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Abstract: The purpose of this paper is to investigate a class of initial value problems of fuzzy fractional
coupled partial differential equations with Caputo gH-type derivatives. Firstly, using Banach fixed
point theorem and the mathematical inductive method, we prove the existence and uniqueness of two
kinds of gH-weak solutions of the coupled system for fuzzy fractional partial differential equations
under Lipschitz conditions. Then we give an example to illustrate the correctness of the existence
and uniqueness results. Furthermore, because of the coupling in the initial value problems, we
develop Gronwall inequality of the vector form, and creatively discuss continuous dependence of the
solutions of the coupled system for fuzzy fractional partial differential equations on the initial values
and ε-approximate solution of the coupled system. Finally, we propose some work for future research.

Keywords: existence and uniqueness; continuous dependence and ε-approximation; coupled system
of fuzzy fractional partial differential equations; Banach fixed point theorem; Gronwall inequality of
the vector form

1. Introduction

It is well known that fuzzy set theory naturally simulates uncertain systems [1,2]
and has been probed into in linguistics, psychology, data sciences, decision-making and
other related engineering and applied science fields; this is as a result of its tremendous
adaptability and functionality (see [2]). Since there is still the possibility of ambiguity in
real life, one needs to consider fuzzy uncertainty in order to better apply theory to life [3].
One of the basic characteristics of fuzzy numbers is to prevent the loss of information by
using membership functions around crisp data [4]. Thus, in order to take into account the
deliberately ignored uncertainties in the models, we introduce a fuzzy concept to make it
possible for relatively complex systems to quantitatively describe and study things and
concepts that are not deterministic. In fact, as Shah et al. [5] clearly indicated, “the modeling
of some real world problems keeping uncertainty in data has given rise to fuzzy partial
differential equations (PDEs)”. In other words, fuzzy PDEs are usually used to deal with
multi-dimensional dynamic systems of realistic problems in fuzzy environments [6] and have
been developed more rapidly with the great expansion of research fields such as physical
science, population dynamics, station elasticity, and so on. See, for example, [2,7–12] and the
references therein.

In recent decades, firstly, the fractional differential operators as a kind of absolute
operator provide a greater degree of freedom [5]. As we all know, the concept of Caputo
fractional derivative was first proposed by Caputo in 1967. A lesser-known fact is that the
Russian (Soviet) mathematician Gerasimov introduced the concept of fractional derivative
20 years before Caputo. So, it is also called the Gerasimov–Caputo derivative [13]. Secondly,
fractional-order differential equations merge and describe problems more accurately [4] and
accumulate the whole information of functions in a weighted form [14]. Thus, fractional-
order differential equations have been widely used in simulating viscoelastic, turbulent,
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nonlinear biological systems and other real-world phenomena, especially in describing
memory and genetic characteristics and so on, and promote the development of important
disciplines such as physics and biology [15]. That is to say, the real-world problems can be
fully described theoretically through fractional PDEs, and they can help us obtain more
accurate results [16]. Relevant work can be found in [14–18] and their references.

In 2021, Niazi and Iqbal studied a class of Caputo fuzzy fractional evolution equations
and obtained some important conclusions such as precise controllability of the evolution
equations and existence and uniqueness of mild solutions (see [19–21]). About 10 years
ago, Agarwal et al. [22] and Arshad and Lupulescu [23] applied different methods to
prove the existence and uniqueness of solutions for fuzzy fractional ordinary differential
equations. However, it is far from enough to solve practical problems using ordinary
differential equations. Thus, PDEs were proposed. While thermal diffusion equations and
Laplace equations can be well described by the classical PDEs, only mathematical models
for describing real world problems with uncertainty can be successfully solved base on
the introduction of fuzzy fractional PDEs. Hence, fuzzy fractional PDEs play a significant
role in science and engineering. As a matter of fact, for solving nonlinear problems arising
in environmental, medical, economical, social, physical and decision-making sciences,
many scholars have developed some new concepts, methods and tools, which include
integral transform of Fourier, Laplace, Sumudu, etc. (see [5]). Recently, Rashid et al. [24]
studied a new method called EADM, which has a powerful function in the configuration of
numerical solutions for nonlinear fuzzy fractional PDEs generated in physics and complex
structures. However, as Bede and Stefanini [25] pointed out, it is well known that the
usual Hukuhara difference (H-difference) between two fuzzy numbers exists only under
very restrictive conditions and the generalized Hukuhara type (gH-type) difference of two
fuzzy numbers exists under much less restrictive conditions, and the gH-type difference of
intervals always exists. Thereupon, based on the concepts of gH-type differentiability and
some properties due to Bede and Stefanini [25], Long et al. [26] defined fuzzy fractional
integral and Caputo gH-type derivative for fuzzy-valued multivariable functions under H-
difference and gH-type difference existing sorts. Next, they developed the concept of fuzzy
Caputo derivatives from one-variable functions to fuzzy-valued multivariable functions,
and stated that “it is important to think about the value of embedding our results within
fractional calculus for fuzzy-valued multivariable functions in the sense of the gH-type
derivative”. Further, Long et al. [26] introduced and studied the following fuzzy hyperbolic
Darboux problem under Caputo fractional gH-type derivative:

C
gHDh̄

k u(x, y) = f (x, y, u(x, y)), ∀(x, y) ∈ [0, a]× [0, b], k = 1, 2 (1)

with initial conditions u(x, 0) = η1(x) for any x ∈ [0, a] and u(0, y) = η2(y) for each
y ∈ [0, b], where h̄ = (h̄1, h̄2) ∈ (0, 1] × (0, 1] is the fractional order of Caputo gH-type
derivative operator C

gHDh̄
k . Moreover, the existence and uniqueness results of two classes of

fuzzy solutions for (1) are given by applying Banach and Schauder fixed point theorems,
respectively. We note that the operator C

gHDh̄
k in (1) and the main results of [26] presuppose

the existence of gH-type difference and H-difference, respectively. Long et al. [26] indicated
that “when we fuzzify these models to adopt real-world problems containing uncertainties,
we find that there has been no paper developed on this subject for fuzzy fractional PDEs
up to now”. Recently, based on the gH-type differentiability, Senol et al. [4] exploited a
perturbation-iterative algorithm for numerical solutions of fuzzy fractional PDEs under
Caputo’s gH-type derivative; here, Caputo time-fractional derivative was formalized for
fuzzy numbers in the Hukuhara sense. Further, Shahsavari et al. [12] obtained fuzzy
traveling wave solutions in special cases such as fuzzy convection–diffusion–reaction
equations, fuzzy Klein–Gordon equations and others.

On the other hand, biodiversity is the most essential characteristic of an ecosystem.
However, previous researchers mainly considered the survival and development of a single
species and did not pay attention to the competition caused by the existence of multiple
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species. This class of relationship is called “coupling” if two or more things interact and
influence each other [27]. These universal realistic problems have aroused the interest of
many researchers, who claim that a complex system and process cannot be depicted by
a single differential equation, so coupled systems have received extensive attention. For
more details, one can refer to [3,28] and the references therein. In particular, in the sense
of Caputo fractional derivatives, Dong et al. [29] proved the existence and uniqueness
of solutions for a coupled system of nonlinear implicit fractional differential equations
as follows: {CDαx(t) = f (t, y(t),C Dαx(t)), 0 ≤ t ≤ 1,

CDβy(t) = g(t, x(t),C Dβy(t)), 0 ≤ t ≤ 1

with initial conditions x(0) = x0 and y(0) = y0. Actually, one can see that it is a worth
studying hotspot to employ fuzzy fractional PDE systems concerning the coupling systems,
and it is very valuable and of great significance to extend the corresponding methods to
study the coupled systems for fuzzy fractional PDEs.

Inspired by the work of predecessors such as Long et al. [26], Dong et al. [29] and
other pioneers, in this paper, we consider the following coupled system of fuzzy fractional
PDEs: For all (x, y) ∈ J = [0, a]× [0, b] and k = 1, 2,

C
gHDα

k u(x, y) = f (x, y, v(x, y)),

C
gHD

β
k v(x, y) = g(x, y, u(x, y))

(2)

with initial conditions{
u(x, 0) = ξ1(x), v(x, 0) = η1(x), ∀x ∈ [0, a],

u(0, y) = ξ2(y), v(0, y) = η2(y), ∀y ∈ [0, b],
(3)

where α = (α1, α2), β = (β1, β2) ∈ (0, 1]× (0, 1] are fractional orders, and Caputo gH-type
derivative operators C

gHDα
k and C

gHD
β
k are the same as in (1). This problem is a new fuzzy

hyperbolic coupled system.

