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Abstract: Convexity is crucial in obtaining many forms of inequalities. As a result, there is a significant
link between convexity and integral inequality. Due to the significance of these concepts, the purpose
of this study is to introduce a new class of generalized convex interval-valued functions called
(p, s)-convex fuzzy interval-valued functions ((p, s)-convex F-I-V-Fs) in the second sense and to
establish Hermite–Hadamard (H–H) type inequalities for (p, s)-convex F-I-V-Fs using fuzzy order
relation. In addition, we demonstrate that our results include a large class of new and known
inequalities for (p, s)-convex F-I-V-Fs and their variant forms as special instances. Furthermore, we
give useful examples that demonstrate usefulness of the theory produced in this study. These findings
and diverse approaches may pave the way for future research in fuzzy optimization, modeling, and
interval-valued functions.

Keywords: (p,s)-convex fuzzy-interval-valued function; fuzzy Riemann integral; Jensen type
inequality; Schur type inequality; Hermite–Hadamard type inequality; Hermite–Hadamard–Fejér
type inequality

1. Introduction

A convex function has a convex set as its epigraph; therefore, the theory of inequality
of convex functions falls under the umbrella of convexity. Nonetheless, it is a significant
theory in and of itself, as it affects practically all fields of mathematics. The graphical
analysis is most often the initial issue that necessitates the acquaintance with this theory.
This is an opportunity to learn about the second derivative test of convexity, which is
a useful tool for detecting convexity. The difficulty of identifying the extreme values of
functions with many variables, as well as the application of Hessian as a higher dimensional
generalization of the second derivative, follows. Holder, Jensen, and Minkowski all made
early contributions to convex analysis. The next step is to go on to optimization issues in
infinite dimensional spaces; however, despite the technological sophistication required to
solve such problems, the fundamental concepts are quite similar to those underlying the
one variable situation. Despite numerous applications, many contemporary difficulties
in economics and engineering, the relevance of convex analysis is well recognized in
optimization theory [1–3], and the idea of convexity no longer suffices.

Over the years, remarkable varieties of convexities, such as harmonic convexity [4],
quasi convexity [5], Schur convexity [6], strong convexity [7,8], p-convexity [9], fuzzy
convexity [10,11], fuzzy preinvexity [12] and generalized convexity [13], p-convexity [14]
and so on, have been introduced to convex sets and convex functions. A fascinating field
for research is the definition of convexity with an integral problem. Therefore, several
authors have identified a great number of equalities or inequalities as applications of convex
functions. The representative results include Gagliardo–Nirenberg-type inequality [15],
Hardy-type inequality [16], Ostrowski-type inequality [17], Olsen-type inequality [18],
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and the most commonly known inequality of, namely, the H–H inequality [19]. Similarly,
many authors have devoted themselves to study the fractional integral inequalities for
single-valued and interval-valued functions, see [20–28].

In ref. [29], the enormous research work fuzzy set and system has been dedicated on
development of different fields, and it plays an important role in the study of a wide class
problems arising in pure mathematics and applied sciences including operation research,
computer science, managements sciences, artificial intelligence, control engineering and
decision sciences. Recently, fuzzy interval analysis and fuzzy interval-valued differential
equations have been put forward to deal the ambiguity originate by insufficient data in some
mathematical or computer models that determine real-world phenomena [30–40]. There
are some integrals to deal with fuzzy-interval-valued functions (in short, F-I-V-Fs), where
the integrands are F-I-V-Fs. For instance, Osuna-Gomez et al. [41], and Costa et al. [42]
constructed Jensen’s integral inequality for F-I-V-Fs through a Kulisch–Miranker order
relation, see [43]. By using the same approach, Costa and Roman-Flores also presented
Minkowski and Beckenbach’s inequalities, where the integrands are F-I-V-Fs. This paper is
motivated by [42–44] and especially by Costa et al. [45] because they established a relation
between elements of fuzzy-interval space and interval space, and introduced level-wise
fuzzy order relation on fuzzy-interval space through a Kulisch–Miranker order relation
defined on interval space. For more information related to fuzzy interval calculus and
generalized convex F-I-V-Fs, see [46–61].

Inspired by the ongoing research work, the new class of generalized convex F-I-V-Fs
is introduced, which is known as (p, s)-convex F-I-V-Fs. With the help of this class and
fuzzy Riemann integral operator, we introduce Jensen, Schur, and fuzzy interval H–H
type inequalities via fuzzy order relation. Moreover, we show that our results include
a wide class of new and known inequalities for (p, s)-convex F-I-V-Fs and their variant
forms as special cases. Some useful examples are also presented to verify the validity of
our main results.

