(g,A +1-0)
FA (4 — 10T 47— 1), 0(g(C 7 —1))))]
—O(g, v (0), v* (p(0))) [Ahg-1 (L, A +1 - 8)
+8, 0, @@+ =10+ = 1), 0" (p(C +7—1))))]
<1 (D[ho-1(3, A +1=8)|A+|O(Z, v(0),v((7))) — O(Z,v*(2), v" (¥({)))]
Byt @@+ =1Lu(G+ 5 —1),0(p(l +17—1))))|

+1O(Z,v* (), v (p(ONIB Y, |w(@ + 1 =10 +17—1),0(p(l +7—1)))

7

—w(@+n=1Lu (¢ +n-1),0 (el +7-1)))

4

T —A—=1)m
S(glAhﬂ—l(T,/\-i—l—l9)+(sz€1+X®§2)< T(qinl) >|v—v*|,

1Yo — Yo || <Qflv—v"]|.

Thus, the mapping Y is a contraction mapping with () < 1. Therefore, the initial
value discrete time Hilfer type fractional generalized pantograph Equation (6) has a unique
solution. [J

4.2. Existence Results for HDFGHPE (6)

The existence of the solution of HDFGHPE (6) is established using hybrid fixed point
theorem (3) due to Dhage [20].
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Theorem 6. Assume that (1), (J2) hold. Then HDFGHPE (6) has a solution v({) for { € D if
& [ AT = A =1+ 8) () + 2T (O)(T— A =147 | <T(OT().  (12)
Proof. Let Y = {v € B: |[v]| < &}, where & is a real number such that

s> Q0lE|

ST aEl o

T—A—1+7)0
()

Clearly, Y is a closed, bounded and convex subset of 3. By Lemma (2), let the operators
P1:B—Band P, :Y — Bbe

Pru(g) = O(g, v(2), v(¥(2))),
Pav(0) = Mg (5, A+1=8) + 8,7, (w(@+1—Lv(l+1—1),0(p(C +1-1)))),

where Q) = rgnaﬁd@(g, 0,0)]and E = Alhy_1(T,A+1—9)] +Xw(
€

where ¢ € D. Thus, solution of (6) is equivalent to

Pro(8)Pav(§) = v(g), § € D.

We shall now prove that the operators P; and P, satisfy the conditions of the
Theorem (3) in following steps.

Step 1: We shall show that the operator P; is Lipschitz continuous on 5.
From the condition J;, we have,

[P1o(8) = Pro*(9)] = [O(Z, v(8), v(¥(£))) = ©(F = v (5), v™ (¢(8)))]
< [€1(9) [ max{|v(Z) — v ()], [v(¥(2)) — v (¥ (0]},

[Pro = Pro*|| < Gaflv— o7,

~

Thus, P; is lipschitz continuous with constants ¢;.

Step 2: We proceed to prove that the operator P; is completely continuous on ).
The continuity of w implies the continuity of operator P, on Y.
First, we shall prove the uniform boundedness of the operator P, in ).

Pov(Q)] = |Ahg_1 (LA +1=0) + AT, (w(C+17 =10 +1—1),v(p(C+71—1))))],

< A1 (G A+1=0)+ A, @@+ =10 +n7-1),0(eG+1-1))))
Xol (T+n—A—1)
nI'(n)

7

< Jhg_1(T,A+1—8)|A + =,

|P2v] < @.

Therefore, P; is uniformly bounded on ).
We prove the equicontinuity of the the operator P,. For any & > 0, let there exist
Ca,Cp € D (s < p) such that

I'(Co +1)T(Ca) — T(Zp)T(Ca + 1) (7 +1I(T)\ e

‘ r(éh r(ga +77) ’ < ( pr(’]I‘+;7) )2’ (14)
and

r(g _/\+l9)r(§a—)\+1) I‘(’]I‘_/\+1) e

’F(ézA+1)F(Ca)\19)_1'<<w>21 (15)

then,
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[ P2v(8p) — Pav(Ga)l Z’Ahﬂl(éb,/\ +1-10) = Ahg 1(Ca, A +1-10)
+ Ay @@+ = 1,08+ 1 = 1), 0(e(Zp + 17— 1))

