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Abstract: This paper studies the containment control problem for a class of fractional order nonlinear
multiagent systems in the presence of arbitrary switchings, unmeasured states, and quantized input
signals by a hysteresis quantizer. Under the framework of the Lyapunov function theory, this
paper proposes an event-triggered adaptive neural network dynamic surface quantized controller,
in which dynamic surface control technology can avoid “explosion of complexity” and obtain
fractional derivatives for virtual control functions continuously. Radial basis function neural networks
(RBENNs) are used to approximate the unknown nonlinear functions, and an observer is designed to
obtain the unmeasured states. The proposed distributed protocol can ensure all the signals remain
semi-global uniformly ultimately bounded in the closed-loop system, and all followers can converge
to the convex hull spanned by the leaders’ trajectory. Utilizing the combination of an event-triggered
scheme and quantized control technology, the controller is updated aperiodically only at the event-
sampled instants such that transmitting and computational costs are greatly reduced. Simulations
compare the event-triggered scheme without quantization control technology with the control method
proposed in this paper, and the results show that the event-triggered scheme combined with the
quantization mechanism reduces the number of control inputs by 7% to 20%.

Keywords: fractional order multiagent systems; containment control; event-triggered mechanism;
input quantization; switched systems; neural network; observer

1. Introduction

Multiagent systems (MASs) cooperative control technology has been widely used in
many fields [1-4]. As the most basic research content of multiagent cooperative control,
the consensus problem has made much progress [5-11]. Further study of the cooperative
control problem of multiagent systems, extending the consensus control of a single leader,
considers multiagent cooperative control in the case of multiple leaders, and designs a
controller to make the followers converge to a convex hull composed of multiple leaders,
which is called containment control. As a special case of cooperative control, many research
results of MASs containment control have been reported in the field of integer order
control, such as adaptive control [12,13], feedback control [14,15], linear matrix inequalities
(LMIs) [16,17], sliding mode control [18], and so on.

Due to the unique memory properties of fractional calculus and the ability to accu-
rately model the system, fractional calculus is suitable for describing real physical systems
with genetics [19,20]. At present, the Caputo fractional differential definition is widely
used in engineering, and there have been many achievements on the fractional derivative
definition and control research of fractional order nonlinear systems. For example, Ref. [21]
studied the numerical approximation for the spread of the SIQR model with a Caputo
fractional derivative. Ref. [22] expanded the garden equation to the Caputo derivative and
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Atangana-Baleanu fractional derivative in the sense of Caputo. Ref. [23] established the
Caputo fractional derivatives for exponential s-convex functions. Some new k-Caputo frac-
tional derivative inequalities were established in [24] by using Hermite-Hadamard-Mercer
type inequalities for differentiable mapping. Ref. [25] proposed two fractional derivatives
by taking the Caputo fractional derivative and replacing the simple derivative with a
proportional type derivative, which can be expressed as a combination of existing fractional
operators in several different ways. In order to perform reliable and effective numerical
processing of nonlinear singular fractional Lane-Emden differential equations, based on
fractional Meyer wavelet artificial neural network optimization, combined with the com-
prehensive strength of genetic algorithm-assisted active set method, Ref. [26] proposed a
stochastic calculation solver fractional Meyer Wavelet Artificial Neural Network Genetic
Algorithm and Active Sets. In reference [27], the authors studied variable order fractional
order and constant order fractional order systems with uncertain and external disturbance
terms and proposed a variable order fractional control method for tracking control.

At present, the research into the multiagent systems containment control problem has
made some progress in the field of fractional order systems. In reference [28], the authors
applied the matrices singular value decomposition and LMI techniques for obtaining
sufficient conditions to solve the containment problem of fractional order multiagent
systems (FOMASs). In reference [29], the authors considered the distributed containment
control problem for FOMASs with a double-integrator and designed a distributed projection
containment controller for each follower. Due to the general approximation theory of the
neural network (NN) and fuzzy logic system, it is often used to deal with the uncertainty
of nonlinear systems to obtain unknown nonlinear functions [30]. For example, based
on the neural network algorithm, reference [31] designed a distributed control algorithm
to ensure that the follower converged to the leader signal in FOMASs. For the FOMASs
containment control, an adaptive NN containment controller was designed in reference [12],
in which RBFNNs were applied for the unknown functions. In most practical applications,
it is usually necessary to obtain the unmeasurable state of the system through a state
observer. For example, reference [32] designed a state observer to provide an estimate
for unmeasured consensus errors and disturbances of FOMASs. Reference [33] designed
an observer to obtain the state of the agent for FOMASs containment control. It should
be recognized that the abovementioned fractional order nonlinear system is a kind of
non-switched system, and the switched system is another more complex system, which is
composed of multiple subsystems and is formed by signal switching between the systems.
For the switched system, when switching between subsystems, the system parameters will
change greatly, and the nonlinear function of its system will become discontinuous, so
the performance of the system may be affected or even unstable [34]. Therefore, it is well
worth investigating how to obtain conditions that make the switching system stable for all
switching signals. Reference [35] studied the stability and robust stabilization of switched
fractional order systems and provided two stability theorems for switched fractional order
systems under the arbitrary switching. Based on the fractional Lyapunov stability criterion,
reference [36] designed an adaptive fuzzy controller for the uncertain fractional-order
switched nonlinear systems and ensured that the tracking error converged to a small
neighborhood of the origin regardless of arbitrary switching. The switching control method
for strictly feedback switched nonlinear systems was studied by using the average dwell
time method in references [37,38].

The traditional time sampling mechanism will cause unnecessary waste of commu-
nication resources. In modern technology, an event-triggered mechanism and quantized
mechanism can reduce the action frequency of the controller, thus overcoming the problem
of wasting communication resources [39]. For example, reference [40] solved the prob-
lem of event-triggered fuzzy adaptive tracking control for MASs with input quantization
and reduced the communication burden by combining an asymmetric hysteresis quantizer
and event triggering mechanism. Based on quantized feedback control, Reference [41]
studied the problem of adaptive event-triggered tracking for nonlinear systems with ex-
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ternal disturbances. In reference [42], the authors designed an adaptive neural control
scheme for integer order uncertain nonlinear systems by combining an event-triggered
scheme with input quantization technology. For the containment problem of MASs with
unmeasured states, reference [43] developed a quantized control scheme based on the event-
triggered backstepping control technique. To the best of our knowledge, the containment
control problem of switched fractional order multiagent systems (SFOMAS) combining
an event-triggered mechanism and input quantization techniques has not been studied,
which motivates the research presented in this paper. Furthermore, the combination of the
event-triggered mechanism and the input quantification can reduce the operating frequency
of the actuation system and thus reduce energy consumption. Therefore, the research in
this paper has great value in the practical engineering application of MASs and reducing
the fatigue loss in the system.