Remark 1. (i) If β = (1, 1), then (2) with (3) becomes an initial problem as follows:

C
gHDα

k u(x, y) = f (x, y, v(x, y)),

∂v(x, y)
∂x∂y

= g(x, y, u(x, y)),

u(x, 0) = ξ1(x), u(0, y) = ξ2(y),

v(x, 0) = η1(x), v(0, y) = η2(y)

(4)

for any (x, y) ∈ [0, a]× [0, b] and each k = 1, 2, where α is the same as in (2). Further, if α = (1, 1),
then (4) reduces to the form 

∂u(x, y)
∂x∂y

= f (x, y, v(x, y)),

∂v(x, y)
∂x∂y

= g(x, y, u(x, y)),

u(x, 0) = ξ1(x), u(0, y) = ξ2(y),

v(x, 0) = η1(x), v(0, y) = η2(y)

(5)

for every (x, y) ∈ [0, a]× [0, b].
(ii) As far as we know, a problem similar to (5) was investigated more than 100 years ago

by Riquier [30]. In the 20th century, French, Japanese, and Russian mathematicians published
numerous publications on similar subjects (see, for example, [31,32]). Recently, in Kazakov [33,34],
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concerning the PDE problems consisting of two equations, where the right side depends on the
unknown function, which is not differentiated in this equation, both independent variables and
boundary conditions are specified on two coordinate axes as the “Generalized Cauchy problem”. In
[34], Kazakov and Lempert introduced applications of the generalized Cauchy problem.

(iii) While (4) and (5) are similar in form to the problems studied by Riquier [30] and Kazakov
[33], they rely on gH-type derivatives. So we register that (4) and (5) are brand new and have not
been reported in the literature.

The remainder of this paper is organized as follows. In Section 2, we set out some
necessary concepts and other preliminaries. We prove the existence and uniqueness of
two kinds of gH-weak solutions for (2) with (3) using Banach fixed point theorem and
give a numerical example in Section 3. In Section 4, on the basis of modifying the initial
conditions, (2) with (3) shall be equivalent to a class of new nonlinear fractional order
coupled Volterra integro-differential systems and the results that the solutions of (2) with
(3) depend continuously on the initial values and ε-approximate solutions of (2) with (3)
are given. Finally, some conclusions and future work are discussed in Section 5.

2. Preliminaries

In order to dispose of (2) with (3), we firstly follow the versions of some concepts
introduced by Long et al. [26] for fractional integral and fractional Caputo gH-derivative of
fuzzy valued multivariable functions.

Throughout this paper, let E1 and E2 be the spaces of fuzzy numbers from R into
[0, 1], the mappings in which they are normal, fuzzy convex, upper semi-continuous and
compactly supported. Define τ-level sets of fuzzy number v : R→ [0, 1] as follows

[v]τ =

{
{x ∈ R : v(x) ≥ τ}, if 0 < τ ≤ 1,

cl(supp v), if τ = 0,

where cl is the closure of the set, and supp v denotes the support of the fuzzy number
v, which is defined by supp v = cl{x ∈ Rn|v(x) > 0}. For any v ∈ Ei (i = 1, 2) and
τ ∈ [0, 1], the closed and bounded interval [v−τ , v+

τ ] is the τ-level set of the fuzzy number
v, where v−τ and v+

τ are separately called the left-hand endpoint and the right-hand
endpoint of v, and len[v]τ = v+

τ −v−τ represents the diameter of the τ-level set of v. The
supremum metric on Ei for i = 1, 2 is defined by

d∞(v, ω) = sup
0≤τ≤1

max{|v−τ −ω−τ |, |v+
τ −ω+

τ |}, ∀v, ω ∈ Ei.

For all v, ω ∈ E1, τ ∈ [0, 1], we have

[v + ω]τ = [v]τ + [ω]τ (6)

and if v	ω exists, where 	 is the H-difference defined in [35], then

[v	ω]τ = [v−τ −ω−τ , v+
τ −ω+

τ ]. (7)

Lemma 1. ([10]) For all ν, θ, ω, e ∈ Ei, i = 1, 2, we have the following presentations:
(i) d∞(ν + θ, ω + e) ≤ d∞(ν, ω) + d∞(θ, e).
(ii) If ν	 θ and ω	 e exist, then d∞(ν	 θ, ω	 e) ≤ d∞(ν, ω) + d∞(θ, e).

Remark 2. The conclusions of Lemma 1 (ii) are conditional on existence of H-difference, which will
be used to prove our main results.
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Definition 1. ([36]) A mapping w ∈ C(J, E1) is said to be gH-type differentiable with respect to
x at (x0, y0) ∈ J, if there exists an element ∂w(x0,y0)

∂x ∈ E1 such that (x0 + h, y0) ∈ J holds for all
sufficiently small h, w(x0 + h, y0)	gH w(x0 + h, y0) and

lim
h→0

w(x0 + h, y0)	gH w(x0, y0)

h
=

∂w(x0, y0)

∂x
,

where w	gH v denotes the gH-type difference ([35]) of w ∈ E1 and v ∈ E1, which is the fuzzy
number ν if it exists such that

w	gH v = ν⇐⇒
{
(†)w = v + ν or

(‡)v = w + (−1)ν.
(8)

In this case, ∂w(x0,y0)
∂x ∈ E1 is called the gH-type derivative of w at (x0, y0) with respect to x,

as long as the left-hand limit exists.
The gH-type derivative of w at (x0, y0) with respect to y and the higher fuzzy partial derivative

of w are defined similarly.

Remark 3. From Definition 1, one can see that the gH-type derivative of fuzzy number w
with respect to x or y, which will support the concept of Caputo gH-type derivative in (2) and
corresponding conclusions presented in this paper, has existence of the gH-type difference as a
prerequisite.

Based on the work of [26], for the space C(J, Ei) of all fuzzy-valued continuous
functions and the space L1(J, Ei) of Lebesque integrable fuzzy-valued functions on
J = [0, a] × [0, b]; here i = 1, 2; now we give the following other necessary definitions
and lemmas.

Definition 2. Let J = [0, a] × [0, b], α = (α1, α2), β = (β1, β2) ∈ (0, 1] × (0, 1],
u ∈ C(J, E1)

⋂
L1(J, E1), v ∈ C(J, E2)

⋂
L1(J, E2), [u(x, y)]τ = [u−τ (x, y), u+

τ (x, y)] and
[v(x, y)]λ = [v−λ (x, y), v+λ (x, y)].

Then, based on level set-wise as follows

[RL
F Iα

0+u(x, y)]τ = [RL
F Iα

0+u−τ (x, y), RL
F Iα

0+u+
τ (x, y)]

and
[RL
F I

β
0+v(x, y)]λ = [RL

F I
β
0+v−λ (x, y), RL

F I
β
0+v+λ (x, y)],

the mixed Riemann–Liouville fractional integral of orders α and β for fuzzy-valued multivariable
functions u(x, y) and v(x, y) are, respectively, defined by

RL
F Iα

0+u(x, y) =
1

Γ(α1)Γ(α2)

x∫
0

y∫
0

(x− s)α1−1(y− t)α2−1u(s, t)dt ds, (9)

RL
F I

β
0+v(x, y) =

1
Γ(β1)Γ(β2)

x∫
0

y∫
0

(x− s)β1−1(y− t)β2−1v(s, t)dt ds. (10)

Definition 3. If for all ε > 0, there exist δ1, δ2 > 0 such that for any (x, y, u) ∈ J × C(J, E1)
and (x, y, v) ∈ J × C(J, E2) with |x− x0|+ |y− y0|+ d∞(u, ψ) < δ1 and |x− x0|+ |y− y0|+
d∞(v, ϕ) < δ2, d∞( f (x, y, v), f (x0, y0, ϕ)) < ε and d∞(g(x, y, u), g(x0, y0, ψ)) < ε, then the
mappings f : J × C(J, E2)→ E1 and g : J × C(J, E1)→ E2 are called jointly continuous at point
(x0, y0, ϕ) ∈ J × C(J, E2) and (x0, y0, ψ) ∈ J × C(J, E1), respectively.
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For all (x, y) ∈ J = [0, a]× [0, b], let

ψ(x, y) = ξ2(y) + [ξ1(x)	 ξ1(0)], (11)

ϕ(x, y) = η2(y) + [η1(x)	 η1(0)], (12)

where ξ1 ∈ C([0, a], E1), η1 ∈ C([0, a], E2), ξ2 ∈ C([0, b], E1) and η2 ∈ C([0, b], E2) are the
given functions such that ξ2(y)	 ξ1(0) and η2(y)	 η1(0) exist, respectively. Then, we say

