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Abstract: The boundary value problem (BVP) for the varying coefficient linear Caputo-type fractional
differential equation subject to the mixed boundary conditions on the interval 0 ≤ x ≤ 1 was
considered. First, the BVP was converted into an equivalent differential–integral equation merging
the boundary conditions. Then, the shifted Chebyshev polynomials and the collocation method were
used to solve the differential–integral equation. Varying coefficients were also decomposed into the
truncated shifted Chebyshev series such that calculations of integrals were only for polynomials
and can be carried out exactly. Finally, numerical examples were examined and effectiveness of the
proposed method was verified.
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1. Introduction

In recent decades, the theory of fractional calculus has been attracting much attention
partly due to its ability for describing memory and hereditary properties of various ma-
terials and processes [1–7]. Fractional calculus has been applied to different fields such
as viscoelastic constitutive equations and related mechanical models [6–11], anomalous
diffusion phenomena [4,6,12,13], hydrology [14], control and optimization theory [3,15],
etc. It is worthwhile to mention that fractional calculus can be used to describe not only
viscoelasticity, but also viscoinertia by different values of order [16,17]. The applications of
fractional calculus lead to fractional differential equations (FDEs) in theory [2–5,18].

Let us recall some related definitions of fractional calculus used in this article. Let f (x)
be piecewise continuous on (0,+∞) and integrable on any finite subinterval of (0,+∞).
Then, for x > 0, the Riemann–Liouville fractional integral of f (x) is defined as

Iβ
x f (x) =

∫ x

0

(x− τ)β−1

Γ(β)
f (τ)dτ, (1)

for β > 0, and I0
x f (x) = f (x) for β = 0, where Γ(·) is the gamma function. The fractional

integral satisfies the following equalities:

Iβ
x Iν

x f (x) = Iβ+ν
x f (x), β ≥ 0, ν ≥ 0, (2)

Iν
x xµ =

Γ(µ + 1)
Γ(µ + ν + 1)

xµ+ν, ν ≥ 0, µ > −1. (3)
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Let α be a positive real number, m− 1 < α ≤ m, m ∈ N+, and f (m)(x) be piecewise
continuous on (0,+∞) and integrable on any finite subinterval of (0,+∞). Then, the
Caputo fractional derivative of f (x) of order α is defined as

Dα
x f (x) = Im−α

x f (m)(x), m− 1 < α ≤ m. (4)

For the power function xµ, µ > 0, if 0 ≤ m− 1 < α ≤ m < µ + 1, then we have

Dα
x xµ =

Γ(µ + 1)
Γ(µ− α + 1)

xµ−α, x > 0. (5)

The α-order integral of the α-order Caputo fractional derivative requires the knowledge
of the initial values of the function and its integer-ordered derivatives,

Iα
x Dα

x f (x) = f (x)−
m−1

∑
k=0

f (k)(0)
xk

k!
, m− 1 < α ≤ m. (6)

This property enables the Caputo fractional derivative to be conveniently applied
and analyzed.

In the earlier monograph [1], the Grünwald definition and the Riemann–Liouville def-
inition of fractional calculus were introduced, where numerical differentiation and integra-
tion were considered and semi-integration was introduced by a designed electrical circuit
model and semi-differentiation was applied to diffusion problems. The Weyl fractional
calculus was introduced in [2] beside the Grünwald definition and the Riemann–Liouville
definition. In [3], FDEs and fractional-order system and controllers were considered, where
the Caputo fractional derivative was introduced. The existence, uniqueness and analytical
methods of solutions for FDEs were investigated in [4]. In [18], the Caputo-type fractional
derivative and FDEs were emphasized. In [6], fractional viscoelastic models and frac-
tional wave models in viscoelastic media were introduced. In [5], numerical methods and
fractional variational principle were reviewed.