Based on the previous discussion, this paper designs an observer-based event-triggered
adaptive neural network dynamic surface quantized controller to addresses the contain-
ment control of SFOMASs. Compared with the previous research work, the main contribu-
tions of the control method discussed in this paper are summarized as follows.

(1) Comparison with [34,37,38], an adaptive neural network dynamic surface con-
troller is proposed to address the containment control problem of SFOMASs, in which
the controller combines the event-triggered mechanism and input quantization to reduce
controller action frequency in this paper.

(2) Compared with references [38,40], the state observer is used to estimate system
states, and the RBFNN is developed to estimate uncertain parts. In comparison with
references [41,43], fractional order DSC technology is used to avoid the “explosion of
complexity” that can occur during traditional backstepping design processes and to obtain
fractional derivatives for virtual control continuously.

The rest of the paper is organized as follows. Section 2 introduces basic theory about
fractional calculus and SFOMASs. In Section 3, first, we construct an observer to estimate
the system state, then a controller is proposed based on the adaptive dynamic surface
control method; finally, the stability is proved by the Lyapunov function theory. Section 4
provides the numerical simulations to show the viability and efficiency of the proposed
controller. Section 5 offers conclusions.

2. Preliminaries
2.1. Fractional Calculus

The Caputo fractional derivative [44] is defined as

(”)T
SO = £ /O*(tf @ 4

n—a) —T)
wheren € Nandn — 1< a < n,T(z) = [;°#*le~!dt is the Gamma function.
Lemma 1 ([45]). For a complex number B and two real numbers «, v satisfying « € (0,1) and
i .
& <Us. < min{ 7, Ta}

For all integers n > 1, we can obtain

Enplc) == ). T(B —aj) e < Igl”“)

=1

when |g| — o0,v < |arg(g)| < 7.
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Lemma 2 ([45]). If v satisfies the condition of Lemma 1, then the following inequality relation
holds

M
|Ea,ﬁ(€)} < 1+ |Q|

where a € (0,2) and B is an arbitrary real number, u > 0, v < |arg(¢)| < 7, and |g| > 0.

Lemma 3 ([46]). Let x(t) € R! be a vector of differentiable function. Then, the following inequality
holds

D*(xT(t)Px) < 2xT(t)PD*x(t)
where « € (0,1) and P is a positive definite diagonal matrix.

Lemma 4 ([47]). (Young’s inequality) For any x,y € R", the following inequality relationship
holds

g 1
T < i a = b
Ay < S+ ol

wherea >1,b>1,¢>0,and (a—1)(b—1) =1

Lemma 5 ([48]). For m € R and n > 0, the following inequality holds
2
0<|m|— " < n

vm?+n?

Lemma 6 ([44]). Suppose that the Lyapunov function V (t, x) satisfies D*V (t,x) < —CV (¢, x)+D.
Let 0 <a <1,C>0and D > 0, the following inequality holds

V(t,x) < V(0)Eo(—Ct*) + B, t>0

Then, V(t, x) is bounded on [0, t| and fractional order systems are stable, where y is defined in
Lemma 2.

2.2. Problem Formulation

In the paper, we consider the following fractional order multiagent system.

t
D*x; () = xip + £y (xi1)
t
D (1) = i1+ f (%31, X2 e Xi)
t
D%xiu(t) = u;(t) +ff;$ (i1, X2, e Xy )

Yi=Xi1

M

wherel =2,..,n—1,a € (0,1);X;; = (xi1, X2, s xi,l)T € R! are the system state vectors,
and u;(t) is the control input of the system. It should be noted that the control input
in this paper considers the quantization mechanism and the event-triggered technology.

y; is the system output, and fgl(t) (xi1, %2, ..., X;;) are unknown nonlinear functions. o (t)
is a piecewise continuous function that is used to describe the triggering conditions for
switching between subsystems. It is called a switching signal, for example, if o (t) = g, it
means that g — th subsystem is activated.

Rewriting system (1):

n
D*X; = AX;+ Ky + Y By fl)(Xin)| + Bawi(1) @
=1
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—kia kia 0
where A; = | , K= ,Bi = rBi,l: [0...1...0]T,and
—kin o ... 0 ki n 1
given a positive matrix QT Q;, there exists a positive matrix PT = P; satisfying
AiTPi + P;A; = =2Q; 3)

Control objectives: This paper aims to design an observer-based adaptive neural network
dynamic surface controller, so that all the signals remain bounded in the closed-loop system
and enable all followers to converge to the leaders’ convex hull. Meanwhile, we utilize
the combination of an event-triggered scheme and quantized mechanism to reduce the
transmission frequency of the control input.

2.3. Hysteresis Quantizer

In this paper, the hysteresis quantizer is used to reduce chattering. The quantizer
gi(w;(t)) is shown as the following form [49].

wissign(w;), 1y < |wi] < 17
gi(wi(t))=4 wis(1+d)sign(wi), wjs < |w;| < %f) @)
0, 0 < |wi| < Wmin
where wjs = n' SwWmin(s = 1,2,...) with parameters wy,;; > 0and 0 < n < 1,d = H—Z

Meanwhile, g;(w;(t)) is in the set U = [0, £wjs, twis(1+d)], ands = 1,2, .... Wmin deter-
mines the magnitude of the dead-zone for g;(w;(t)).

Lemma 7 ([49]). The system inputs q;(w;(t)) can be described as

qi(wi(t))=H(w;)wi(t) + Li(t) )
where1l —d < H(w;) <1+4d,|L(t)] < Wmin-

2.4. Graph Theory

Suppose that there exist N followers, labeled as agents 1 to N, and M leaders, labeled
as agents N 4+ 1 to N + M. The information exchange between followers is represented by
a directed graph G = (w, ¢, A), in which w = {ny, ..., iy m }- The set of edge is exhibited
as e = {(n;,nj)} € wx w, which expresses that follower i and follower j can exchange
information and N; = {j|(n;,nj) € ¢} means the neighbor set of followers i. Further-
more, A = {a;;} € R(N+M)x(N +M) is the Adjacency matrix, a;; of A is represented as if
(nl, ) ¢ e aj=0; if not, a;j = 1. It is supposed that a;; = 0. A directed graph G has a
spanning tree if there exists at least one node called a root node, which has a directed path
to all the other nodes. Define the Laplacian matrix L = D — A € RIN*+M)*(N+M) and the
diagonal matrix D = diag(dy, ...,dn+m), in which d; = Zjl\gM ajj.