AMJW<<a+n—1v@w+n—n oolatn =),

- f1+19<l9 Vo (@p—A-1+8)0
I(8)
+l gbzq (g, ——1)=1 — 1 gin (gﬂ_g_l)(ﬂ—l)]
L) | | =i 7 () (=A+1—y

&ME+mvw+n»waw+n»»L

< A[(gb_)‘_lﬂ”)(“) (Gb—/\—1+z9)(l’1)H

= r(9) B r(9)
4 Kw I(Gp+n) (Ca+’7 ‘
()| T(Zp)
I(T — A — 9) (gb—)\+19)1"( A+1)
SATT A+ ) {r(gb A+ DTG 9) 1]
n Xl (T +17) ‘F(CbJr’?) (Ca) — T(€a+’7) (Cp)
[(T)C(y+1) [(Za+1)T(Cs) ’

[ P2v(Zp) — Pav(Za) |l < e

which implies the equicontinuity of P; in B. By Arzela Ascoli’s theorem, the operator
P, is completely continuous.

Step 3: We provev = PivPry == veYVye).
Let v € B,y € Y be arbitrary such that v = P;vPay.

(@] <IP@I[Pay(2)],
<I0(Z,v(2), v(Y(2)|[Ahp-1 (3, A +1 - 8)

+A0 @@+ = Ly(@ +y=1),y(e(C +1-1))],
<1O(Z,v(8), v(¥(§))) — ©(L,0,0) + ©O(¢,0,0)||Ahs—1(f, A +1-9)
+A0 @@+ =Ly -+ —1),y(e@C +1-1))],

o (1)
(T AH%+w"]mwuw@,ww@»n

(T—A—147)0
(1)

<I&1(0)| [A|hﬂ—1(T,7\ +1-9)| + xw

+ 0 | Alhg—1(T,A+1—=8)|+ xw

<[]
—1-4E
[v]| <6&.

Therefore v(g) € V.
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Step 4: We show that A < 1. Here,
A = sup{|P2(V)},
ceb
(T—A—14n7)

< Alhg 1 (T, A +1=8)| + Xo )

With 8 = ¢ and (12), the condition #A < 1 is satisfied.

Evidently, P1v({)Pay({) = v({), ¢ € D has a solution in ) which implies that HDFGHPE
(6) has a solution v({) for { € D. This completes the proof. [

5. Stability of HDFGHPE (6)

Stability is a condition in which trajectories of the system would not exhibit any
significant changes under small disturbance. The asymptotic stability analysis of nonlinear
discrete fractional equations were studied by Fulai Chen in [36,41]. Several authors have
contributed on the stability analysis of various applications of fractional order discrete time
equations as in [6,42—47]. We devote this section to study the stability of the HDFGHPE
(6). Consider the discrete time Hilfer fractional initial value problem (6) and the following
inequality

NG { v1(0)
A ®(€/U1(€)/ Ul(lli(é)))

where ¢ > 0and v; € C(D,R).

—w(@+n-Lo@+r-1Duv(e(l+n-1)) <& e, (16)

Definition 5 ([48] Ulam—-Hyers Stability). The discrete time Hilfer fractional initial value prob-
lem (6) is Ulam—Hyers stable if there exists a real constant V > 0 such that for each ¢ > 0 and for
every solution vy € C(D,R) of inequality (16), there exists a solution v € C(D,R) of (6) with

() —v(0)[ < Ve, £ eD. (17)

Definition 6 ([48] Generalized Ulam-Hyers Stability). The HDFGHPE (6) is generalized
Ulam—Hyers stable if o € C(RT,R") with ¢(0) = 0 exists such that for every solution vy €
C(D,R) of inequality (16) , there exists v € C(D,R) of (6) with

[01(8) —v()| < ole), ¢ €D. (18)
The following remark is essential for proving the stability results.