Damping, deformation, vibration and dissipation arising from viscoelastic material
can be modeled by FDEs [3,4,6,7]. The method of variable separation for fractional partial
differential equation describing anomalous diffusion [4,6,12,14] can lead to a boundary
value problem (BVP) for a fractional ordinary differential equation (ODE) [19]. The theorem
of existence and uniqueness of solutions for fractional ODEs was presented in [3,4,18,20].
Some analytical and numerical methods were proposed to solve FDEs, e.g., see [3–5,21–25].
BVPs for fractional ODEs were considered in [19,26–29] by using the Adomian decom-
position method, wavelet method, the method of upper and lower solutions, orthogonal
polynomial method, etc. However, a fractional BVP with varying coefficients and mixed
boundary conditions has hardly been considered.

In this work, we consider the BVP for the varying coefficient linear Caputo fractional ODE

Dλ
x u(x) + c1(x)u′(x) + c0(x)u(x) = g(x), 0 < x < 1, 1 < λ ≤ 2, (7)

Subject to the mixed boundary conditions

p0u(0)− q0u′(0) = b0, (8)

p1u(1) + q1u′(1) = b1, (9)

where the coefficients c1(x), c0(x), g(x) are specified continuous functions, the boundary
parameters satisfy p0, q0, p1, q1 ≥ 0 and p0 p1 + p0q1 + q0 p1 6= 0. In the next Section 2, some
preliminaries about the shifted Chebyshev polynomials are presented. In Section 3, we
first convert the BVP, (7)–(9), into an equivalent fractional differential–integral equation
merging the boundary conditions, then introduce the collocation method using the shifted
Chebyshev polynomials of the first kind to solve the fractional differential–integral equation.
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Next, three numerical examples are solved by using the proposed method. Section 4
summarizes our conclusions.

2. The Shifted Chebyshev Polynomials of the First Kind

The Chebyshev polynomials of the first kind are defined by the formulae [30]

Tn(x) = cos(n arccos x), −1 ≤ x ≤ 1, n = 0, 1, . . . . (10)

They take on the explicit expressions as

T0(x) = 1, Tn(x) =
n
2

[n/2]

∑
k=0

(−1)k (n− k− 1)!
k!(n− 2k)!

(2x)n−2k, n ≥ 1. (11)

It is well-known that the Chebyshev polynomials of the first kind are orthogonal
on the interval [−1, 1] with the weight function ρ(x) = 1√

1−x2 , and Tn(x) has exactly n

zeros within the interval (−1, 1): ξi = cos
(

2i+1
2n π

)
, i = 0, 1, . . . , n − 1. The Chebyshev

polynomials of the first kind satisfy the recurrence relation

T0(x) = 1, T1(x) = x, Tn(x) = 2xTn−1(x)− Tn−2(x), n = 2, 3, . . . . (12)

It is well-known that if f (x) is L2 integrable on [−1, 1] with the weight function ρ(x),
then its Chebyshev series expansion is L2 convergent with respect to its weight function
ρ(x). If f (x) has better smoothness, then stronger convergence can be attained for its
Chebyshev series. If the function f (x) has n + 1 continuous derivatives on [−1, 1], then
| f (x)− Sm f (x)| = O(m−n) for all x ∈ [−1, 1], where Sm f (x) is the (m + 1)-term truncation
of the Chebyshev series expansion of f (x). For more details for convergence, see [30].

In order to deal with the BVP on the interval [0, 1], we consider the shifted
Chebyshev polynomials

T∗n (x) = Tn(2x− 1), x ∈ [0, 1], n = 0, 1, . . . . (13)

They are orthogonal on the interval [0, 1] with the weight function ρ∗(x) = 1√
x−x2 ,

and the zeros of T∗n (x) are xi =
1
2 + 1

2 cos
(

2i+1
2n π

)
, i = 0, 1, . . . , n− 1. As a complement to

Equation (13), the shifted Chebyshev polynomials satisfy the relationship T∗n (x) = T2n(
√

x).
So, the explicit expressions of the shifted Chebyshev polynomials are conveniently obtained:

T∗0 (x) = 1, T∗n (x) = n
n

∑
k=0

(−1)k (2n− k− 1)!
k!(2n− 2k)!