Suppose that leaders N +1,..., N + M do not receive the information from follow-
ers and other leaders, and the followers 1, ..., N have at least one neighbor. Therefore,
the Laplacian matrix L related to directed communication graph G is described as follows:

Lol o]
OmxN  Omxm

where L1 € RNXN is the matrix related to the communication between the N follow-

ers, and L, € RN*M is the communication from M leaders to N followers. Let r(t) =
T
[TN+1,1’N+2, ceey rN+M] ’ and CO(I’(t)) {Z]I\]—"I_\I}\{Ikl 9]1’]’ ( ) 9 > 0 Z]I\]—;]Ail 0. =1 } De-

fine the convex hull as r;(t) = [rg1(t),r42(¢), ..., rd,M(t)] = —L{'Lor(t). The contain-
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ment errors are defined as e; = y; —r4;. Let e=[e, e, ..., en]”, y=[y1,y2, ., yn]", then
e=y—rq(t).

2.5. Neural Network Approximation

Due to its universal approximation characteristics, neural networks have been widely
used in the identification and control of uncertain nonlinear systems [10]. In this paper, we
employ an RBFNNSs to identify the nonlinear functions. The unknown function f(Z) can
be expressed as

fun(Z) = 9T€0(Z)

where 6 is the weight vector and ¢(Z) is the basis function vector. In this paper, due to
applying radial basis function neural networks (RBFNNs), Gaussian basis functions are
used. For any unknown function f(Z) defined over a compact set U, there exists the neural
network 0*T ¢(Z) and arbitrary accuracy e(Z) such that

f(2) =0"T9(Z) +¢(Z)

where 0% is the vectors of optimal parameters defined by
0% = argmingeq [sup .y |f(Z) — 6T¢(Z)|], and €(Z) denotes the minimum approxima-
tion error.

Assumption 1. The optimal approximation errors remain bounded, there exists a positive constant
€, satisfying |e(Z)| < €.

3. Main Results
3.1. Observer Design

Assumption 2. In this paper, we employ neural networks to identify the nonlinear functions.
The unknown functions f;(X), i =1, ..., n can be expressed as

fi(Xi16:)=0] 9;(X;),1 < i < n. (6)

Furthermore, we assume that the state variables of system (1) are not available. The
state observer is designed as follows:

n
D*X; = AiXi+ Kiyi + )_ B, ,»7; (Xi1]6i1) + Biuj(t)
=1

@)

9 = CiX;

where C;=1[1...0...0], and X;; = (321',1/321',2/-";921',1)T are the estimated values of

T
Xi1 = (Xi1, X2, Xip) -

We define ¢; = X; — X; as the observation error, and then, according to Equations (2)
and (6), one has

n
D"e; = Aje; + ) _ By [ i (Xip) = fl(Xir]6in) + Affz} ®)
=1
where Ale,] S fgl (Xi,l) — flE,II (Xi,l) .
By Assumption 2, we can obtain

FiXinl6ir) = 65010 (i) )
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According to the definition of a neural network, the optimal parameter vector is
defined as

Fi(Xipleir) = (%) H

* : .
¢;; = arg min {supxu ey,

i1 €8

where 1 < <n, ();; and U;; are compact regions for 0;;, X;; and )A(Z-,l.
Furthermore, we define that the following equation holds

8?,1 = fgl (}A(i,l) - fZI (}A(Z‘,l Gzl)
00 =0, — 01,1 =1,2,..,1n

where ¢; ; is the optimal approximation error, and 8; is the parameters estimation error.

Assumption 3. The optimal approximation errors remain bounded, there exist positive constants
€j0, satisfying ‘5?1‘ < &jp.

Assumption 4. The following relationship holds
fi(X) = fi(R)| < ml| X = X]|
where 7y; is a set of known constants.

By Equations (8) and (9), we have

n
D; = Aje;+ ) By [f 0 (Xip) = fin(Xip|61) + Afiﬂ
=1

n
= Awei+ Y B[l + Aff + 890 (Ri1) (10)
=1

n
= Ajej+ Afi+¢e+)_ By {GEZ(PU (Xi,l)}
=1

ek g g 1"
where ¢; = {ei,l' ...,si’n} ,Afi = {Afz‘,l' .y Afi,n} .
We construct the first Lyapunov function:

N N
Vo=) Vio=), 5C Pie;. (11)
i=1 i=1
According to Lemma 3, we obtain
n
D*Vio < —e/ Qie; + e[ Pi(e; + Af;) + el Pi Y Bii6],i,(Xi). (12)
I=1

By Lemma 4 and Assumption 4, we obtain
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T Th v AT o
e; P,'(Si + Afi) +e; P; Z Billei,lq)i,l (Xi,l)
1=1
T T q 1 ror L\ ar T 52
S €; Pifl‘ + ¢; PiAfi,l + Eei Pi Piei + E Z Gi,lq)i,l(/)i,lei,l
2, 1 2 1 2 v q (13)
< il + 3 1Bl + S1PE 3 |AF ] +2 A ma (B il + 3 299u
I=1
<fel2(1+ Lip 2y Le Pie;||? 070
< el (14 IBIE Y7+ s Moan (B ) + 3P+ 3 - 8
I=1 I=1
By Equations (12) and (13), one has
DthlO %OHeIH +5 HPz zH +5 29 911 (14)
n
where g = — (14 I £ 7"+ 100 (B)) + imn (@),
Combining (11) and (14), we can obtain
l 2
D“VOSZ —giolleil” + 5 ||P€z|| +5 29
= (15)

5 1 5 N n 1
ﬂMﬂ+jWH+ZZ§
55

3.2. Controller Design

Theorem 1. For the SFOMASs (1) where Assumptions 1-4 hold, we construct a state observer (7),
by designing an event-triggered adaptive neural network dynamic surface quantized controller (86),
virtual control laws (28),(46) and (62), together with the presented designs, which can ensure that
all the signals remain bounded, and enables all followers to converge to the leader’s convex hull.

Proof. In this section, under the framework of adaptive backstepping design, based on
Lyapunov stability theory, combined with quantized control, event-triggered technology,
and neural network technology, we design virtual control laws and control input.