Ĉ f
ψ(J, E2) =

{
v ∈ C(J, E2) : ψ(x, y)	 (−1)RL

F Iα
0+ f (x, y, v(x, y))

exists, ∀(x, y) ∈ J
}

, (13)

Ĉg
ϕ(J, E1) =

{
u ∈ C(J, E1) : ϕ(x, y)	 (−1)RL

F I
β
0+ g(x, y, u(x, y))

exists, ∀(x, y) ∈ J
}

, (14)

where ψ(·, ·) and ϕ(·, ·) are defined by (11) and (12), respectively. Furthermore, denote
CJ (J, Em, En) = {h : J × C(J, Em)→ En| h as jointly continuous} for each m, n = 1, 2
(m 6= n) and for k, j = 0, 1, 2 and i = 1, 2, Ck,j

gH(, Ei) by a set of all functions φ :  ⊂ R2 → Ei,
which have partial gH-type derivatives up to order k with respect to x and up to order j
with respect to y in . In C(J, Ei), we consider supremum metrics ρ defined by

ρ(u, v) = sup
(x,y)∈J

d∞(u(x, y), v(x, y)), (15)

and stipulate the weighted metric dr for r = (r1, r2) ∈ [0, 1]× [0, 1] as follows

dr(φ, υ) = sup
(x,y)∈J

{xr1 yr2 d∞(φ(x, y), υ(x, y))}. (16)

Definition 4. Let α = (α1, α2), β = (β1, β2) ∈ (0, 1] × (0, 1], u ∈ C2,2
gH(J, E1) and

v ∈ C2,2
gH(J, E2). We define the Caputo gH-type derivatives of order α with respect to x and

y of the function u as

C
gHDαu(x, y) = RL

F I1−α
0+

(
∂2u(x, y)

∂x∂y

)

=
1

Γ(1− α1)Γ(1− α2)

x∫
0

y∫
0

(x− s)−α1(y− t)−α2
∂2u(s, t)

∂s∂t
dt ds

and formulate the Caputo gH-type derivatives of order β in relation to x and y for the function v by

C
gHDβv(x, y) = RL

F I
1−β
0+

(
∂2v(x, y)

∂x∂y

)

=
1

Γ(1− β1)Γ(1− β2)

x∫
0

y∫
0

(x− s)−β1(y− t)−β2
∂2v(s, t)

∂s∂t
dt ds,

if the expressions on the right hand side are defined, where 1− α = (1− α1, 1− α2), 1− β =
(1− β1, 1− β2) ∈ [0, 1)× [0, 1).

In particular, we distinguish two cases homologizing to (†) and (‡) in (8), and u ∈ E1 is called

(i) (†)-Caputo gH-differentiable of order α with respect to x and y, which denotes C
gHDα

1 u(x, y),

if ∂2u
∂x∂y (·, ·) as a gH-type derivative in type 1 (i.e., k = 1 in (2)) at (x, y).
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(ii) (‡)-Caputo gH-differentiable of order α with respect to x and y when ∂2u
∂x∂y (·, ·) is a gH-type

derivative in type 2 (i.e., k = 2 in (2)) at (x, y). This is indicated by C
gHDα

2 u(x, y).

Remark 4. If α = β = (1, 1) in Definition 4, then we have

C
gHDαu(x, y) =

∂2u
∂x∂y

(x, y), C
gHDβv(x, y) =

∂2v
∂x∂y

(x, y)

for almost all (x, y) ∈ J.

Lemma 2. Suppose that ψ(·, ·) and ϕ(·, ·) are the same as in (11) and (12) in several, and
zi(x, y) ∈ C(J, Ei) is continuous for i = 1, 2. Then the fuzzy functions

Z̃1(x, y) = ψ(x, y) + RL
F Iα

0+z1(x, y) (17)

and

Z̄2(x, y) = ϕ(x, y)	 RL
F Iα

0+z2(x, y) (18)

are (†)-Caputo gH-differentiable and (‡)-Caputo gH-differentiable (provided they exist), respec-
tively. Further,

C
gHDα

1 Z̃1(x, y) = z1(x, y) (19)

and

C
gHDα

2 Z̄2(x, y) = −z2(x, y). (20)

Proof. Applying operator C
gHDα

1 to both sides of (17), based on the definitions of
C
gHDα

1 u(x, y) in the special case (i) of Definition 4 for u ∈ C2,2
gH(J, E1), then it follows from

Definition 2.1 of [37] and (6) that[
C
gHDα

1 Z̃1(x, y)
]τ

=

[
RL
F I1−α

0+

(
∂2(ψ(x, y)−τ + RL

F Iα
0+z−1τ

(x, y))
∂x∂y

)
,

RL
F I1−α

0+

(
∂2(ψ(x, y)+τ + RL

F Iα
0+z+1τ

(x, y))
∂x∂y

)]

=

[
RL
F I1−α

0+

(
∂2(RL

F Iα
0+z1(x, y))
∂x∂y

)]τ

= [z1(x, y)]τ .

Moreover,
C
gHDα

1 Z̃1(x, y) = z1(x, y).

Similarly, employ operator C
gHDα

2 to both sides of (18). Then, based on the special case
(ii) of Definition 4, and by Definition 2.1 of [37] and (7), we have

C
gHDα

2 Z̄2(x, y) = −z2(x, y).

This completes the proof.

Lemma 3. Let ψ(·, ·) and ϕ(·, ·) be the same as in (11) and (12), separately, let the functions
f ∈ CJ (J, E2, E1) and g ∈ CJ (J, E1, E2) be continuous, and let the functions u ∈ C2,2

gH(J, E1)
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and v ∈ C2,2
gH(J, E2) be fuzzy value. Then (2) with (3) is equivalent to the following nonlinear

fractional-order coupled Volterra integro-differential system: For any (x, y) ∈ J,{
u(x, y) = ψ(x, y) + RL

F Iα
0+ f (x, y, v(x, y))

v(x, y) = ϕ(x, y) + RL
F I

β
0+ g(x, y, u(x, y))

when k = 1 (21)

or {
u(x, y) = ψ(x, y)	 (−1) RL

F Iα
0+ f (x, y, v(x, y))

v(x, y) = ϕ(x, y)	 (−1) RL
F I

β
0+ g(x, y, u(x, y))

when k = 2. (22)

Proof. “⇒” Letting u ∈ C2,2
gH(J, E1) and v ∈ C2,2

gH(J, E2) satisfy (2) with (3), then one knows
that the subsequent proof process of sufficiency is similar to the proof of Lemma 4.1 in [26],
and so it is omitted.

“⇐” When k = 1, let (u(x, y), v(x, y))T be a solution of (21), and mark
z(x, y) = f (x, y, v(x, y)). After applying Caputo fractional differential operator C

gHDα
1

to both sides of the first equation of (21), it follows from (19) that

C
gHDα

1 u(x, y) = z(x, y),

which intends
C
gHDα

1 u(x, y) = f (x, y, v(x, y)).

Furthermore, the first equation of (21) implies that u(x, 0) = ξ1(x), u(0, y) = ξ2(y).
Similar to the second equation of (21), we also obtain

C
gHD

β
1 v(x, y) = g(x, y, u(x, y)), v(x, 0) = η1(x), v(0, y) = η2(y).

Thus, (u(x, y), v(x, y))T is the solution to (2) with (3).
For k = 2, let us employ Caputo fractional differential operator C

gHDα
2 to both sides of

the first equation in (22). Then, from (20), one can get

C
gHDα

2 u(x, y) = z(x, y),

i.e., C
gHDα

2 u(x, y) = f (x, y, v(x, y)). Additionally, it follows from the first equation of (22)
that u(x, 0) = ξ1(x), u(0, y) = ξ2(y). Further, concerning the second equation of (22), we
homogeneously have

C
gHD

β
2 v(x, y) = g(x, y, u(x, y)), v(x, 0) = η1(x), v(0, y) = η2(y),

and the proof of sufficiency is completed.

Remark 5. In [26], Long et al. only gave the sufficiency, and we expand the existing work and
propose sufficiency and necessity of equivalence to (2) with (3) in Lemma 3.