(4x)n−k, n ≥ 1. (14)

Finally, we mention the shifted Chebyshev polynomials of the second kind, which will
also be used in the next section for the representation of solutions, U∗n(x) = Un(2x− 1), 0 ≤
x ≤ 1, n = 0, 1, . . . , where Un(x) is the Chebyshev polynomials of the second kind.

3. The Equivalent Fractional Differential-Integral Equation and Chebyshev
Collocation Method

First, we derive an equivalent differential–integral equation to the BVP (7)–(9). Apply-
ing the integral operator Iλ

x (·) to both sides of Equation (7) and using Equation (6) yields

u(x)− u(0)− u′(0)x + Iλ
x (c1(x)u′(x) + c0(x)u(x)) = Iλ

x g(x). (15)

Our aim is to solve for u(0) and u′(0) from the boundary conditions (8) and (9), and
then obtain an equation about the solution u(x) without any undetermined constants.
Substituting x = 1 in Equation (15) yields

u(1) = u(0) + u′(0)− Iλ
x,1(c1(x)u′(x) + c0(x)u(x)) + Iλ

x,1g(x), (16)
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where the value of the fractional integral is defined for a general βth order integral of a
function v(x) at x = ξ as

Iβ
x,ξ v(x) =

∫ ξ

0

(ξ − τ)β−1

Γ(β)
v(τ)dτ. (17)

Calculating the first order derivative on the both sides of Equation (15) leads to

u′(x)− u′(0) + Iλ−1
x (c1(x)u′(x) + c0(x)u(x)) = Iλ−1

x g(x). (18)

Substituting x = 1 yields

u′(1) = u′(0)− Iλ−1
x,1 (c1(x)u′(x) + c0(x)u(x)) + Iλ−1

x,1 g(x). (19)

Substituting Equations (16) and (19) into Equation (9) yields

p1u(0) + (p1 + q1)u′(0) = b∗1 , (20)

where

b∗1 = b1 + p1 Iλ
x,1(c1(x)u′(x) + c0(x)u(x))− p1 Iλ

x,1g(x) + q1 Iλ−1
x,1 (c1(x)u′(x) + c0(x)u(x))− q1 Iλ−1

x,1 g(x). (21)

Equations (8) and (20) constitute a system of algebraic equations about u(0) and u′(0).
The coefficient determinant is

P = p0 p1 + p0q1 + q0 p1, (22)

which is positive by our assumptions. Thus, we can solve the system of algebraic
Equations (8) and (20) and obtain

u(0) =
(p1 + q1)b0

P
+

q0b∗1
P

, (23)

u′(0) = − p1b0

P
+

p0b∗1
P

. (24)

Substituting Equations (23) and (24) into Equation (15), we obtain

u(x)− (p1 + q1)b0

P
+

p1b0

P
x− p0x + q0

P
b∗1 + Iλ

x (c1(x)u′(x) + c0(x)u(x)) = Iλ
x g(x). (25)

Replacing b∗1 by using Equation (21) and reorganizing the equation yield

u(x)− p1(p0x + q0)

P
Iλ
x,1(c1(x)u′(x) + c0(x)u(x))

− q1(p0x + q0)

P
Iλ−1
x,1 (c1(x)u′(x) + c0(x)u(x)) + Iλ

x (c1(x)u′(x) + c0(x)u(x)) = h(x), (26)

where

h(x) =
(p1 + q1)b0 − p1b0x

P
+

p0x + q0

P

(
b1 − p1 Iλ

x,1g(x)− q1 Iλ−1
x,1 g(x)

)
+ Iλ

x g(x), (27)

Only involves the known boundary parameters and the known input function g(x).
Equation (26) is the equivalent differential–integral equation to the BVP (7)–(9). In the
sequel, we seek for the solution to the differential-integral Equation (26).
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We approximate the solution by an (m+ 1)-term truncation of the shifted Chebyshev series,