We define the error surfaces as follows:

N N+M
Si1 = Ej:l aij (yi = yj) + j=N-+1%ij (y yaj(t >)
i1t = Rij— iy (16)
wip =0 — 1,1 =2,..,n-1

where w; | is the error between v;; obtained by the fractional order filter, and the virtual
control function &;;_1; s; ; denotes error surfaces; £; ; is the estimation of x; ;; y; is the system
output; and y,j(t) represents the leader signal. [

Step 1. According to Equations (16) and (1), we have

N+M
D%s;y=d; (xi,z +60010(Xi1) +0010(Xi1) +el, + Affl) — ) %D

=N (17)

N
— Z ajj (lez + 9]?:1(;)(}(]'11) +9]?:1(p(Xj,1) + 8?[1 + Ale).
=1
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Substituting x,» = e, + £, and (16) into (17), one has

D%sj1=d; (Si,z +wip + aqn +eip +019(Xi1) + 019 (Xi1) +el, + Afi,lq)
(

N+M « N . T o T e g ] (18)
— Zj:N+1 ai]'D Ydi — Zj:l aij (x]',2 +ejn+ 9]»,147 ]‘,1) + 9]»,14)()(]‘/1) + €j,1 + Af]-,1>
where é*,l = 91‘,1 0.1, di = 2] J{M aij, 0,1 denotes the estimation of 0},
We construct the Lyapunov function:
N 1 N ’ 1
V1=V0+2Vj,1IV0+ZZ(Si1 911911+ (511+ 9 9]1+ (5 (19)
i=1 i=1 i1

where 9*,1 = 0}, — 0, are the parameter estimation errors, 5*,1 = 0}, — 6, are the upper
bound estimation errors, and o, ; and r,.; denote design constant parameters.
Then, we can obtain

N
D*V; = D* <V0 +3) Vi,1>
i=1

N
1 - ~
=D+, {si,lD"‘sM + o 61,D"0;4 (20)
i=1

L

1 - ~ N
+ aé‘i,lDaé‘i,l + ijl ﬂjj( 9 Dae]] + (S] 1Da5 ) }

7

Substituting (18) into (20), we arrive at

D*v <D“V0+Z{511 (si2 +wip + a1 +eip+6]19(X; )+9“31<p(>?i,1)+8?,1+Af31)

N+M N N S 5 S
_ Zj:N+1 {lijD"‘ydj — Zj:l ajj (x]'/2 +ej2 +9]?:1¢(le1) + 9}:1(;)(}(]',1) + 8?’1 + Af]?l)} (21)

Following Lemma 4, one has

d?
Si,ldi(si,z + wilz) S Szz,l + é (Siz,z + w12,2> (22)
2
N d; 2
siadieip + i1 2'21 ajjejp < i1+ é (IIei,2||2 + |leje|| ) (23)

Denoting ¢/ L HAf ql = A, and |A;| < 57, the following inequalities hold

S*,lA*,l < |S*,1A*,1| < |S*,1||A*,1| < |S*,1|(5 1—|S*1‘( %,1 + 4, 1) (24)
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Considering (24), one has

N
D*Vy < D"V + ), {Si,l [di (Déi,1 +60010(Xi1) +019(Xi1) +el, + Afg1)
i—1

N+M N N N ~ ~
]':I»\H—l ai]'Da]/dj — Zj:l ajj (x]',2 +9]1:1(p( ]',1) + 9]T1(p(X]1) + ‘C’;’,l + Af]q/l)}

N ) (25)
+i1di(Sip + wip) +5;1dieip + 54 (— Y aijej,z) = 9 1 D*0; 1
gia
1 - « N 1 xr  x 1 < ~
+ aéi,l Dtxéi,l + Z]':l ﬂl’]’ ((T]/le]’l Daej,l + 1"]‘75].’1 D“(st) }
Substituting (22) and (23) into (25) produces
o T (% AT (9
D*Vy <D*Vo+ )| {51',1 [di (041',1 +0;19(Xi1) +6i19(Xi1) +8?,1 + AfZ1)
i=1
N+M q
= 2jmn+1 %D Yaj — Z ”l](xJZ +0519(Xi1) + 0190(X51) + ¢ +Af]lﬂ
26
2 LAt (o o 2 4 2 2 (26)
tsiit o (Si,z + wi,z) tsint o (Hei,ZH + lejell )
+ 79 Dlxell + 511Da511+271 < 9 D“9]1 + Sj,lDaSjJ) }
e rin
Substituting (15) into (26), one has
N T .
D*Vy < —qule]? + f||P£|| + 2 Z SO0+ Y- {51 [di (wia + 0119 (i)
i=1
q N+M N o T & AT &
+ely + Afi,l) - Zj:N+1 a;iD"ya — 21:1 aij (22 + 6,10 (Xj1) +6],9(X1)
d.z 1 " 1 5 (27)
1 = 1 -
+ —— 6 D%, — —5,,D%6;
j= 1 ij ( 0i1 = vl 1 it ]/1> }
where g1 = g — ZZN 1 dl2
We design the virtual control function «; ; and parameters adaptive laws
1 N N+M
i1 = d'< €i1Si1 — 2sip + Z 1 %ij (xj,z + 9jT,1<Pj,1> + j=N+1 aijD“ydj)
1
(28)
. N i
— 0] i1 — sign(si1) <5i,1 - Zj:1 ;5]‘,1)-
1
D91—0'11d(P11( 11)311—P11911 (29)
D*0;1 = —0j19j1(Xj1)si1 — 101 (30)
D61 = ripdilsia| — 1i10in (31)
D%1 = —r1ja — 1101 (32)

Substituting (29)-(32) into (27) produces
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D*V;
N tlars | & T (% 9 q
< —qlel® + 5 HP“fH ZIZ 001+ {Si,l [di (“z‘,l +019(Xip) +e; + Afi,l)
i=11=1 i=1
N+M N R 5 P 1 (33)
= i1 %D Yaj — Zj:l aij (xj,Z + Gzl(P(Xjrl) +€?,1 + Af]q1” - 9 1051 — 6;1dilsia
’7’155 p"ee 51 ) +252 dl'z 2, + w?
i1 11+ZJ 1 101 +9; 1|Szl|+ ],1 TSt 5 (Sia T Wi ) o
Substituting (28) into (33), we have
N n 1
DVi < g el + 5 [Pel] L L0
N . N q q
+ ) {sial—casin —sign(si1) (di5i,1 -Yia ﬂij5j,1) +d; (81-,1 + Af,-,l))
i=1 (34)
N q q Pil 5T 5 M1z
B S T (P B W 6T 9. — 5. d.ls: yils s
ZJ=1 i (51,1 T f/l” + 0y A0 % ilsia] + riy i
N Pj1 5 d?
+Y 0 ( =6710i1 +; 1|511|—|— ]15]1> é(s§2+w§2)}.
Substituting (24) into (34), we have
" 2, 1 2 1 N 2 Pi ’7
D*Vi < —qillel|” + §||P5|| +). 2 E b+ ) —Ci15;1 + o 9119 51,151',1
i=11=1 =1 i1 Tija (35)