2. Definitions and Basic Results

Let KC and FC(R) be the collection of all closed and bounded intervals, and fuzzy
intervals of R. We use K+

C to represent the set of all positive intervals. The collection of all
Riemann integrable real-valued functions, Riemann integrable I-V-Fs and fuzzy Riemann
integrable F-I-V-Fs over [t, s] is denoted by R[t, s], IR[t, s], and FR([t, s]), respectively.
For more conceptions on interval-valued functions and fuzzy interval-valued functions,
see [36,42–44]. Moreover, we have:

The inclusion “ ⊆ ” means that

ξ ⊆ η if and only if, [ξ∗, ξ∗] ⊆ [η∗, η∗], if and only if η∗ ≤ ξ∗, ξ∗ ≤ η∗, (1)

for all [
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this relation is known as partial order relation. 
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∗], [η∗, η∗] ∈ KC; it is an order relation.

Proposition 1 ([7]). Let FC(R) be a set of fuzzy numbers. If ξ, v ∈ FC(R), then relation
“ 4 ” defined on FC(R) by

ξ 4 v if and only if, [ξ]ϕ ≤I [v]ϕ, for all ϕ ∈ [0, 1]; (3)

this relation is known as partial order relation.

Theorem 1 ([50]). Let U : [t, s] ⊂ R→ FC(R) be a F-I-V-F, whose ϕ-levels define the family
of I-V-Fs Uϕ : [t, s] ⊂ R→ KC are given by Uϕ(κ) = [U∗(κ, ϕ), U∗(κ, ϕ)] for all ∈ [t, s]
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and for all ϕ ∈ (0, 1]. Then, U is fuzzy Riemann integrable over [t, s] if, and only if,
U∗(κ, ϕ) and U∗(κ, ϕ) both are Riemann integrable over [t, s]. Moreover, if U is fuzzy
Riemann integrable over [t, s], then

((FR)
∫ s

t
U(κ)dκ)

ϕ

= ((R)
∫ s

t
U∗(κ, ϕ)dκ, (R)

∫ s

t
U∗(κ, ϕ)dκ) = (IR)

∫ s

t
Uϕ(κ)dκ, (4)

for all ϕ ∈ (0, 1].

Definition 1 ([10]). Let K be a convex set. Then, F-I-V-F U : K → FC(R) is named as a
convex F-I-V-F on K if the coming inequality

U(ζ + (1− ζ)y) 4 ζU(κ)+̃(1− ζ)U(y) (5)

is valid for all , y ∈ K, ζ ∈ [0, 1], where U(κ) < 0̃. If (5) is reversed, then U is named as a
concave on [t, s]. U is affine if and only if it is both a convex and concave function.

Definition 2. Let Kp be a p-convex set and s ∈ [0, 1]. Then, F-I-V-F U : Kp → FC(R) is
named as a (p, s)-convex F-I-V-F in the second sense on Kp such that

U

(
[ζκp + (1− ζ)yp]

1
p

)
4 ζsU(κ)+̃(1− ζ)sU(y), (6)

for all κ, y ∈ Kp, ζ ∈ [0, 1], where U(κ) < 0̃. If (6) is reversed, then U is named as a
(p, s)-concave F-I-V-F in the second sense on [t, s]. U is (p, s)-affine if and only if it is both
(p, s)-convex and (p, s)-concave F-I-V-F in the second sense.

Remark 2. The (p, s)-convex F-I-V-Fs in the second sense have some very nice properties
similar to convex F-I-V-F:

- If we attempt to take U as (p, s)-convex F-I-V-F, then we can obtain that YU is also
(p, s)-convex F-I-V-F, for Y ≥ 0;

- If we attempt to take both F and U both as (p, s)-convex F-I-V-Fs, then we can obtain
that max(F (κ),U(κ)) is also a (p, s)-convex F-I-V-F.

We now discuss some new and known special cases of (p, s)-convex F-I-V-Fs in the
second sense:

- If we attempt to take s ≡ 1, then from (p, s)-convex F-I-V-F, we achieve p-convex
F-I-V-F, that is

U

(
[ζκp + (1− ζ)yp]

1
p

)
4 ζU(κ)+̃(1− ζ)U(y), ∀ κ, y ∈ K, ζ ∈ [0, 1]. (7)

- If we attempt to take p ≡ 1, then from (p, s)-convex F-I-V-F, we achieve s-convex
F-I-V-F, see [13]; that is,

U(ζκ + (1− ζ)y) 4 ζsU(κ)+̃(1− ζ)sU(y), ∀κ, y ∈ K, ζ ∈ [0, 1], s ∈ [0, 1]. (8)