ϕm(x) =
m

∑
n=0

anT∗n (x), (28)

where an, n = 0, 1, . . . , m, are undetermined coefficients. Inserting ϕm(x) into Equation (26),
we obtain the linear equation about an, n = 0, 1, . . . , m,

m

∑
n=0

an

(
T∗n (x)− p1(p0x + q0)

P
Iλ
x,1

(
c1(x)T∗n

′(x) + c0(x)T∗n (x)
)

− q1(p0x + q0)

P
Iλ−1
x,1

(
c1(x)T∗n

′(x) + c0(x)T∗n (x)
)
+ Iλ

x

(
c1(x)T∗n

′(x) + c0(x)T∗n (x)
))

= h(x). (29)

We note that in Equation (29), Iλ
x,1
(
c1(x)T∗n

′(x) + c0(x)T∗n (x)
)

and Iλ−1
x,1(

c1(x)T∗n
′(x) + c0(x)T∗n (x)

)
are constants, represent the values of fractional integrals.

The collocation method may be applied to determine the coefficients an. The colloca-
tion points are taken as the zeroes of the m+ 1 degree shifted Chebyshev polynomial T∗m+1(x),

xi =
1
2
+

1
2

cos
(

2i + 1
2m + 2

π

)
, i = 0, 1, . . . , m. (30)

Thus, the collocation equation system is

m

∑
n=0

an

(
T∗n (xi)−

p1(p0xi + q0)

P
Iλ
x,1

(
c1(x)T∗n

′(x) + c0(x)T∗n (x)
)

− q1(p0xi + q0)

P
Iλ−1
x,1

(
c1(x)T∗n

′(x) + c0(x)T∗n (x)
)

+Iλ
x,xi

(
c1(x)T∗n

′(x) + c0(x)T∗n (x)
))

= h(xi), (31)

where

h(xi) =
(p1 + q1)b0 − p1b0xi

P
+

p0xi + q0

P

(
b1 − p1 Iλ

x,1g(x)− q1 Iλ−1
x,1 g(x)

)
+ Iλ

x,xi
g(x), i = 0, 1, . . . , m. (32)

The matrix form of the collocation equation system (31) is

W~a =~h, (33)

where

~a = (a0, a1, . . . , am)
T , ~h = (h(x0), h(x1), . . . , h(xm))

T , (34)

and the entries of the matrix W are

wij = T∗j (xi)−
p1(p0xi + q0)

P
Iλ
x,1

(
c1(x)T∗j

′(x) + c0(x)T∗j (x)
)

− q1(p0xi + q0)

P
Iλ−1
x,1

(
c1(x)T∗j

′(x) + c0(x)T∗j (x)
)
+ Iλ

x,xi

(
c1(x)T∗j

′(x) + c0(x)T∗j (x)
)

, (35)

i, j = 0, 1, . . . , m.

The solution of the linear algebraic equation system (31) or (33) gives the coefficients
an in Equation (28).

For the Dirichlet boundary conditions u(0) = b0, u(1) = b1, the boundary parameters
are simplified as p0 = p1 = 1 and q0 = q1 = 0, and thus Equation (31) degenerates to
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m

∑
n=0

an

(
T∗n (xi)− xi Iλ

x,1

(
c1(x)T∗n

′(x) + c0(x)T∗n (x)
)
+ Iλ

x,xi

(
c1(x)T∗n

′(x) + c0(x)T∗n (x)
))

= h(xi), (36)

where h(xi) = b0 + (b1 − b0)xi − xi Iλ
x,1g(x) + Iλ

x,xi
g(x), i = 0, 1, . . . , m.