Pjl 5 i1 « d;?
+Y 0 (f 616j1+ - 515,-,1>+§(s?,2+w?,z)}-

By using the DSC technique, the state variable v;; can be obtained by the following
equation:
AipD%0ip +0ip = i, 0i2(0) = ;1 (0). (36)

According to Equations (16) and (36), we have

Vip — w;
2 Dy = -2 + By, (37)

D*w;, = D*v;p — D*a;1 = — -
i,2 i,2 i1 )\i,2 , /\i,Z

where B;, is a continuous function of variables s; 1,5, 2,w; 2,0;1,0;,1,0:,1,0,1,5,3,W;3.Y4j,

D%y,;,D* (D"‘ydj), and there may exist an unknown constant M;, such that |Bp| < M),

holds.
Step 2. Defining the second surface error s;» = £;, — v;2, we have

D"sip = D*%ip — D*v;p = Ri3 + kigein +0,¢9i0 + 0]2¢i2 + €], + Af, = D*vip. (38)
According to Equation (16), we can obtain
D‘XS,-IZ =Si3t+wiz+air+ ki,ze,',l + égzgoilz + 91'7:2 Qin+ 8?’2 + Afgz — D“vi,z. (39)

Select the Lyapunov function as follows:

N N
1 1 -7~ 1 -
i=1 i=1 2 rl,2
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Further, we can obtain

N
D*Vo < DVi+ Y (5i2(si3 + wis + aip +kipei1 +059i0 + 000 + Ajn
= (41)
—-D* U,z) + %9 D“Gzz + ,,7512D (512+w,2D wlz)

vi2 i2

Similar to the previous calculation, the following inequalities hold

1
si2(si3 +wi3) < spp + 5 (Sz‘z,s + w123> (42)
1 k2,
siokigein < S5ty + 2 leial (43)
2 2
siolip < [siaBin] < Isinl|Aipl < Isinl6i2=]si2| (62 + dip)- (44)

Substituting (42)—(44) into (41), we obtain

N
D"V, < D*Vi + ) (Si,z (Déi,z +050ip + 05,90 —D*v;n) + sia| (8ip + 8i2)
i=1
(45)

1 k; 1 1.
1’2 2 _791’1:2D“61,2 - 751"2D[X5i/2 + wilzD“wig) .
vi2 Ti2

3 2 2 2
+ ESZ E( i3 + wi,3) +

2

We select the virtual controller a;, and the parameters adaptive laws as follows:

3 d‘z Ki1 —0i2 ;
fip = —Ci2Sip ~ 55i2 — isi,z —0L,pi0 + # — sign(s;2)dip (46)
1,
D*0;p = 0ip9i2(Xin)sip — pi2bin (47)

— 1i20i2- (48)
Substituting (35), (38) and (47)—(48) into (45), we have

@ 2 1 2 1, N le i1
D'V, < _l’hHeH +§||P£|| +ZZ§ z,l+2 CllS 6 611+ '1511(511
i=11=1 i=1 1,

01 » i1 d;?
+ j= l ( J: 9 9]1+ (5 1(5]',1) +é(s%2+w%2)}

N 2
3 d; Nj1—0Ujo . ~ 49
+ Z {Si,Z |:—Ci,25i,2 — 551‘,2 - ési,z — 952401«/2 + = Aio = — sign(s;»)dio + 952421',2 (49)
. i
3 1 k2, )
+952q0i2 D*v; 2] + Isia| (8ip + 6in) + 25%2 + 5(5%3 + w123) + %HEMH

1 A 1 - Wi
— =005 (0i00i2(Xi2)si2 — pipbi2) — =8 (rinlsial — 1i20i2) +wip (-l + Bz‘,2> }
Ji2 r )\1,2

, L

By Lemma 4, we have

1 1
wipBip < 5wl + 5 M. (50)



Fractal Fract. 2022, 6, 77 13 of 29

Then, we have

o 2 1 2 N & 1 S 2 Pi1
D"V < —qale||* + 5 ||Pe[* + ) 2 5 2{ Ci1S — CipSiy + o E2 000
i=1i=1 i=1 i1

N
pj 15 i1 «
711511511+ &9 912"’ 171; 12512+ Za1]< - 9]'/1 +r].15f,15f,1> (51)
1

i1 Oi2 i,

- (/\12 5 é)wi,z +§(Si,3 + wi,3) +5Miz

where g, = g7 — Zfil k%2.
Similar to (36) ,we have

AigD*vi3+vi3 = a;p, v;3(0) = a;2(0). (52)

By Equation (52), we can obtain

Vi3 — &ip g
D*w;3 = D"0;3 — D*a;p = —12\71 —Diaip =~ i3 (53)

i3 i3
where B; 3= — D"«; . Furthermore, there exists an unknown constant M3 such that |Bj3| <

Mi3 holds.
Step m. The Caputo fractional derivatives of s; ,, are as follows:
o o AT T

D“Si,m = D“xi,m — D“v,',m =Xim+1 T ki,mei,l + Gi,m Qim + Gi,m Qim + E?Jﬂ + A gm — D“Ui/m. (54)

Substituting (16) into (54) produces

® _ AT T q q ®
D%im = sim+1 + Wipms1 + i + Kimein +0; @i + 0], Qim + €, + A, — D0j .

(55)
We construct a Lyapunov function candidate as
1
Vin— 1+ZVzm— m—1+ 5 Z{ o 1Tm91m+512m+w1m} (56)
Tim Tim
According to Lemma 3 and (55), we can obtain
N
DV < D*Vyo1 + ) ( aDSim + — eT D6; +—5 D8+ w; D" wzm)
i=1 Ui,m Tim
N AT T
< D* Vm—l + Z {Si,m [Si,m+1 + Wi m+1 + & m + ki,mei,l + Gi,mq)i,m + ei,m Pim (57)
i=1
1 -
Jm+Aﬂ%—lﬂwm}+E;faﬂﬂam+7;5 D8 +w; zwmm}
Similar to (22) and (23), the following inequalities hold
1,
Slmklmell_21m+ k 2 (58)
(s V<2 41la 1.2 59
Si,m (sl,m—H + wl,m-i-l) = Sz‘,m + zsi,m-i-l + Zwi,m+1 ( )

, Ai,m

(i + Oim)- (60)

SimBim > = >
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Substituting (58)-(60) into (57) produces

N
D“Vm < D“mel + 2 {Si,m (“i,m + Ggmgoi,m +6i1:m(Pi,m — D"‘Z)i,m)
i=1

3 1., 2 x 1, 15
+ 58im + Eki,mHei,l 1=+ I8im| (61 + 6im) + 5Sim+1 5 Wim
1 1 -
——61 D6,y — —8; ,,D"6; 1 + wimD“wi,m}.
Tim Yim 7 !