For each λ, τ ∈ [0, 1] and any vector ζ1 =

(
ν
ω

)
, ζ2 =

(
ν̃
ω̃

)
∈ C(J, E1)× C(J, E2),

let

‖ζ1 ‖: = max{‖ ν ‖, ‖ ω ‖}
= max{ρ(ν, 0̂), ρ(ω, 0̂)}

= max

 sup
(x,y)∈J
0≤τ≤1

max{|ν−τ |, |ν+τ |}, sup
(x,y)∈J
0≤τ≤1

max{|ω−τ |, |ω+
τ |}

,
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where 0̂(x, y) is equal to 1 if x = y = 0 and is 0 in other cases. Then, from Long et al. [26]
and Dong et al. [29], it follows that (C(J, E1)× C(J, E2), ‖ · ‖) is a Banach space. Taking

P =

{(
ν
ω

)
∈ C(J, E1)× C(J, E2)

∣∣ ν(x, y), ω(x, y) ≥ 0, ∀(x, y) ∈ J
}

,

then P is the normal and reproducing cone of C(J, E1)× C(J, E2). The semi-order “≤” in
C(J, E1)× C(J, E2) is derived from cone P; that is

ζ1 ≤ ζ2 ⇐⇒ ζ2 − ζ1 ∈ P

for ζ1 =

(
ν
ω

)
, ζ2 =

(
ν̃
ω̃

)
∈ C(J, E1)× C(J, E2).

In [29], Dong et al. only gave the Gronwall inequality of the form for a single variable
function. By Theorem 3.2 of [38] or Lemma 2.3 in [29], we give the following generalization
of Gronwall’s inequality in the vector form of bivariate function, which plays an important
role for obtaining our main results.

Lemma 4. Let f ∈ CJ (J, E2, E1) and g ∈ CJ (J, E1, E2) satisfy Lipschitz condition (LC) with
coefficients L1 and L2 in several; i.e., there exist positive real numbers L1 and L2 such that, for all
θ1, θ2 ∈ C(J, E1) and any γ1, γ2 ∈ C(J, E2),{

d∞( f (x, y, γ1), f (x, y, γ2)) ≤ L1d∞(γ1, γ2),

d∞(g(x, y, θ1), g(x, y, θ2)) ≤ L2d∞(θ1, θ2).

Assume that Gronwall inequality of the vector form

U(x, y) ≤ AU(x, y) + H

holds, where U(x, y) =

(
u1(x, y)
v1(x, y)

)
, H(x, y) =

(
h1(x, y)
h2(x, y)

)
∈ C(J, E1)× C(J, E2), A =(

0 L1
RL
F I

β
0+

L2
RL
F Iα

0+ 0

)
, and RL

F Iα
0+ and RL

F I
β
0+ represent the fractional integrals of Caputo. In

addition, if the following conditions are true:

(H1) Constants a, b, α, β, L1, L2 ∈ (0, 1),
(H2) max{L1, L2} < 1

M , where

M = max
{

aβ1 bβ2

Γ(β1 + 1)Γ(β2 + 1)
,

aα1 bα2

Γ(α1 + 1)Γ(α2 + 1)

}
,

then U(x, y) ≤ ∑∞
k=0 Ak H, where An+1 = A(An) and A0 = I, the identity matrix.

Proof. Define an operator T̂ : C(J, E1)× C(J, E2)→ C(J, E1)× C(J, E2) as

(T̂U)(x, y) = AU(x, y) + H.

Firstly, we prove that T̂ is an increasing operator. In fact, letting ζ1 =

(
ν
ω

)
≤ ζ2 =(

ν̃
ω̃

)
, that is {

ν(x, y) ≤ ν̃(x, y),
ω(x, y) ≤ ω̃(x, y),

∀(x, y) ∈ [0, a]× [0, b],
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then

T̂ζ2 − T̂ζ1 = Aζ2 − Aζ1

=

(
L1

RL
F I

β
0+(ω̃−ω)

L2
RL
F Iα

0+(ν̃− ν)

)
≥
(

0̂
0̂

)
.

Thus, T̂ is an increasing operator. Next, that ‖A‖ < 1 shall be shown. Indeed, since

‖ζ1‖ = 1

⇐⇒ max

 sup
(x,y)∈J
0≤τ≤1

max{|ν−τ |, |ν+τ |}, sup
(x,y)∈J
0≤τ≤1

max{|ω−τ |, |ω+
τ |}

 = 1,

it strings along Definition 2 that

‖A‖ = sup
‖ζ1‖=1

‖Aζ1 ‖

≤ sup
‖ζ1‖=1

max
{

L1
RL
F I

β
0+ , L2

RL
F Iα

0+

}

×max

 sup
(x,y)∈J
0≤τ≤1

max{|ω−τ |, |ω+
τ |}, sup

(x,y)∈J
0≤τ≤1

max{|ν−τ |, |ν+τ |}



≤ max{L1, L2} × sup
(x,y)∈J

max
{

aα1 bα2

Γ(α1 + 1)Γ(α2 + 1)
,

aβ1 bβ2

Γ(β1 + 1)Γ(β2 + 1)

}
< 1,

and so by Theorem 3.2 in [38], one knows that T̂ has a unique fixed point U∗ and
limn→∞ T̂nU = U∗.

At this point, H is taken as the initial value of iteration, which can be obtained through
the following calculation:

U0 =H,

U1 =T̂U0 = AH + H,

U2 =T̂U1 = A2H + AH + H,
...

Un =T̂Un−1 = An H + · · ·+ AH + H =
n

∑
k=0

Ak H,

U∗ = lim
n→∞

Un =
∞

∑
k=0

Ak H.

Hence, it follows that U(x, y) ≤ ∑∞
k=0 Ak H via Lemma 2.3 of [29]. This completes

the proof.

3. Existence and Uniqueness

In this section, using the mathematical inductive method and the Banach fixed point
theorem, we prove the existence and uniqueness of two kinds of gH-weak solutions, which
are, respectively, called (†)-weak solution and (‡)-weak solution, for (2) with (3). Further,
a numerical example is given to verify the results presented in this section.
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Theorem 1. Assume that f ∈ CJ (J, E2, E1) and g ∈ CJ (J, E1, E2) satisfy the Lipschitz condition
(LC); then (2) with (3) has a unique (†)-weak solution defined on J.

Proof. The proof of Theorem 1 is based on the application of Picard’s iteration method. For
this, we define two operators T1 : C(J, E1)→ C(J, E1) and G1 : C(J, E2)→ C(J, E2) as

T1(u(x, y)) := ψ(x, y) + RL
F Iα

0+ f (x, y, ϕ(x, y) + RL
F I

β
0+ g(x, y, u(x, y))),

G1(v(x, y)) := ϕ(x, y) + RL
F I

β
0+ g(x, y, ψ(x, y) + RL

F Iα
0+ f (x, y, v(x, y))).

These imply that T1 and G1 concern v(x, y) and u(x, y), respectively. By Lemma 1 (i),
now we know that

d∞(T1(u1), T1(u2))

≤ d∞(ψ(x, y), ψ(x, y)) + d∞

(
RL
F Iα

0+ f (x, y, ϕ(x, y) + RL
F I

β
0+ g(x, y, u1(x, y))) ,

RL
F Iα

0+ f (x, y, ϕ(x, y) + RL
F I

β
0+ g(x, y, u2(x, y)))

)
≤ L1

Γ(α1)Γ(α2)

x∫
0

y∫
0

(x− s)α1−1(y− t)α2−1

× d∞

(
RL
F I

β
0+ g(s, t, u1(s, t)) , RL

F I
β
0+ g(s, t, u2(s, t))

)
dtds.

and since

d∞

(
RL
F I

β
0+ g(s, t, u1(s, t)) , RL

F I
β
0+ g(s, t, u2(s, t))

)
≤ L2

Γ(β1)Γ(β2)

s∫
0

t∫
0

(s− µ)β1−1(t− ν)β2−1d∞(u1(µ, ν), u2(µ, ν))dνdµ,

it follows from (16) that

d∞(T1(u1), T1(u2))

≤ L1

Γ(α1)Γ(α2)

L2

Γ(β1)Γ(β2)

x∫
0

y∫
0

(x− s)α1−1(y− t)α2−1

×

 s∫
0

t∫
0

(s− µ)β1−1(t− ν)β2−1d∞(u1(µ, ν), u2(µ, ν))dνdµ

dtds

≤ L1L2Γ(β1)Γ(β2)

Γ(2β1 + α1)Γ(2β2 + α2)
x2β1+α1−1y2β2+α2−1 · d1−β(u1, u2),

which is equivalent to

x1−β1 y1−β2 d∞(T1(u1), T1(u2)) ≤
L1L2xβ1+α1 yβ2+α2 Γ(β1)Γ(β2)

Γ(2β1 + α1)Γ(2β2 + α2)
· d1−β(u1, u2). (23)

Next, we set up the operators for each n ∈ N,

Tn
1 (u(x, y)) = T1(Tn−1

1 (u(x, y))), Gn
1 (v(x, y)) = G1(Gn−1

1 (v(x, y))),

and by using mathematical induction, prove that the following inequality holds:

d∞(Tn
1 u1(x, y) , Tn

1 u2(x, y))

≤
Ln

1 Ln
2 x(n+1)β1+nα1−1y(n+1)β2+nα2−1Γ(β1)Γ(β2)

Γ((n + 1)β1 + nα1)Γ((n + 1)β2 + nα2)
· d1−β(u1, u2), (24)
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which signifies that Tn
1 is a contraction mapping if n is sufficiently large.