- If we attempt to take p ≡ 1 and s ≡ 1, then from (p, s)-convex F-I-V-F, we achieve
convex F-I-V-F, see [13,36], that is

U(ζκ + (1− ζ)y) 4 ζU(κ)+̃(1− ζ)U(y), ∀ κ, y ∈ K, ζ ∈ [0, 1]. (9)

Theorem 2. Let Kp be p-convex set and U : Kp → FC(R) be a F-I-V-F, whose ϕ-levels define
the family of IVFs Uϕ : Kp ⊂ R→ KC

+ ⊂ KC are given by

Uϕ(κ) = [U∗(κ, ϕ), U∗(κ, ϕ)], (10)
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for all ∈ Kp and for all ϕ ∈ [0, 1]. Then, U is (p, s)-convex F-I-V-F in the second sense on
Kp, if and only if, for all ϕ ∈ [0, 1], U∗(κ, ϕ) and U∗(κ, ϕ) both are (p, s)-convex functions
in the second sense.

Proof. Assume that, for each ϕ ∈ [0, 1], U∗(κ, ϕ) and U∗(κ, ϕ) are (p, s)-convex function
in the second sense on Kp. Then, from Equation (6), we have

U∗

(
[ζκp + (1− ζ)yp]

1
p , ϕ

)
≤ ζsU∗(κ, ϕ) + (1− ζ)sU∗(y, ϕ), ∀ κ, y ∈ Kp, ζ ∈ [0, 1],

and

U∗
(
[ζκp + (1− ζ)yp]

1
p , ϕ

)
≤ ζsU∗(κ, ϕ) + (1− ζ)sU∗(y, ϕ), ∀ κ, y ∈ Kp, ζ ∈ [0, 1].

Then, by Equation (10), we obtain

Uϕ

(
[ζκp + (1− ζ)yp]

1
p

)
=

[
U∗

(
[ζκp + (1− ζ)yp]

1
p , ϕ

)
, U∗

(
[ζκp + (1− ζ)yp]

1
p , ϕ

)]
,

≤I [ζ
sU∗(κ, ϕ), ζsU∗(κ, ϕ)] +

[
(1− ζ)sU∗(y, ϕ), (1− ζ)sU∗(y, ϕ)

]
,

that is

U

(
[ζκp + (1− ζ)yp]

1
p

)
4 ζsU(κ)+̃(1− ζ)sU(y),∀ κ, y ∈ Kp, ζ ∈ [0, 1].

Hence, U is (p, s)-convex F-I-V-F in the second sense on Kp.
Conversely, let U be (p, s)-convex F-I-V-F in the second sense on Kp. Then, for all

κ, y ∈ Kp and ζ ∈ [0, 1], we have

U

(
[ζκp + (1− ζ)yp]

1
p

)
4 ζsU(κ)+̃(1− ζ)sU(y).

Therefore, from Equation (10), we have

Uϕ

(
[ζκp + (1− ζ)yp]

1
p

)
=

[
U∗

(
[ζκp + (1− ζ)yp]

1
p , ϕ

)
, U∗

(
[ζκp + (1− ζ)yp]

1
p , ϕ

)]
.

Again, from Equation (10), we obtain

ζsUϕ(κ)+̃(1− ζ)sUϕ(κ) = [ζsU∗(κ, ϕ), ζsU∗(κ, ϕ)] +
[
(1− ζ)sU∗(y, ϕ), (1− ζ)sU∗(y, ϕ)

]
,

Then, by (p, s)-convexity in the second sense of U, we have

U∗

(
[ζκp + (1− ζ)yp]

1
p , ϕ

)
≤ ζsU∗(κ, ϕ) + (1− ζ)sU∗(y, ϕ),

and

U∗
(
[ζκp + (1− ζ)yp]

1
p , ϕ

)
≤ ζsU∗(κ, ϕ) + (1− ζ)sU∗(y, ϕ),

for each ϕ ∈ [0, 1]. Hence, the result follows. �

Remark 3. On the basis of Theorem 2, we consider the special situation as below:

- If we attempt to take U∗(κ, ϕ) = U∗(κ, ϕ) with ϕ = 1, then from Definition 2, we
obtain the (p, s)-convex function, see [46];

- If we attempt to take U∗(κ, ϕ) = U∗(κ, ϕ) with ϕ = 1 and s = 1, then from Definition
2, we obtain the p-convex function, see [9];
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- If we attempt to take U∗(κ, ϕ) = U∗(κ, ϕ) with ϕ = 1, p = 1 and s = 0, then from
Definition 2, we obtain the P-function, see [47].