We design the m-th virtual control function «; ,, and parameters adaptive laws

Xim—1 — 0

_ T m .
Xim = —CimSim — Zsi,m - ei,m(Pi,m + A - Slgn(si,m)‘si,m
im

N B A
D Gi,m = Oim®Pim (Xi,m)si,m - Pi,mei,m

o —
D (Si,m =Tim

Sim | — Him 5i,m .

Substituting Equations (62)—(64) into (61), we can obtain

N
Kim—1 — 0
o o T im—1 i,m
D"V, <D Vm—l + Z {Sj,m[_ci,msi,m - zsi,m - ei,m Pim + iy
i=1 im

. ~ ~ 3
- Slg”(si,m)gi,m + GiT,mqoi,m +95mq7i,m - Davi,m} + ‘Si,m‘ (51',111 + 5i,m) + Eszz,m

1 , 1 1 1. R
+ 5k lleinll® + 55 i1 + 5 Wi — =0 (Cim @i (Xim)Sian — 0imbim)
2 ’ 2 ’ 2 7 Uz,m 7
1.
_fai,m(ri,m Sim| — 77i,m‘si,m) + wi,thxwi,m}'
im

Similar to (52), v; ,, can be obtained as
AimD*0im + Vi = w1, Vim(0) = jm-1(0).

By Equation (66), we have

Wi m

D“wi,m = - + Bi,m

im

where |B;,;,| < M;,;, and M, is an unknown constant.
By employing Young's inequality, we have

1, 1.5
Wi Bim < Wi+ 5 M-
From (65)—(68), we have
N 2 | PimgT Nim = 1,
DtX Vm S D‘X Vm—l —+ l;l {_Ci,msi,m + O'i:m 9irm9,'/m + T'l':m 5i,m5i,m + Esi,m+1

1, 1 1\, 1., 1, 1,
S Wime1 — </\m - 2>wi,m + 5 Mim = 55im 5 Kim
L,

|€i,1||2}-

Combining (15), (35) and (51) together leads to

(61)

(62)

(63)
(64)

(65)

(66)

(67)

(68)

(69)
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N n 1.
DVt < —gm-1lle]® + 5 IP I” ZZ§
i=11=1

Nl 2 Qi1 zT i1 P/l 77],
+Y oY (—cigsi + = 1911911 + 5000 ) + Y ajj 9 1051+ - 5 101 (70)
i=1 =

L l' ]GNI'

1 1 42\ , ™=/ s 1/, o, —11
‘(m‘z‘5)“’”‘2(M*)wf‘rﬁz(%m“"f/m) LM

1=3

Substituting (70) into (69), we can obtain
5 1 9 N n 1
D*Vir < —aullel + 511PelP + 10 3. 0]
i=11=1

m
il 5 il & N Pil 5 i1
+ Z {Z (_Ci,lszz,l + %93:191',1 + Zfl&i’l(si’l) + ijl aij( I 9 9]1 —|— (5 (5 > (71)
i, i,

=1

1 1 42\ , /1 1
_</\i,2_2_2l>wi’2_2(7\i,1_1> zl+2(zm+1+wzm+l)+z SM; }

=3

Whereqm_qm 1_21 1 zm

Step n. As in the previous design steps, we define the following equations:
Sin = J?i,n — Oin (72)

Win = Vin — &in-1- (73)

7

Similar to (66), we can obtain v; , as
AinD*0ip + 0 = ain-1, 0in(0) = a;—1(0). (74)
By Equations (73) and (74), we have
Dlxwi,n =—5—+ Bi,n' (75)

Further, the fractional derivative D*s; ,, is given by

N AT T
D“Si,n = D“Xi,n — D"‘vl-,n = ui(t) —+ ki’nei,l + 9i,n(Pi,n + gi,n(Pi,l’l + S?,n + Afi‘?n — D“Ui,n

T T q q N (76)
= qi(wi(t)) + kinein + 0, ,@in + 6, @in + €, + Af),, — D0
We construct the Lyapunov function as follows:
N
VeVt + Y Vi = Vo + 2 2{ Lt By, 07
i=1
Then, one has
N
DaVn:DaVn—l + D" Z Vi,n
N i=1 (78)
1 -
<D V14 ) {sinD”‘sin ~ —0] D%0;, — 75 D%, + winD“win}.
i=1 ’ ’ Oin Tin ’ ’ ’

Substituting Equation (76) into (78), we have



Fractal Fract. 2022, 6, 77

16 of 29

N
D"V, < D"V, + Y {si,n (9 (wi(£)) + Kinein + 0], @in + 00, @in + €, + Af], — D 0]

i=1

1 - 1 -
_761‘7:;1Da6i,n - 7‘5i,nDa5i,n + wi,nDawi,n}~
Tin Vin

According to (5), we have

N
DV, < DaVn,1 + Z {si/n[H(wi)wi(t) + Li(t) + ki/neirl + Hgnqvi’n—Dan,n}
i=1

1 - 1 -
+0] @i+ el +af] - ?egn D%6;,, — —3;,,D%; , + w; ,D*w;

in Tin

The actual controller w;(t) is designed as
D0 = Oin@in (Rin)Sin — PinBin
Dtxéi,n = ri,n‘si,nl - 771',1151',71

- 3 .
Kin = CinSin + Esi,n + 95,1901‘,71 + szgn(si,n)(si,n -

o2 o
1 Sin(Ki1lin) SinM7q

b

Xin—1—Uin

wi(t) = — | —&in — -

1—-d

Notice that, from (5) and (84), we can obtain

— 2 2
\/(Si,nKﬂ“in) +K1-2,2 \/(Sz‘,nMi,l) +K;'Z,z

_ 2 2
Sin(Ki1lin) SinMiy

H(w;j)w;(t) < =&, — —

2 2 '
\/(Si,nKnOéin) +15 \/(Si,an‘,l) +1,

We define the event-triggered controller u;(t) as follows

ui(t)=q;(w;i(tx))V € [tr, tig1)-

The triggering condition for the sampling instants are as follows:

trpr=inf{# € R[[A;(8)] = wir[ui(£)] + Hin }

(79)

(80)

(81)
(82)

(83)

(84)

(85)

(86)

(87)

where A;(t)=q;(w;i(t)) — u;(t) is the event sampling error, 0 < x;; < 1, Hj; is a positive

constant, and t, k € z™ is the controller update time.