If n = 1, then we gain (24) from (23).
When n = k, letting (24) also holds, namely,

d∞

(
Tk

1 u1(x, y) , Tk
1 u2(x, y)

)
≤

Lk
1Lk

2x(k+1)β1+kα1−1y(k+1)β2+kα2−1Γ(β1)Γ(β2)

Γ((k + 1)β1 + kα1)Γ((k + 1)β2 + kα2)
· d1−β(u1, u2),

Then we obtain with n = k + 1,

d∞(Tk+1
1 u1(x, y), Tk+1

1 u2(x, y))

≤d∞(ψ(x, y), ψ(x, y))

+d∞

(
RL
F Iα

0+ f (x, y, ϕ(x, y) + RL
F I

β
0+ g(x, y, Tk

1 u1(x, y))) ,

RL
F Iα

0+ f (x, y, ϕ(x, y) + RL
F I

β
0+ g(x, y, Tk

1 u2(x, y)))
)

≤ L1

Γ(α1)Γ(α2)

x∫
0

y∫
0

(x− s)α1−1(y− t)α2−1

×d∞

(
RL
F I

β
0+ g(s, t, Tk

1 u1(s, t)) , RL
F I

β
0+ g(s, t, Tk

1 u2(s, t))
)

dtds

and because

d∞

(
RL
F I

β
0+ g(s, t, Tk

1 u1(s, t)) , RL
F I

β
0+ g(s, t, Tk

1 u2(s, t))
)

≤
Lk

1Lk
2d1−β(u1, u2)

Γ(ι1 + 1)Γ(ι2 + 1)

s∫
0

t∫
0

µι1 νι2(s− µ)β1−1(t− ν)β2−1dνdµ,

Here ιi = (k + 1)βi + kαi − 1 (i = 1, 2); one can easily see that

d∞(Tk+1
1 u1(x, y), Tk+1

1 u2(x, y))

≤ κ

x∫
0

y∫
0

(x− s)α1−1(y− t)α2−1

×

 s∫
0

µι1(s− µ)β1−1dµ

t∫
0

νι2(t− ν)β2−1dν

dtds

=
Lk+1

1 Lk+1
2 Γ(β1)Γ(β2)x(k+2)β1+(k+1)α1−1y(k+2)β2+(k+1)α2−1

Γ((k + 2)β1 + (k + 1)α1)Γ((k + 2)β2 + (k + 1)α2)
· d1−β(u1, u2),

where κ =
Lk+1

1 Lk+1
2 d1−β(u1,u2)

Γ(α1)Γ(α2)Γ(ι1+1)Γ(ι2+1) . This shows that (24) is also true for n = k + 1, and we get

d1−β(Tn
1 u1, Tn

1 u2) ≤
Ln

1 Ln
2 anβ1+nα1 bnβ2+nα2 Γ(β1)Γ(β2)

Γ((n + 1)β1 + nα1)Γ((n + 1)β2 + nα2)
· d1−β(u1, u2)

for all n ∈ N. This in combination with

lim
n→∞

(L1L2aβ1+α1 bβ2+α2)n

Γ((n + 1)β1 + nα1)Γ((n + 1)β2 + nα2)
= 0
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implies that Tn
1 is a contraction mapping when n is large enough. By the same deduction,

one can also know that Gn
1 is a contraction mapping if n is large enough. Hence, there exists

a unique (u, v) ∈ E1 × E2 such that the following equations hold:

u(x, y) = ψ(x, y) + RL
F Iα

0+ f (x, y, ϕ(x, y) + RL
F Iβ

0+ g(x, y, u(x, y))),

v(x, y) = ϕ(x, y) + RL
F Iβ

0+ g(x, y, ψ(x, y) + RL
F Iα

0+ f (x, y, v(x, y))),

which is the (†)-weak solution of (2) with (3).

Remark 6. From Theorem 1, one can know that the existence of (†)-weak solutions for (2) with (3)
can be guaranteed by the Lipschitz condition (LC) alone. Moreover, if we suppose that it is possible
to switch to the scales of Banach spaces, as is done in the scientific schools of L.V. Ovsyannikov [39]
and S.G. Krein and Y.I. Petunin [40], then it is easy to see that one of the methods used in Theorem 1
is similar to that in Ovsyannikov [39] and Krein and Petunin [40], but the proof of Theorem 1
must depend on Definitions 2 and 4 and Lemmas 1 and 3, and so the statements proved in this paper
cannot turn out to be particular cases of more general theorems proved earlier.

Below, we will show the existence and uniqueness of the (‡)-weak solution for (2)
with (3) by adding the following assumptions for Ĉ f

ψ(J, E2) defined by (13) and Ĉg
ϕ(J, E1)

determined by (14):

(a1) Ĉ f
ψ(J, E2) 6= ∅, Ĉg

ϕ(J, E1) 6= ∅.

(a2) If v(·, ·) ∈ Ĉ f
ψ(J, E2), then V(·, ·) ∈ Ĉ f

ψ(J, E2), where

V(x, y) = ψ(x, y)	 (−1) RL
F Iα

0+ f (x, y, v(x, y)), ∀(x, y) ∈ J.

When u(·, ·) ∈ Ĉg
ϕ(J, E1), one has U(·, ·) ∈ Ĉg

ϕ(J, E1), here

U(x, y) = ϕ(x, y)	 (−1) RL
F I

β
0+ g(x, y, u(x, y)), ∀(x, y) ∈ J.

Theorem 2. Assume that f ∈ CJ (J, E2, E1) and g ∈ CJ (J, E1, E2) meet the Lipschitz condition
(LC) and the hypotheses (a1) and (a2) hold. Then (2) with (3) has a unique (‡)-weak solution.

Proof. By the hypothesis (a1), we know that two H-differences ψ(x, y) 	 (−1) RL
F Iα

0+

f (x, y, v(x, y)) and ϕ(x, y)	 (−1) RL
F I

β
0+ g(x, y, u(x, y)) exist for all (x, y) ∈ J.

From assumption (a2), it is reasonable if we define the operators T2 : Ĉ f
ψ(J, E2) →

Ĉ f
ψ(J, E2) and G2 : Ĉg

ϕ(J, E1)→ Ĉg
ϕ(J, E1) as follows

G2(u(x, y)) := ψ(x, y)	 (−1) RL
F Iα

0+ f (x, y, ϕ(x, y)	 (−1) RL
F I

β
0+ g(x, y, u(x, y))),

T2(v(x, y)) := ϕ(x, y)	 (−1) RL
F I

β
0+ g(x, y, ψ(x, y)	 (−1) RL

F Iα
0+ f (x, y, v(x, y))),

which indicate that T2 and G2 are associated with u(x, y) and v(x, y), respectively. It follows
from Lemma 1 (ii) that we have

d∞(G2(u1), G2(u2))

≤ L1L2Γ(β1)Γ(β2)

Γ(2β1 + α1)Γ(2β2 + α2)
x2β1+α1−1y2β2+α2−1 · d1−β(u1, u2),

which intends

x1−β1 y1−β2 d∞(G2u1, G2u2) ≤
L1L2xβ1+α1 yβ2+α2 Γ(β1)Γ(β2)

Γ(2β1 + α1)Γ(2β2 + α2)
· d1−β(u1, u2).
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By the inductive method as the proof of Theorem 1, we get operator sequence {Gn
2 }n≥1

established by
Gn

2 (u(x, y)) = G2(Gn−1
2 (u(x, y)))

and

d1−β(Gn
2 u1, Gn

2 u2) ≤
Ln

1 Ln
2 anβ1+nα1 bnβ2+nα2 Γ(β1)Γ(β2)

Γ((n + 1)β1 + nα1)Γ((n + 1)β2 + nα2)
· d1−β(u1, u2).