Remark 1. A function v1({) € B solves (16) iff a function g : D x R — R exists satisfying
(Hi): g@@+n—-1Lu(+n-1)|<e €D

LA v1(0) _w 10 1o _
R e B[S BRI R AT SRR )

=q(C+n—Lu(f+n—-1)).

Lemma 3. If the function vy (() is the solution of the inequality (16) then

v1(0)=Ahy_1 (5, A +1=9)O(Z, v1(0), v1(¥())) —O(Z, v1(Z), v1(¥(2)))

19
xo(T+y—A-1)W (19

I'(n+1) '

Byl @@+ =1 u(C+n—1),0(pC+n—1))))| <e

for ¢ € D.
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Proof. If vy ({) satisfy (16), using Remark (1) and Lemma (1) the solution of (Hy) is
v1(8) =0(Z,v(0), v1(Y(2))) (Ahg-1 (3, A +1-8)
+Aa 0, @+ = Lo+ =1),01(p(C+ 5= 1)) +q(C + 1= Lo (T +7-1))))

where € D.
Hence,

v1(8)=0(Z, v1(2), v1($(2))) [Aho-1 (L, A +1—9)

+A Y, @@+ =L o€+ = 1), 01(p(C +1-1))))] ‘

= |0, v1(@), v (@A +n =1L uiC+n-1)],
ma>|€" 1D
<e () K:/\;l—q(g )=,
xo(T+y—A—1)
I'(n+1)

This completes the proof. [

<e

Theorem 7. Assume that conditions (J1), (J2), (J3) and (10) hold. Let v € B solve (16) and let
v € B be the solution of

n.u v() _ _ _ — =
M,b@m@m%@m} e e U LEL AL T
A,(l,g)[ v(7) _ A0 v1(¢)

A O(Z,v(8), v(¥(D)) lg=rt1-0 O(C,v1(8), v1(Y(E))) Jg=at1-6

Then (6) is Ulam-Hyers stable provided
(i + DEAT = A =14+ 8) D +T(0)(T+ 5 — A~ 1)V [E1x0 + xob2] < T+ 1)T(9).
Proof. Using Lemma (2), we have

_A-(1-0) u(A+1-9)
o6 =5 ST ma 1=, wpa T A O & O @)

+0(Z,v(0), v, @G+ = Lo+ —1),0(p(l +1-1)))), L D.

Thus,
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[v1(0) —v(Q)| =|v1(§) — Ahy—1(Z, A +1—=8)O(L,v(F), v(¥(0)))
—O(Z,v(&), v, (@ +n7 =10 +1 1), v(p(G+1—1))))],
=v1(g) = ©(Z, v1(2), v1(¥({))) [Ahg 1 (L, A +1~9)
+8, 0, @@+ =Lui(C+y—1),01(e(C +1-1))))]
—O(Z,v(g), v(¥(0)) [Ahs-1(,A +1-0)
+8, 0, @@+ = Lu(G+y—1),0(e(C +1—1))))] +O( v1(Z), v1((8)))
[Aha-1(€ A+ 1= 0) 4 871, (0(E+ 11,0+ = D, valo(@ 0 = 1)),
< U1(€) - |:Ahl91 (gl)\ +1- 19) + A)T—"Zl—q (w(C + /i 1, Ul(g + /i 1)/

ummg+n—n»ﬂ®@mu@mm¢@»ﬂ+Ammm;A+1—M|

©(Z, v1(8), v1(¥(2))) = O(Z, v(8), v(P(2)))| +10(Z, v1(8), v1(¥(2)))
AMw(f+n =101+ 1 —1),01(e(l +7 - 1)) = O(F, v(0), v(¥(2)))
AMw(§ 4+ =100 +1=1),0(pC+1-1)))],

xo(T+n—A-1) (T+y—A=1)W

_ < _
(T+y—A-1) B
+ xel2 T+ 1) [r —v|
< Ve,
where V = Xo(T+7y—A- 1)(7])

with () defined in (11) is the stability constant. This com-
Ly +1)(1-Q) y

pletes the proof. The generalized Ulam-Hyers stability of the HDFGHPE (6) is established
by replacing o(¢) = Ve with ¢(0) = 0. O

6. Numerical Examples

This section presents a numerical example to illustrate the results obtained in previous
sections.