3.3. Stability Analysis
From Equation (87), we have

Ai(t)=qi(w;(t)) — u;(t)=Pn (t)kau;(t) + Bio (t)H;

(88)

where Bi1(t), Bia(t) are time-varying parameters satisfying B (t)] < 1, |Bia(t)] < 1.

Accordingly, one can obtain

_ qi(wi(t)) — B (t)Hi
ui(h)= 1+ ﬁil(t)zKﬂ -

(89)
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Thus, it follows that

N
(1) ~ Ba(t)Ha ~
D7 < DV + s | MG i T+ Sl

i=1 . (90)
+el +Af] —D"viy] — 7§EnD“9i - 75 D“6; , +w; ,D*w; , }.
in in
Substituting Equations (81)—(82) into (90), we can obtain
N
(cw: (1)) = B (t)H; »
DV < D*Vy1 + Z {si,n[ql( i(—i-)?ﬁ (%3(( M +95n¢ir" = D] 45, (kimein + eiTn(Pir"
i=1 il il (91)
1 - 1 .
+£zq,n +A gn) - a@zn (Ui,n PinSin — Pi,ngi,n)_a(si/n( i — 171',,151‘/”) + wi/nD"‘wi/n }
Then, we can obtain
N
qi(wi(t)) — B (H)Hin | _ 2 3,
D < DVt z; {Si’n[ Z i—k ﬁil(tSKil ~ i | CinSi 2%
— |sinl6in + 5, (8?,,1 +A ﬁ’n) + g ’” 01,00+ 5; ukinein (92)
n
- f‘s 7 (TinlSinl —Minbin) + wi,nD“wi,n
Ln
Similar to the previous calculation, we have
1, 2
Slnklnell E + k (93)
Sin (S?/n + Af;;) < ‘Si,n‘ (Si,n + 5i,n>- (94)
From Equations (92)—(94), we can obtain
N
qi(wi(t)) — P(H)Hn | _ 2 2
DﬂéVn < D“Vn,1 + ; {Si,n |: i i 7 'Bil(t;Kﬂ ! + &y | — CinSin — Sin
! (95)
o w;
p”‘eT 0, + 15 5+ k1n||e11|| +w;, (= 4+ Biy ) ¢
Tin g /\i,n
By employing Young's inequality, we have
15 1,0
WinBip < Jwi, + 5 Mj,. (%)
2 b2k
Then we have
qi(wi(t)) — Bo()Hi | 2 2
D*V, < D*V,_1+ Z{ |: i i'i‘ﬁil(t;’{i] i + &y | — CinSin — Sin
97)

w?
Pl"eTe,nJr”l"(s Gin+ SR [l | = L2 M2}

o; 2 il Ay 2

Substituting Equations (5), (84), and (85) into (97), we have
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N oi Min = w)
D'V, < D*Vy1+ Z {Cinslzfn ~ Sin + ﬁGTnei,n + ﬂ‘si, ‘Sln + kzn”el 1H -
i=1 Oin Tin /\i,n
(98)
IR SN O S M2, 2K
2 in 2 Sin 2(1_1{11)2 1_Kil :
From Equation (71), we can obtain
) 1 N n 1
DV, < —gp-1lle]|” + EHPEH 2 Z E
N (n-1
! 1
+ Z { Z ( G, lszl + i 911911+ 1 51151',1)
i=1 I=1
o i1 1 1 42 ®9)
j i 2
6.6 (5 o — — - — 2+ |w
+Z“”< oip A0 T o ) (Ai,z 272 )wl'z
L1 11
_Z 7_1 (zn+wzn)+2 M :
Substituting (99) into (98) yields
o 2 N 1~T~ N & Pil 7711
D*Vy < —qulle]|* + 5 ||Ps\| + 3 Y500+ Y X | s+ 9 1051+ 51,511
i=11=1 i=1 (/=1 il
i1 AT i1 1 1 4%\,
6.0 5 i1 | — ——— 2+t w
+ Z”U( g A0 T o0 1,1> (Mz 57 o Wiz (100)
LA | 2k;
-3 (5~ gy 3 M+ 2
1=3 Ail 2(1 — Kzl) 1 — Ki1
where g, = g1 — Zf\] 1 kl ,+ According to Lemma 4, we have
0,6, < _79*19*l+ 9 (101)
Iy 1 2 1 *2
5*,15*,1 S _55*’1 + 55*/1 (102)
From Equations (100)-(102), we can obtain
N n 1"’T~
D*Vy < —qulle]® + *HPSII +2. ) 500
i=11=1
N n N
Pil AT 5 il 2 Pj1 i1 =
Tg., — 5 | =2 gT f. (5
; {;( Ci, IS zl 207, i1Yi,1 2ri) z,z> +]; ”u( 205, javil— 2rj )
2 - 1 2
5% )b L (1) (103)
1=3 \7"il
n
le 7711 ) P], * 77],
w2 2k;
+ min 2+Z le+ i2 )
2(1 —x41) 1T —xq
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Denote

1 N &0 . o* 771 i1 ’71

c—2||Pe||2+i{Z( Loy + 2k s )+Z o 5030 + 510
= " " (104)

2K;

mm 12
i £ S 2

2(1 - Kzl

Then Equation (103) can be written as

n
Pil  1\z75
DYV, < qn||e|| + Z {Z (—ci”lsiz,l - <2‘;i,l - 2)91}191-,1

N
il 2 P il =
_2ri15"'l> +]Z;al]< 20, ~2=0716;1 - 2 5/) (105)

1 1 4\ , &/1 )
‘(m‘z‘zl)wfflzg(%‘l)“’“ e

2 .
wherec;; > 0,(l =1,..,n), ()32 — % —‘2) >0, (Al —1) >0,1=3,..,n, (p’(’ —l> >

i1 Pil
0, 34 > 0, 354 > 0.