From

lim
n→∞

(L1L2aβ1+α1 bβ2+α2)n

Γ((n + 1)β1 + nα1)Γ((n + 1)β2 + nα2)
= 0,

it follows that Gn
2 is a contraction mapping if n is large enough. Similarly, one can know

that Tn
2 is also a contraction mapping when n is large enough. Thus, there exists a unique

(u, v) ∈ E1 × E2 such that the following equations hold:

u(x, y) = ψ(x, y)	 (−1) RL
F Iα

0+ f (x, y, ϕ(x, y)	 (−1) RL
F Iβ

0+ g(x, y, u(x, y))),

v(x, y) = ϕ(x, y)	 (−1) RL
F Iβ

0+ g(x, y, ψ(x, y)	 (−1) RL
F Iα

0+ f (x, y, v(x, y)))

which is the (‡)-weak solution of (2) with (3).

Based on Example 5.1 of [26], we give the upcoming example, which intuitively and
exhaustively demonstrates the existence and uniqueness results of Theorems 1 and 2.

Example 1. The following coupled system of fuzzy fractional PDEs is considered: For each (x, y) ∈
J = [0, a]× [0, b] and k = 1, 2,

C
gHDα

k u(x, y) = p(x, y)v(x, y) + q(x, y),

C
gHD

β
k v(x, y) = c(x, y)u(x, y) + d(x, y),

u(x, 0) = u(0, y) = u(0, 0) = −2C,

v(x, 0) = v(0, y) = v(0, 0) = 2C,

(25)

where α, β ∈ [0, 1]× [0, 1], p(x, y), q(x, y), c(x, y) and d(x, y) are polynomial functions, and C is
a fuzzy number.

It is easy to see that the functions f (x, y, v(x, y)) := p(x, y)v(x, y) + b(x, y) and
g(x, y, u(x, y)) := q(x, y)u(x, y) + d(x, y) in (25) fulfill the Lipschitz condition (LC) with
constants L1 = max(x,y)∈J |p(x, y)| and L2 = max(x,y)∈J |c(x, y)|, and so (25) exists as a
unique (†)-weak solution in C(J, E1)× C(J, E2).

For another thing, let us show the existence of the (‡)-weak solution for (25). To begin
with, choosing α = β = 2

3 , a = 1, b = 1
2 , p(x, y) = − 9

2[Γ( 1
3 )]

2 x
1
3 y

1
3 , q(x, y) = − 9C

2[Γ( 1
3 )]

2 x
4
3 y

4
3

and c(x, y) = 9
2[Γ( 1

3 )]
2 x

1
3 y

1
3 , d(x, y) = 9C

2[Γ( 1
3 )]

2 x
4
3 y

4
3 , then (25) becomes the following coupled

PDE problem: 

C
gHD

2
3
2 u(x, y) = − 9

2[Γ( 1
3 )]

2
x

1
3 y

1
3 v(x, y)− 9C

2[Γ( 1
3 )]

2
x

4
3 y

4
3 ,

C
gHD

2
3
2 v(x, y) =

9
2[Γ( 1

3 )]
2

x
1
3 y

1
3 u(x, y) +

9C
2[Γ( 1

3 )]
2

x
4
3 y

4
3 ,

u(x, 0) = u(0, y) = u(0, 0) = −2C,

v(x, 0) = v(0, y) = v(0, 0) = 2C.

(26)
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One can easily get the Lipschitz coefficients L1 = 9
2 3√2[Γ( 1

3 )]
2

and L2 = 9
2 3√2[Γ( 1

3 )]
2
,

ψ(x, y) = −2C and ϕ(x, y) = 2C.
In the sequel, by fuzzifying the deterministic solutions according to the Buckley–

Feuring strategy due to Long et al. [17] and [26], we find (Λ(x, y, C), Θ(x, y, C)) = (−2C−
Cxy, 2C−Cxy), the BF solution (see [10,17]) of (26) to verify the condition (a1) in Theorem 2.

In Example 1, we use Gaussian fuzzy number C with membership function
C(t) = exp (−9(t− c)2), where c is a crisp number. The λ-cuts and τ-cuts of C
are independently

[c1(λ), c2(λ)] =

[
c− 1

3

√
ln

1
λ

, c +
1
3

√
ln

1
λ

]
,

[c1(τ), c2(τ)] =

[
c− 1

3

√
ln

1
τ

, c +
1
3

√
ln

1
τ

]
,

and the continuity of the extended principle shows that the fuzzy solutions of (26) are

[Λ(x, y, C)]λ =

[
−2

(
c− 1

3

√
ln

1
λ

)
−
(

c− 1
3

√
ln

1
λ

)
xy ,

−2

(
c +

1
3

√
ln

1
λ

)
−
(

c +
1
3

√
ln

1
λ

)
xy

]

and

[Θ(x, y, C)]τ =

[
2

(
c− 1

3

√
ln

1
τ

)
−
(

c− 1
3

√
ln

1
τ

)
xy ,

2

(
c +

1
3

√
ln

1
τ

)
−
(

c +
1
3

√
ln

1
τ

)
xy

]
,

concerning which some λ-cuts and τ-cuts can be simulated; they are shown in Figures 1 and 2.
In Figure 1, the top graph represents [Θ(x, y, C)]τ and the bottom graph stands for
[Λ(x, y, C)]λ. The graph on the left shows how the solutions [Λ(x, y, C)]λ and [Θ(x, y, C)]τ

vary with the independent variables x and λ/τ (i.e., λ or τ) when y is fixed at five constants.
The graph on the right shows how the solutions [Λ(x, y, C)]λ and [Θ(x, y, C)]τ change with
the independent variables y and λ/τ when x is fixed at five constants. Moreover, Figure 2
shows the numerical simulation of the level sets [Λ(x, y, C)]λ and [Θ(x, y, C)]τ as a function
of λ/τ.

Figure 1. Numerical simulation for fuzzy solutions of (26) with Gaussian fuzzy numbers

[C]λ =

[
1− 1

3

√
ln 1

λ , 1 + 1
3

√
ln 1

λ

]
and [C]τ =

[
1− 1

3

√
ln 1

τ , 1 + 1
3

√
ln 1

τ

]
.
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Figure 2. Numerical simulation for level sets of fuzzy solutions of (26) with the Gaussian
fuzzy numbers.

From Figures 1 and 2, if the crisp number c in the membership functions of the fuzzy
numbers is known, then one can see that the image of the coupling solution and its level set
change with the independent variable. However, we cannot get the image when c changes
continuously. This is worth improving.

Now we make clear that the condition (a2) in Theorem 2 holds and then prove the
existence and uniqueness of the (‡)-weak solution for (26).

For briefness, letting K = 9
Γ( 1

3 )Γ(
1
3 )

, then one has

[(−1) RL
F I

2
3

0+ f (x, y, v(x, y))]λ

=
K[v]λ

2Γ( 2
3 )Γ(

2
3 )

x∫
0

y∫
0

(x− s)−
1
3 (y− t)−

1
3 s

1
3 t

1
3 dsdt

+
K[C]λ

2Γ( 2
3 )Γ(

2
3 )

x∫
0

y∫
0

(x− s)−
1
3 (y− t)−

1
3 s

1
3 t

1
3 dsdt

=
[v]λxy

2
+

2[C]λx2y2

9
,

which implies that

len[(−1) RL
F I

2
3

0+ f (x, y, v(x, y))]λ

=
2
3

√
ln

1
λ

(
xy− 5

18
x2y2

)
≤ 5

9
2
3

√
ln

1
λ
=

10
27

√
ln

1
λ

,

and so
len[ψ(x, y)]λ ≤ len[(−1) RL

F I
2
3

0+ f (x, y, v(x, y))]λ.

Thus, based on Properties 21 of [41], we know that the H-difference ψ(x, y)	 (−1)
RL
F I

2
3

0+ f (x, y, v(x, y)) exists.
From the foregoing proof, it follows that

[ψ(x, y)]λ =

[
−2

(
c− 1

3

√
ln

1
λ

)
,−2

(
c +

1
3

√
ln

1
λ

)]



Fractal Fract. 2022, 6, 132 17 of 24

and

[(−1) RL
F I

2
3

0+ f (x, y, v(x, y))]λ

=

[(
xy− 5

18
x2y2

)(
c− 1

3

√
ln

1
λ

)
,
(

xy− 5
18

x2y2
)(

c +
1
3

√
ln

1
λ

)]
.