We remark that by the relationship of the first-kind and second-kind Chebyshev poly-
nomials Tn

′(x) = nUn−1(x), we have the relationship of the shifted Chebyshev polynomials
of the two kinds

T∗n
′(x) = 2nU∗n−1(x). (37)

So, the derivative T∗n
′(x) in Equations (31), (35) and (36) may be replaced by the

second-kind Chebyshev polynomials.
The operators Iλ

x,1(·), Iλ−1
x,1 (·) and Iλ

x,xi
(·) in Equations (31), (32) and (35) represent

the values of fractional integrals of the known functions. Since the appearance of the
varying coefficients g(x) and ck(x), manual computations for these integrals are laborious
in general. Here we approximate the varying coefficients again using their truncated shifted
Chebyshev series as

g(x) =
M

∑′

n=0
gnT∗n (x), ck(x) =

M

∑′

n=0
ck,nT∗n (x), k = 0, 1, 0 ≤ x ≤ 1, (38)

where

gn =
2
π

∫ 1

0

1√
x− x2

g(x)T∗n (x)dx, n = 0, 1, . . . , M, (39)

ck,n =
2
π

∫ 1

0

1√
x− x2

ck(x)T∗n (x)dx, k = 0, 1, n = 0, 1, . . . , M, (40)

and the superscript ′ of ∑ denotes that the first term in the sum is halved. We note that
there is no need of connections between the values of m and M in Equations (28) and (38).
Utilizing the Gauss–Chebyshev quadrature formula we derive the numerical formulae for
gn and ck,n as

gn =
2

M + 1

M

∑
i=0

g(xi)T∗n (xi), n = 0, 1, . . . , M, (41)

ck,n =
2

M + 1

M

∑
i=0

ck(xi)T∗n (xi), k = 0, 1, n = 0, 1, . . . , M, (42)

where xi are the zeroes of the M + 1 degree shifted Chebyshev polynomial T∗M+1(x),

xi =
1
2
+

1
2

cos
(

2i + 1
2M + 2

π

)
, i = 0, 1, . . . , M. (43)

Thus, making use of the decompositions in (38), the calculation of the integrals Iλ
x,1(·),

Iλ−1
x,1 (·) and Iλ

x,xi
(·) in Equations (31), (32) and (35) only involves integrals of polynomials,

so can be carried out exactly.
In the following three examples, we take M = 5 in Equation (38) to truncate the

decompositions of the coefficients g(x) and ck(x) and to calculate the involved integrals
Iλ
x,1(·), Iλ−1

x,1 (·) and Iλ
x,xi

(·). Collocation equation systems are solved by using Mathemat-
ica command “LinearSolve". Figures of approximate analytical solutions and errors are
generated by using Mathematica.
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Example 1. Consider the BVP for the linear FDE

D1.5
x u(x)− x sin(x)

3
u′(x) + sin(x)u(x) = g(x), 0 < x < 1, (44)

u′(0) = −1, u(1) = 1, (45)

where g(x) = 3
√

π
4 + 8x1.5

√
π
− 2

3 x sin(x) + 1
2 x1.5 sin(x).

The BVP has the exact solution u∗(x) = −x + x1.5 + x3. The boundary parameters are
p0 = 0, q0 = −1, b0 = −1, p1 = 1, q1 = 0, b1 = 1. The collocation equation system in (31) is

m

∑
n=0

an

(
T∗n (xi)− I1.5

x,1

(
−x sin(x)

3
T∗n
′(x) + sin(x)T∗n (x)

)
+I1.5

x,xi

(
−x sin(x)

3
T∗n
′(x) + sin(x)T∗n (x)

))
= h(xi), (46)

where h(xi) = 2− xi − I1.5
x,1 g(x) + I1.5

x,xi
g(x), i = 0, 1, . . . , m.

Take m = 2, 3, 4 and 5, respectively, the solution approximations ϕm(x) are calculated as

ϕ2(x) = 0.0175774− 1.10039x + 2.05832x2,

ϕ3(x) = −0.00586106− 0.689478x + 0.925577x2 + 0.768798x3,

ϕ4(x) = −0.00288415− 0.76024x + 1.24242x2 + 0.293418x3 + 0.22758x4,

ϕ5(x) = −0.00167028− 0.8038x + 1.54387x2 − 0.47843x3 + 1.05648x4 − 0.316564x5.