Define

. pil 1\ Mig pig 1 1 47 1
C= 20 /Amin (P), 2¢;,,2( L 2 Tk Pil 5 2 2 o — 1)\ 106
mm{ 71/ Amin(P). 261, (2(71',1 2)’ riy o’ <7\i,2 22 )7\ Ay (106)

Then Equation (105) becomes

D*V, < -CV, +¢. (107)
According to Equation (107), we can obtain
D*V, 4+ Q(t) = —CV,, +¢ (108)

where Q(f) > 0
According to Lemma 6, we can obtain

Vi < V(0)Eq(—Ct%) + & (109)
Then, we have
. cu
< 2D

Since 3[s;1|* < Vi (t), and we can obtain |[s; ;|| < ‘: ,invoking s;1 = Z] 145 (Vi — vj)
+ Z}i‘;ﬁl ajj (y,- — ydj(t)), note the fact that sy = Ly + Lzr( ), where s; = [s11, ...,ser]T.

Because the convex hull spanned by leaders is defined as 74(t) = —L; 1,7 (t), then, the con-
tainment errors satisfy |le|| = ||y —rs(t)]] < 7VH2L§1}|1\1C
The proof process that the proposed control method can avoid Zeno phenomenon is

as follows:

By A;(t)=qi(wi(t)) — u;(t), we have D*|A;|=D*(V/A; - A;) = sign(A;)D*(A;)
< |D*(gi(w;i(t)))| = |D*(H(w;)w;(t))| < (1+d)|D*(w;(t))|. According to Equation (84),
D*(w;(t)) is bounded in a closed interval [0, t]. Therefore, there exists a constant ¢ > 0
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such that [D*(w;(t))| < ¢. From A(t;) = 0 and lim;—, A(t) = H;;, thus, there exists t*
such that t* > H;; /. Therefore, there exists t* > 0 such that Vk € z*, {t,.q1 — f} > t5,
the Zeno phenomenon will not occur.

Remark 1. It should be noted that the classical local theories used in this paper do not have the
ability to describe the material heterogeneities and the fluctuations of different scales. In future
research, we will use a more appropriate definition of a fractional differential, such as the Atangana-
Baleanu [50] or Caputo-Fabrizio [51] fractional derivative definition.

4. Simulation

In this section, to verify the effectiveness of the proposed method, the following
fractional Duffing-Holmes chaotic system [52] is considered.

D*xi1 = xip + f1 (Xi1)
D*x;n = ui(t) + fi,(Xi2) (111)
Yi = Xia

where the system order is « = 0.98,i = 1,2,3,4. y;; = 0.2sint and y;, = sin0.3¢
are defined as the leaders. The unknown functions are f{, = f], = f3q L= fl, =0,

f11,2 =2x1,1 —0.25x1, — xcl)’,l +0.3 COS(t),ffz =2x17 —0.25x15 — x:{’,l,le,Z = X271 — 0.25x7, —

xg’l +0.1 (xg,l + x%/z) 1/2,f§2 = x%ll,f;z = x37 —0.25x35 — xgrl + 0.2 sin(#) (x%l1 + 2x§,2) 1/2,
f§2 = xg,l — x%/l,fiz = xil, and fiZ =x41 —0.25x49 — xil + 0.2 sin(#) (inl + inz)l/z
We chose the design parameters as ¢;1 = 20, ¢;o = 30, 0,0 = 1i2 = 1, p;2 = 40, ;2 = 20,
Aip = 0.05, x5 = 05, k0 = 2, Mj; = 1, wyiy = 1, and d = 0.4. We chose the initial
conditions of the system as x;(0) = 0.1,0.1], x,(0) = [0.2,0.2]7, x3(0) = [0.3,0.3]7, and
x4(0) = [0.4,0.4]". The observer initial conditions were chosen as #(0) = [0.2,0.2]7,
£,(0) = [0.3,0.3]", £3(0) = [0.4,0.4], and £,(0) = [0.5,0.5]" .

The communication graph of the multiagent system is shown in Figure 1. Figures 2-13
show the simulation results. Figure 2 displays the trajectories of /4, ygo and x;1 (i = 1, - - ,4).
Figure 3 shows the trajectories of the containment tracking errors. Figure 3a shows the
trajectories of the containment tracking errors based on the event-triggered quantized
controller, and Figure 3b shows the trajectories of containment tracking errors based on
the event-triggered controller without input quantization. Figure 4 shows the trajectories
of thex;1(i =1,---,4) estimation values. Figure 5 gives the error surfaces s;; of the two
controllers. Figure 6 gives the trajectories of x;, and £;,. We use x1,; and x; » as examples
in Figure 7 to show the results of the neural network observer designed in this paper.
Figures 8-11 show the trajectories of w;, q(w;), and u;. Meanwhile, we compared the
event-triggered control input without quantitative control technology with the control
input mentioned in this article. From Figures 8-11, the triggered number of control input
via the quanzited mechanism was reduced by 7% to 20%, among which u; was reduced by
20% (see Figure 8), and u4 was reduced by 7% (see Figure 11). In order to better highlight
the advantages of the method proposed in this paper, we have compared the triggered
number under different sampling mechanisms. It can be seen from Figure 13 that the
proposed method can significantly reduce the number of control input samples. This means
that the combination of event-triggered control and quantized control mechanisms can
effectively reduce the number of transmissions of control input signals, so it has more
practical significance and potential engineering value. Figure 12 shows the trajectories of
the switching signal 0;(t). From the simulation results, the proposed method can ensure all
followers converge to the leaders’ convex hull, and the control performance is satisfactory.
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Figure 1. Communication graph.
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Figure 2. The trajectories of y;1,y4, and x;1(i =1,--- ,4).
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5. Conclusions

This paper proposed an event-triggered adaptive neural network dynamic surface
quantized controller for the switched fractional order multiagent systems containment
control problem. The followers considered were fractional order systems and contained
arbitrarily switched nonlinear functions and unmeasured states. The hysteresis quantizer
that we used can effectively avoid the chattering phenomena. An event-triggered scheme
without Zeno behavior was considered, which reduced the utilization of communication
resources. An RBF neural network was used to approximate unknown nonlinear functions
and construct state observers to obtain unmeasurable states. Fractional derivatives of
virtual control laws were obtained by fractional order DSC techniques, while avoiding
“explosion of complexity”. Example and simulation results showed that the proposed
controller can not only ensure that all followers can converge to the leader’s convex hull
but also reduce the sampling frequency of the control input compared with the traditional
event-triggered mechanism. With the consideration of dynamic uncertainties and the
reduction in communication resources, the control algorithm in this study has a significant
practical value, especially in the aspect of network control. Based on the previous work, this
paper extended the adaptive dynamic surface control technology to the switched fractional
order multiagent system and further studied the bipartite containment control problem
under an event-triggered mechanism and control input quantization. Future research
will apply this control scheme to real physical systems, such as wing vibration control of
fixed-wing aircraft, robot formation control, etc.
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