Taking

V(x, y) = ψ(x, y)	 (−1) RL
F I

2
3

0+ f (x, y, v(x, y)),

then from Example 5.1 in [26] we get

[V(x, y)]λ =

[(
−2− xy +

5
18

x2y2
)(

c− 1
3

√
ln

1
λ

)
,

(
−2− xy +

5
18

x2y2
)(

c +
1
3

√
ln

1
λ

)]
,

and

len[V(x, y)]λ =
2
3

√
ln

1
λ

(
−2− xy +

5
18

x2y2
)

.

Similar to the above steps, one gets

[(−1) RL
F I

2
3

0+ f (x, y, V(x, y))]λ =
[V]λ

2
xy +

2[C]λ

9
x2y2

and

len[(−1) RL
F I

2
3

0+ f (x, y, V(x, y))]λ =
2
3

√
ln

1
λ

(
−xy− 5

18
x2y2 +

5
36

x3y3
)

≤ 10
27

√
ln

1
λ

,

which shows that the H-difference

ψ(x, y)	 (−1) RL
F I

2
3

0+ f (x, y, V(x, y))

exists.
Likewise, we have

[(−1) RL
F I

2
3

0+ g(x, y, u(x, y))]τ = − xy
2
[u]τ − 2x2y2

9
[C]τ

and

len[(−1) RL
F I

2
3

0+ g(x, y, u(x, y))]τ ≤ 22
54

√
ln

1
τ

,

len[ϕ(x, y)]τ ≥ len[(−1) RL
F I

2
3

0+ g(x, y, u(x, y))]τ .

It follows that U(x, y) = ϕ(x, y)	 (−1) RL
F I

2
3

0+ g(x, y, u(x, y)) exists via Properties 21
of [41], and

len[(−1) RL
F I

2
3

0+ g(x, y, U(x, y))]τ ≤ 22
54

√
ln

1
τ

,

That is, the H-difference ϕ(x, y)	 (−1) RL
F I

2
3

0+ g(x, y, U(x, y)) exists.
Therefore, in this case, (26) has a unique (‡)-weak solution in C(J1, E1)× C(J1, E2).
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Remark 7. From Example 1, one can easily see that due to the “coupling” and the existence of the
H-difference, it is more difficult to obtain the existence and uniqueness of the (‡)-weak solution
of (2) with (3). This shows that it is challenging and valuable to obtain the results presented in
Theorems 1 and 2.

4. Continuous Dependence and ε-Approximation

In this section, we prove the continuous dependence of two kinds of gH-weak
solutions on initial values and ε-approximation solutions of the coupled system for (2) with
(3) by using Lemmas 3 and 4 and modifying the initial conditions. Further, we will show
that the former is a special case of the latter.

Firstly, we consider whenever solutions are continuous depending on the initial data.
Modifying (3), we have the following new coupled system for fuzzy fractional PDEs:

C
gHDα

k u(x, y) = f (x, y, v(x, y)),

C
gHD

β
k v(x, y) = g(x, y, u(x, y)),

u(x, 0) = ξ11(x), v(x, 0) = η11(x),

u(0, y) = ξ21(y), v(0, y) = η21(y),

(27)

or 

C
gHDα

k u(x, y) = f (x, y, v(x, y)),

C
gHD

β
k v(x, y) = g(x, y, u(x, y)),

u(x, 0) = ξ12(x), v(x, 0) = η12(x),

u(0, y) = ξ22(y), v(0, y) = η22(y),

(28)

and letting (u1(·, ·), v1(·, ·))T and (u2(·, ·), v2(·, ·))T be (`)-weak solutions of (27) and (28)
for ` = †, ‡, respectively, then we have

u1(x, y) = ψ1(x, y) + RL
F Iα

0+ f (x, y, v1(x, y)),

v1(x, y) = ϕ1(x, y) + RL
F I

β
0+ g(x, y, u1(x, y)),

u2(x, y) = ψ2(x, y) + RL
F Iα

0+ f (x, y, v2(x, y)),

v2(x, y) = ϕ2(x, y) + RL
F I

β
0+ g(x, y, u2(x, y)),

(29)

or 

u1(x, y) = ψ1(x, y)	 (−1)RL
F Iα

0+ f (x, y, v1(x, y)),

v1(x, y) = ϕ1(x, y)	 (−1)RL
F I

β
0+ g(x, y, u1(x, y)),

u2(x, y) = ψ2(x, y)	 (−1)RL
F Iα

0+ f (x, y, v2(x, y)),

v2(x, y) = ϕ2(x, y)	 (−1)RL
F I

β
0+ g(x, y, u2(x, y)),

(30)

where

ψ1(x, y) = ξ11(x) + ξ21(y)	 ξ11(0), ϕ1(x, y) = η11(x) + η21(y)	 η11(0),

ψ2(x, y) = ξ12(x) + ξ22(y)	 ξ12(0), ϕ2(x, y) = η12(x) + η22(y)	 η12(0).

Theorem 3. Let (H1) and (H2) in Lemma 4 hold, and f ∈ CJ (J, E2, E1) and g ∈ CJ (J, E1, E2)
satisfy the Lipschitz condition (LC). If (u1(·, ·), v1(·, ·))T and (u2(·, ·), v2(·, ·))T are, respectively,
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(`)-weak solutions of (27) and (28) for ` = †, ‡, and the corresponding initial values are (ψ1, ϕ1)
T

and (ψ2, ϕ2)
T , severally; then the following inequality holds

(
ρ(u1, u2)
ρ(v1, v2)

)
≤
(

ρ(ψ1, ψ2)
ρ(ϕ1, ϕ2)

)
+

( aα1 bα2
Γ(α1+1)Γ(α2+1) 0

0 aβ1 bβ2
Γ(β1+1)Γ(β2+1)

)

×
∞

∑
k=0

Ak
(

L1ρ(ϕ1, ϕ2)
L2ρ(ψ1, ψ2)

)
, (31)

where A is the same as in Lemma 4.

Proof. Letting z1(x, y) = C
gHDα

1 u1(x, y), z2(x, y) = C
gHDα

1 u2(x, y), ω1(x, y) = C
gHD

β
1 v1(x, y)

and ω2(x, y) = C
gHD

β
1 v2(x, y), then without loss of generality, we only consider (29)

as follows

u1(x, y) = ψ1(x, y) + RL
F Iα

0+z1(x, y), u2(x, y) = ψ2(x, y) + RL
F Iα

0+z2(x, y),

v1(x, y) = ϕ1(x, y) + RL
F I

β
0+ω1(x, y), v2(x, y) = ϕ2(x, y) + RL

F I
β
0+ω2(x, y)

for all (x, y) ∈ J. Thus, (2) with (3) is equivalent to{
z1(x, y) = f (x, y, ϕ1(x, y) + RL

F I
β
0+ω1(x, y)),

ω1(x, y) = g(x, y, ψ1(x, y) + RL
F Iα

0+z1(x, y)),

and {
z2(x, y) = f (x, y, ϕ2(x, y) + RL

F I
β
0+ω2(x, y)),

ω2(x, y) = g(x, y, ψ2(x, y) + RL
F Iα

0+z2(x, y)).

It follows from Lemma 1 (i) that

d∞(z1(x, y), z2(x, y))

≤d∞( f (x, y, ϕ1(x, y) + RL
F I

β
0+ω1(x, y)), f (x, y, ϕ2(x, y) + RL

F I
β
0+ω1(x, y)))

+ d∞( f (x, y, ϕ2(x, y) + RL
F I

β
0+ω1(x, y)), f (x, y, ϕ2(x, y) + RL

F I
β
0+ω2(x, y)))

≤ L1d∞(ϕ1(x, y), ϕ2(x, y)) + L1
RL
F I

β
0+d∞(ω1(x, y), ω2(x, y)).

Similarly, one has

d∞(ω1(x, y), ω2(x, y))

≤ L2d∞(ψ1(x, y), ψ2(x, y)) + L2
RL
F Iα

0+d∞(z1(x, y), z2(x, y)).