The error function and maximum error of the approximate solution ϕm(x) are defined as

ERm(x) = |ϕm(x)− u∗(x)| and MEm = max
0≤x≤1

ERm(x). (47)

In Figure 1, the error functions ERm(x) for m = 2, 3, 4, 5 are depicted, where at
the m + 1 collocation points of ϕm(x), errors are zero. The maximum errors of the four
approximate solutions are 0.028696, 0.005861, 0.002884, and 0.001670, respectively.

0.2 0.4 0.6 0.8 1.0
x

0.005

0.010

0.015

0.020

0.025

ERmHxL

Figure 1. The error functions ERm(x) for m = 2 (solid line), m = 3 (dot line), m = 4 (dash line) and
m = 5 (dot-dash line).

Example 2. Consider the BVP for the linear FDE

Dλ
x u(x)− u(x) = −4xex, 0 < x < 1, 1 < λ ≤ 2, (48)

u(0)− u′(0) = −1, u(1) + u′(1) = −e. (49)

If λ = 2, the BVP has the exact solution u∗(x) = x(1− x)ex.
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For this example, the coefficients and parameters are c1(x) = 0, c0(x) = −1, g(x) =
−4xex, p0 = q0 = p1 = q1 = 1, b0 = −1 and b1 = −e. The collocation equation system in
Equation (31) becomes

m

∑
n=0

an

(
T∗n (xi)−

xi + 1
3

Iλ
x,1(−T∗n (x))

− xi + 1
3

Iλ−1
x,1 (−T∗n (x)) + Iλ

x,xi
(−T∗n (x))

)
= h(xi),

where h(xi) =
xi−2−exi−e

3 + xi+1
3

(
−Iλ

x,1g(x)− Iλ−1
x,1 g(x)

)
+ Iλ

x,xi
g(x), i = 0, 1, . . . , m.

For the case of λ = 2, the error functions ERm(x) = |ϕm(x)− u∗(x)| are depicted
in Figure 2 for m = 2–5. The maximum errors of the approximate solutions are 0.069103,
0.007877, 0.000620, and 0.000038, respectively. For the case of λ = 1.5, the solution approxi-
mations ϕm(x), m = 2–5, are calculated as

ϕ2(x) = 0.578503 + 3.00467x− 2.45143x2,

ϕ3(x) = 0.659109 + 1.56065x + 1.43569x2 − 2.61289x3,

ϕ4(x) = 0.651626 + 1.81823x + 0.108085x2 − 0.448696x3 − 1.09621x4,

ϕ5(x) = 0.653112 + 1.75369x + 0.599869x2 − 1.78975x3 + 0.411041x4 − 0.596018x5.

The condition numbers of the coefficient matrices W in the derivations of the four
solution approximations are 2.85, 3.29, 3.67 and 4.02, respectively. These values show that
the coefficient matrices W are well conditioned. We note that the condition number is based
on the l2-matrix norm. The four solution approximations are plotted in Figure 3, where a
fast convergence is shown.
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Figure 2. For λ = 2, the error functions ERm(x) for m = 2 (solid line), m = 3 (dot line), m = 4 (dash
line) and m = 5 (dot-dash line).
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Figure 3. For λ = 1.5, the solution approximations ϕm(x) for m = 2 (solid line), m = 3 (dot line),
m = 4 (dash line) and m = 5 (dot-dash line).
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Example 3. Consider the BVP for the linear FDE

Dλ
x u(x)− x

1 + x
u′(x)− 1

1 + x
u(x) = 0, 0 < x < 1, 1 < λ ≤ 2, (50)

u(0)− 2u′(0) = −1, u(1) + 2u′(1) = 3e. (51)

If λ = 2, the BVP has the exact solution u∗(x) = ex.
The coefficients and parameters are c1(x) = − x