Example 1. Let us consider the Hilfer type discrete fractional generalized hybrid pantograph
equation of the form

1|1
3 —i—cos(v(@))} ~ 30 [2 +(0(C-04))

o[ 100(05)
AT {3+cos(v(0.5))

A0805 { 10v(g)

(21)
]:09

where { € [0,20] N Ny7. We shall now establish the Ulam- Hyers stability of (21). Comparing (21)
and (6), we have n = 0.6, 4 = 0.5,9 = 0.8,A = 0.3, A = 0.9, T =20, D = [0.3,20] N Ny 3 and
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O(Z,v(0), v($(2))) = 03+ 15 cos(v(2),
w(Z —0.4,0(7 —0.4),0(p(7 —0.4))) = % E + (v(¢ — 0.4))3] .

M
Let <=
etmax|v(¢)] < 5

, where M € R*. Using the conditions (J1), (J2), (J3) and (10), we yield

7

30 8
1©(¢,v(Z), v(¥(Z))) — O, v*(2), v (¥(2)))] <0.1[v(Z) — v*(2)I,
|w(Z —0.4,v(F —0.4),v(p(f —04))) —w({ — 04 —v* (T —04),v"(¢(T —04)))|

2
< |50 [P@ v @),
O, 0(0), v($()))] < 04

3 2

That is xu = % % + % X = 04,51 = 01,8 = ]A\L/I_O where M = 1. From
Theorem (5), we get (2 = 0.122794 < 1.

Using (13), we have S > 0.08044 with ®¢ = 0.4. Thus, (21) has a unigue solution.

Ulam—Hyers stability of HDFGHPE (21) is evident from Theorem (7).

The stability condition (11) thus obtained for HDFGHPE (21) is tabulated for different
fractional order y € (0,1) in Table 1 and represented in Figure 1. For an increase in time, the
stability condition (Q)) increases gradually for all values of 17 in (0,1),, and the Q) is clearly less
than 1 satisfying the condition obtained in Theorem (5). An important observation to be made is
when order (1) is small the value of Q) decreases with increasing time. As the order (1) increases,
this trend changes with value of () increasing for increase in time.

3
w(Z — 0.4,0(f — 0.4), v((Z — 04)))] < ' 1 E+ (M) ]

n

Figure 1. Representation of impact of fractional order (1) on the stability condition Q).
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Table 1. Representation of impact of fractional order # on stability condition Q).

Time =015 5 =030 =045 4=060 5=075 5=090
0
03 0.09000 0.09000 0.08999 0.09000 0.09000 0.09000
1.3 0.06383 0.07058 0.07733 0.08408 0.09083 0.09758
23 0.05464 0.06397 0.07379 0.08413 0.09497  0.10632
33 0.04991 0.06069 0.07258 0.08561 0.09982 0.11526
43 0.04694 0.05877 0.07228 0.08761 0.10488 0.12422
53 0.04487 0.05753 0.07244 0.08984 0.10998 0.13315
6.3 0.04334 0.05671 0.07285 0.09216 0.11506 0.14202
7.3 0.04214 0.05613 0.07341 0.09452 0.12010 0.15084
8.3 0.04118 0.05574 0.07406 0.09689 0.12508 0.15959
9.3 0.04040 0.05546 0.07477  0.09925 0.12999 0.16829

10.3 0.03974 0.05528 0.07552 0.10158 0.13485 0.17693
11.3 0.03918 0.05516 0.07629 0.10390 0.13964 0.18552
12.3 0.03869 0.05510 0.07707 0.10618 0.14438 0.19406
13.3 0.03827 0.05508 0.07786 0.10843 0.14905 0.20255
14.3 0.03790 0.05509 0.07866 0.11066 0.15368 0.21100
15.3 0.03758 0.05512 0.07946 0.11285 0.15825 0.21940
16.3 0.03729 0.05518 0.08025 0.11502 0.16277 0.22776
17.3 0.03703 0.05525 0.08104 0.11716 0.16724 0.23609
18.3 0.03679 0.05534 0.08183 0.11927 0.17167 0.24437
19.3 0.03658 0.05543 0.08260 0.12135 0.17606 0.25262