It can be known from Lemma 4 that(
d∞(z1(x, y), z2(x, y))

d∞(ω1(x, y), ω2(x, y))

)
≤
(

0 L1
RL
F I

β
0+

L2
RL
F Iα

0+ 0

)(
d∞(z1(x, y), z2(x, y))

d∞(ω1(x, y), ω2(x, y))

)
+

(
L1d∞(ϕ1(x, y), ϕ2(x, y))
L2d∞(ψ1(x, y), ψ2(x, y))

)

≤
∞

∑
k=0

(
0 L1

RL
F I

β
0+

L2
RL
F Iα

0+ 0

)k(
L1d∞(ϕ1(x, y), ϕ2(x, y))
L2d∞(ψ1(x, y), ψ2(x, y))

)
.
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Hence, by Lemmas 1 (i) and 3, we can obtain(
d∞(u1(x, y), u2(x, y))
d∞(v1(x, y), v2(x, y))

)
≤
(

d∞(ψ1(x, y), ψ2(x, y))
d∞(ϕ1(x, y), ϕ2(x, y))

)
+

(
RL
F Iα

0+ 0
0 RL

F I
β
0+

)
(32)

×
∞

∑
k=0

Ak
(

L1d∞(ϕ1(x, y), ϕ2(x, y))
L2d∞(ψ1(x, y), ψ2(x, y))

)
.

By using (15) on region J, it follows from (32) that(
ρ(u1, u2)
ρ(v1, v2)

)
≤
(

ρ(ψ1, ψ2)
ρ(ϕ1, ϕ2)

)( RL
F Iα

0+ 0
0 RL

F I
β
0+

)
∞

∑
k=0

Ak
(

L1ρ(ϕ1, ϕ2)
L2ρ(ψ1, ψ2)

)

≤
(

ρ(ψ1, ψ2)
ρ(ϕ1, ϕ2)

)
+

( aα1 bα2
Γ(α1+1)Γ(α2+1) 0

0 aβ1 bβ2
Γ(β1+1)Γ(β2+1)

)

×
∞

∑
k=0

Ak
(

L1ρ(ϕ1, ϕ2)
L2ρ(ψ1, ψ2)

)
,

which is (31) and presents continuous dependence of the solution on the initial value for (2)
with fuzzy coupling, which can be obtained on the region J. Analogously, one has the same
result for (30). This completes the proof.

In the following, we propose the ε-approximate solution of (27) or (28).

Definition 5. The function (u(x, y), v(x, y))T is called the ε-approximate solution of (27) or (28);
here ε = (ε̂, ε̄) if (u(x, y), v(x, y))T satisfies a coupled system for fuzzy fractional PDEs as follows:

d∞

(
C
gHDα

1 u(x, y), f (x, y, v(x, y))
)
≤ ε̂,

d∞

(
C
gHD

β
1 v(x, y), g(x, y, u(x, y))

)
≤ ε.

Theorem 4. Suppose that the conditions (H1) and (H2) of Lemma 4 hold, and f ∈ CJ (J, E2, E1)
and g ∈ CJ (J, E1, E2) satisfy the Lipschitz condition (LC), for i = 1, 2, (ui(x, y), vi(x, y))T is
separately the approximate εi-solution of (27) or (28), where εi = (ε̂i, εi), and the corresponding
initial value is (ψi, ϕi)

T . Then

(
ρ(u1, u2)
ρ(v1, v2)

)
≤
(

ρ(ψ1, ψ2)
ρ(ϕ1, ϕ2)

)
+

( aα1 bα2
Γ(α1+1)Γ(α2+1) 0

0 aβ1 bβ2
Γ(β1+1)Γ(β2+1)

)

×
∞

∑
k=0

Ak
(

L1ρ(ϕ1, ϕ2) + ε̂1 + ε̂2
L2ρ(ψ1, ψ2) + ε̄1 + ε̄2

)
,

(33)

where A is the same matrix defined in Lemma 4.

Proof. By Definition 5, it is easy to see that for i = 1, 2,
d∞

(
C
gHDα

1 ui(x, y), f (x, y, vi(x, y))
)
≤ ε̂i,

d∞

(
C
gHD

β
1 vi(x, y), g(x, y, ui(x, y))

)
≤ ε̄i.

(34)
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Taking z1(x, y) = C
gHDα

1 u1(x, y), z2(x, y) = C
gHDα

1 u2(x, y), ω1(x, y) = C
gHD

β
1 v1(x, y)

and ω2(x, y) = C
gHD

β
1 v2(x, y). In a general way, with regard to (29), one knows that (34) is

equivalent to 
d∞

(
zi(x, y), f

(
x, y, ϕi(x, y) + RL

F I
β
0+ωi(x, y)

))
≤ ε̂i,

d∞

(
ωi(x, y), g

(
x, y, ψi(x, y) + RL

F Iα
0+zi(x, y)

))
≤ ε̄i

for i = 1, 2. Since f and g satisfy the Lipschitz conditions (LC) , it follows from Lemmas 1
(i), 3 and 4 that(

d∞(z1(x, y), z2(x, y))
d∞(ω1(x, y), ω2(x, y))

)
≤
(

0 L1
RL
F Iβ

0+
L2

RL
F Iα

0+ 0

)(
d∞(z1(x, y), z2(x, y))

d∞(ω1(x, y), ω2(x, y))

)
+

(
L1d∞(ϕ1(x, y), ϕ2(x, y)) + ε̂1 + ε̂2
L2d∞(ψ1(x, y), ψ2(x, y)) + ε̄1 + ε̄2

)
≤

∞

∑
k=0

Ak
(

L1d∞(ϕ1(x, y), ϕ2(x, y)) + ε̂1 + ε̂2
L2d∞(ψ1(x, y), ψ2(x, y)) + ε̄1 + ε̄2

)
and (

d∞(u1(x, y), u2(x, y))
d∞(v1(x, y), v2(x, y))

)
≤
(

d∞(ψ1(x, y), ψ2(x, y))
d∞(ϕ1(x, y), ϕ2(x, y))

)
+

(
RL
F Iα

0+ 0
0 RL

F I
β
0+

)
(35)

×
∞

∑
k=0

Ak
(

L1d∞(ϕ1(x, y), ϕ2(x, y)) + ε̂1 + ε̂2
L2d∞(ψ1(x, y), ψ2(x, y)) + ε̄1 + ε̄2

)
.

Taking the upper bound on both sides of (35) on the region J, then by (15), one has(
ρ(u1, u2)
ρ(v1, v2)

)
≤
(

ρ(ψ1, ψ2)
ρ(ϕ1, ϕ2)

)

+

( aα1 bα2
Γ(α1+1)Γ(α2+1) 0

0 aβ1 bβ2
Γ(β1+1)Γ(β2+1)

)
×

∞

∑
k=0

Ak
(

L1ρ(ϕ1, ϕ2) + ε̂1 + ε̂2
L2ρ(ψ1, ψ2) + ε̄1 + ε̄2

)
,

which means that (33) holds. In a similar way, one can get the same result concerning (30),
and so the result presented in Theorem 4 is established.

Remark 8. When ε̂i = ε̄i = 0 for i = 1, 2, (33) gives (31) for the continuous dependence of the
solution of (2) on the initial value.
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5. Concluding Remarks

In this paper, we studied the following coupled system for fuzzy fractional PDEs
under Caputo gH-type derivative of the form

C
gHDα

k u(x, y) = f (x, y, v(x, y)),

C
gHD

β
k v(x, y) = g(x, y, u(x, y)),

u(x, 0) = ξ1(x), v(x, 0) = η1(x),

u(0, y) = ξ2(y), v(0, y) = η2(y)

(36)

for every (x, y) ∈ J = [0, a] × [0, b] and k = 1, 2. In the sense of the gH-type
derivative [26], it is significant to extend the corresponding results of fuzzy fractional
PDEs to coupled systems.

Building on some previous work and on the basis of Lipschitz conditions, the main
goals and novel work of this paper follow as:

• By using Banach fixed point theorem and mathematical inductive method, we proved
existence and uniqueness of two kinds of gH-weak solutions to (36).

• We gave an example for visually embodying the existence and uniqueness theorems
and proposed numerical simulations of the (‡) gH-weak solution for (36).

• The equivalence of (36) with a class of nonlinear fractional-order coupled Volterra
integro-differential systems was proved, and Gronwall inequality of the vector form
was obtained.

• Furthermore, on the basis of the developed Gronwall inequality of the vector form,
which is because of the coupling factor in (36), the continuous dependence on the
initial data and ε-approximate solution of (36) were established inventively after
changing the initial conditions.

As everyone knows that in economics and finance, control and optimization, physics
and chemistry, biology and engineering sciences and other practical applications, time delay,
impulsive effect or random uncertainty usually occur on account of manual measurement,
signal transmission, aging of equipment and so on. Further, implicit equations include
explicit equations as special cases. How to find solutions of (36) with time delay terms
x− λ and y− τ? How to solve the corresponding implicit coupled systems when a function
on the right-hand side of (36) contains a Caputo gH-type derivative term? For related
work, see, for instance, [3,7,28,29,37] and the references therein. These questions are worth
exploring in the next step of this work.
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