1+x , c0(x) = − 1
1+x , g(x) = 0,

p0 = p1 = 1, q0 = q1 = 2, b0 = −1, b1 = 3e. The collocation equation system in
Equation (31) becomes

m

∑
n=0

an

(
T∗n (xi)−

xi + 2
5

Iλ
x,1

(
−x

1 + x
T∗n
′(x) +

−1
1 + x

T∗n (x)
)

− 2(xi + 2)
5

Iλ−1
x,1

(
−x

1 + x
T∗n
′(x) +

−1
1 + x

T∗n (x)
)
+ Iλ

x,xi

(
−x

1 + x
T∗n
′(x) +

−1
1 + x

T∗n (x)
))

= h(xi),

where h(xi) =
1
5 (6e− 3 + 3exi + xi), i = 0, 1, . . . , m.

For the case of λ = 2, the error functions ERm(x) = |ϕm(x)− u∗(x)| for m = 2, 3, 4, 5,
are depicted in Figure 4. The maximum errors of the approximate solutions are 0.011605,
0.000742, 0.000037, and 0.000002, respectively. For the case of λ = 1.5, the solution approxi-
mations ϕm(x) for m = 2, 3, 4, 5 are calculated as

ϕ2(x) = 0.627196 + 0.801952x + 0.961626x2,

ϕ3(x) = 0.614413 + 0.94835x + 0.55162x2 + 0.269951x3,

ϕ4(x) = 0.615168 + 0.908026x + 0.734701x2 − 0.0100847x3 + 0.135331x4,

ϕ5(x) = 0.615706 + 0.894049x + 0.828159x2 − 0.242103x3 + 0.378859x4 − 0.0913166x5.

The condition numbers of the coefficient matrices W in the derivations of the four
solution approximations are 4.87, 7.83, 11.90 and 17.05, respectively. So the coefficient
matrices W are well conditioned. The four solution approximations are plotted in Figure 5.

In the three examples, fast convergent rates are shown only using the minor term
number with M = 5 in Equation (38) for the integral computation of the known functions,
and the minor term number with m = 2, 3, 4 and 5 in Equation (28) for the truncated
Chebyshev series of the unknown function.

0.2 0.4 0.6 0.8 1.0
x

0.002

0.004

0.006

0.008

0.010

0.012
ERmHxL

Figure 4. For λ = 2, the error functions ERm(x) for m = 2 (solid line), m = 3 (dot line), m = 4 (dash
line) and m = 5 (dot-dash line).
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0.2 0.4 0.6 0.8 1.0
x

1.0

1.5

2.0

jmHxL

Figure 5. For λ = 1.5, the solution approximations ϕm(x) for m = 2 (solid line), m = 3 (dot line),
m = 4 (dash line) and m = 5 (dot-dash line).

4. Conclusions

We considered the BVP for the varying coefficient linear Caputo-type fractional ODE
subject to the mixed boundary conditions on the interval 0 ≤ x ≤ 1. The BVP was conve-
niently converted into an equivalent differential–integral equation merging the boundary
conditions. Then, the solution was decomposed into a truncated shifted Chebyshev series.
The collocation method was used to determine the solution. In order to deal with the
involved integrations, the varying coefficients were again decomposed into the truncated
shifted Chebyshev series. Thus, the calculations of the integrals are only for polynomials
and can be carried out exactly. Three numerical examples were solved by using the pro-
posed method, where fast convergent rates are shown only using the minor term number
with M = 5 in Equation (38) for the integral computation of the known functions, and the
minor term number with m = 2, 3, 4 and 5 in Equation (28) for the truncated Chebyshev
series of the unknown function.

In the presented method, there is no need to divide the interval commonly used in
numerical methods. The collocation points or the zeros of the Chebyshev polynomials have
exact explicit expressions. Approximate analytical solutions in the polynomial forms are
obtained, which are different from a discrete numerical solution. The obtained approxi-
mate analytical solutions in the polynomial forms can be directly checked by substitution.
The convergence and effectiveness of solutions can be examined by remainder errors.
Convergence order of the approximate solutions could be further consideration in this field.
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