Example 1. We consider the F-I-V-F U : [0, 1]→ FC(R) defined by

U(κ)(σ) =


σ

2κp σ ∈ [0, 2κp]
4κp−σ

2κ2 σ ∈ (2κp, 4κp]

0 otherwise,
(11)

Then, for each ϕ ∈ [0, 1], we have Uϕ(κ) = [2ϕκp, (4− 2ϕ)κp]. Since end point
functions U∗(κ, ϕ) and U∗(κ, ϕ), both are (p, s)-convex functions in the second sense for
each ϕ ∈ [0, 1] and s ∈ [0, 1]. Hence, U(κ) is (p, s)-convex F-I-V-F in the second sense.

3. Discrete Inequalities for (p, s)-Convex F-I-V-F in the Second Sense

In the following, we establish the following result:

Theorem 3. (Discrete Jensen type inequality for (p, s)-convex F-I-V-F) Let ωj ∈ R+,
tj ∈ [t, s], (j = 1, 2, 3, . . . , k, k ≥ 2) and U : [t, s]→ FC(R) be a (p, s)-convex F-I-V-F,
whose ϕ-levels define the family of I-V-Fs Uϕ : [t, s] ⊂ R→ KC

+ are given by Uϕ(κ) =
[U∗(κ, ϕ), U∗(κ, ϕ)] for all ∈ [t, s] and for all ϕ ∈ [0, 1], then

U

[ 1
Wk

k

∑
j=1

ωjtj
p

] 1
p
 4 ∑k

j

(
ωj

Wk

)s
U
(
tj
)
, (12)

where Wk = ∑k
j=1ωj. If U is (p, s)-concave F-I-V-F, then inequality Equation (29) is reversed.

Proof. When k = 2, then inequality Equation (12) is true. Considering that inequality
Equation (29) is true for k = n− 1, then

U

[ 1
Wn−1

n−1

∑
j=1

ωjtj
p

] 1
p
 4 ∑n−1

j=1

(
ωj

Wn−1

)s
U
(
tj
)

Now, let us prove that inequality (12) holds for k = n.

U

[ 1
Wn

n

∑
j=1

ωjtj
p

] 1
p


= U

[Wn−2

Wn

1
Wn−2

n−2

∑
j=1

ωjtj
p +

ωn−1 + ωn

Wn

(
ωn−1

ωn−1 + ωn
tn−1

p +
ωn

ωn−1 + ωn
tn

p
)] 1

p
.

Therefore, for each ϕ ∈ [0, 1], we have

U∗

[ 1
Wn

n
∑

j=1
ωjtj

p

] 1
p

, ϕ


U∗

[ 1
Wn

n
∑

j=1
ωjtj

p

] 1
p

, ϕ
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= U∗

[Wn−2
Wn

1
Wn−2

n−2
∑

j=1
ωjtj

p + ωn−1+ωn
Wn

(
ωn−1

ωn−1+ωn
tn−1

p + ωn
ωn−1+ωn

tn
p
)] 1

p

, ϕ


= U∗

[Wn−2
Wn

1
Wn−2

n−2
∑

j=1
ωjtj

p + ωn−1+ωn
Wn

(
ωn−1

ωn−1+ωn
tn−1

p + ωn
ωn−1+ωn

tn
p
)] 1

p

, ϕ


≤ ∑n−2

j=1

(
ωj
Wn

)s
U∗
(
tj, ϕ

)
+
(

ωn−1+ωn
Wn

)s
U∗

([
ωn−1

ωn−1+ωn
tn−1

p + ωn
ωn−1+ωn

tn
p
] 1

p , ϕ

)
≤ ∑n−2

j=1

(
ωj
Wn

)s
U∗
(
tj, ϕ

)
+
(

ωn−1+ωn
Wn

)s
U∗
([

ωn−1
ωn−1+ωn

tn−1
p + ωn

ωn−1+ωn
tn

p
] 1

p , ϕ

)
≤ ∑n−2

j=1

(
ωj
Wn

)s
U∗
(
tj, ϕ

)
+
(

ωn−1+ωn
Wn

)s[ ( ωn−1
ωn−1+ωn

)s
U∗(tn−1, ϕ) +

(
ωn

ωn−1+ωn

)s
U∗(tn, ϕ)

]
≤ ∑n−2

j=1

(
ωj
Wn

)s
U∗
(
tj, ϕ

)
+
(

ωn−1+ωn
Wn

)s[( ωn−1
ωn−1+ωn

)s
U∗(tn−1, ϕ) +

(
ωn

ωn−1+ωn

)s
U∗(tn, ϕ)