The values in the Tables 1 and 2 are obtained by substitution of the numerically calculated
values that satisfy the conditions (J1), (J2), (J3) and (10) and employing the definition of falling
factorial function in the inequality (11). As we already know, the Hilfer operator generalizes both
the Riemann— Liouville and Caputo type operator for particular cases of u. The analysis of stability
condition on varying u € [0,1] is carried out and tabulated in Table 2 with presentation in Figure 2.
The change in type u of the operator between [0, 1] results in increase of stability condition (Y) as
in Figure 2.

Table 2. Effect of change in y € [0, 1] for different fractional order 1 € (0,1) on stability condition Q).

2 n = 0.15 7 =0.30 n = 0.45 7 = 0.60 n = 0.75 7 = 0.90

Q

0 0.02133 0.03646 0.06066 0.09860 0.15705 0.24566

0.2 0.02440 0.04111 0.06701 0.10628 0.16477 0.25050

0.4 0.03100 0.06397 0.07666 0.11651 0.17392 0.25567

0.6 0.04396 0.06341 0.09101 0.12998 0.18472 0.26117

0.8 0.06790 0.08633 0.11191 0.14758 0.19744 0.26704

1.0 0.11018 0.12274 0.14184 0.17037 0.21235 0.27329
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09 08 o7 06 0.6

035 04 03 g2 0l g 02 04

n 33

Figure 2. Representation of effect of change in y € [0, 1] for different fractional order 7 € (0,1) on
stability condition Q).

Example 2. This example establishes the Hyers—Ulam stability of Hilfer type discrete fractional
equation of the form

AGT 0 (Q) (Z —0.5) +0.01sin?(v( — 0.5))

1
~ 10" 22)
A~%3[v(0.7)] = 0.6

where { € [0,15] N Nog. Making an analogy between (22) and (6), we have 1 = 0.5,y =
04,0 = 07,A=04,A=06,T =15 D = [04,15] NNy 4 and

O(Z,v(g),v(¥(0))) =1,
w(Z —0.5,0(C —0.5),v(e( —05))) = liou(g —0.5) 4+ 0.01sin?(v( — 0.5)).

Let Igl%))dv(@ﬂ < M, where M € RT. Using the conditions (J1), (J2), (J3) and (10), we yield
€

w(Z — 0.4, 0(f — 0.4), v(@( — 04)))] < % +0.01,

|w(g —04,v(C —0.4),v(p(C —04))) —w(f — 04 —v"({ —04),v"(p(f —04)))|
< 0.11fv(Z) — v* (D)1,

1©(Z, v(Z), v(y(g))| <1

That is Xy = 0.06, xo = 1,61 = 0,2 = % + 0.01, where M = 0.5. From Theorem (5), we
get () = 0.470225 < 1.

Using (13), we have & > 0.256486 with ®y = 1. Thus, existence of unique solution for (22)
is evident from the numerical calculations. Theorem (7) ensures the stability of Hilfer type discrete
fractional problem (22) in the sense of Hyers and Ulam.

7. Conclusions

The article concentrated on obtaining the stability results generalizing Riemann—
Liouville and Caputo type fractional derivatives in discrete time with the help of the
Hilfer type discrete fractional operator. The application of the generalized discrete frac-
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tional operator (Hilfer) to a hybrid pantograph equation was considered in this work.
Hybrid fixed point theory was used to develop the existence of a solution, and Banach
contraction theorem was used to prove the uniqueness of the solution of the generalized
fractional hybrid pantograph equation with discrete time. Stability analysis in the sense
of Ulam-Hyers is performed, and the impact of the fractional order (1) and type (u) are
carried out as an example, with simulations present supporting the results obtained.
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