]
≤ ∑n−2

j=1

(
ωj
Wn

)s
U∗
(
tj, ϕ

)
+
[(

ωn−1
Wn

)s
U∗(tn−1, ϕ) +

(
ωn
Wn

)s
U∗(tn, ϕ)

]
≤ ∑n−2

j=1

(
ωj
Wn

)s
U∗
(
tj, ϕ

)
+
[(

ωn−1
Wn

)s
U∗(tn−1, ϕ) +

(
ωn
Wn

)s
U∗(tn, ϕ)

]
= ∑n

j=1

(
ωj
Wn

)s
U∗
(
tj, ϕ

)
= ∑n

j=1

(
ωj
Wn

)s
U∗
(
tj, ϕ

)
.

From which, we haveU∗
[ 1

Wn

n

∑
j=1

ωjtj
p

] 1
p

, ϕ

, U∗

[ 1
Wn

n

∑
j=1

ωjtj
p

] 1
p

, ϕ


≤I

[
∑n

j=1

(
ωj

Wn

)s
U∗
(
tj, ϕ

)
, ∑n

j=1

(
ωj

Wn

)s
U∗
(
tj, ϕ

)]
,

that is,

U

[ 1
Wn

n

∑
j=1

ωjtj
p

] 1
p
 4 ∑n

j=1

(
ωj

Wn

)s
U
(
tj
)
,

and the result follows. �
If ω1 = ω2 = ω3 = · · · = ωk = 1, then Theorem 3 reduces to the following result:

Corollary 1. Let s ∈ [0, 1] tj ∈ [t, s],. (j = 1, 2, 3, . . . , k, k ≥ 2) and U : [t, s]→ FC(R) be
a (p, s)-convex F-I-V-F, whose ϕ-levels define the family of I-V-Fs Uϕ : [t, s] ⊂ R→ KC

+

that are given by Uϕ(κ) = [U∗(κ, ϕ), U∗(κ, ϕ)] for all ∈ [t, s] and for all ϕ ∈ [0, 1]; then,

U

([
1
k ∑k

j=1tj
p
] 1

p
)
4 ∑k

J=1

(
1
k

)s
U
(
tj
)
. (13)

If U is a (p, s)-concave F-I-V-F, then inequality Equation (13) is reversed.

The next Theorem 4 gives the Schur-type inequality for (p, s)-convex F-I-V-Fs.

Theorem 4. (Discrete Schur-type inequality for (p, s)-convex F-I-V-F) Let s ∈ [0, 1] and
U : [t, s]→ FC(R) be a (p, s)-convex F-I-V-F, whose ϕ-levels define the family of IVFs
Uϕ : [t, s] ⊂ R→ KC

+ are given by Uϕ(κ) = [U∗(κ, ϕ), U∗(κ, ϕ)] for all ∈ [t, s] and
for all ϕ ∈ [0, 1]. If t1, t2, t3 ∈ [t, s], such that t1 < t2 < t3 and t3

p − t1
p, t3

p − t2
p,

t2
p − t1

p ∈ [0, 1], we have

(t3
p − t1

p)sU(t2) 4 (t3
p − t2

p)sU(t1) + (t2
p − t1

p)sU(t3). (14)
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If U is a (p, s)-concave F-I-V-F, then inequality Equation (14) is reversed.

Proof. Let tj such that L < tj
〈

U (j = 1, 2, 3, . . . , k), (t3
p − t1

p)s〉0. Then, by hypothesis,
we have (

t3
p − t2

p

t3
p − t1

p

)s
=

(t3
p − t2

p)s

(t3
p − t1

p)s and
(

t2
p − t1

p

t3
p − t1

p

)s
=

(t2
p − t1

p)s

(t3
p − t1

p)s .

Consider ζ = t3
p−t2

p

t3
p−t1

p , then t2
p = ζt1

p + (1− ζ)t3
p. Since U is a (p, s)-convex F-I-V-F

then, by hypothesis, we have

U(t2) 4
(

t3
p − t2

p

t3
p − t1

p

)s
U(t1) +

(
t2

p − t1
p

t3
p − t1

p

)s
U(t3).

Therefore, for each ϕ ∈ [0, 1], we have

U∗(t2, ϕ) ≤
(

t3
p−t2

p

t3
p−t1

p

)s
U∗(t1, ϕ) +

(
t2

p−t1
p

t3
p−t1

p

)s
U∗(t3, ϕ),

U∗(t2, ϕ) ≤
(

t3
p−t2

p

t3
p−t1

p

)s
U∗(t1, ϕ) +

(
t2

p−t1
p

t3
p−t1

p

)s
U∗(t3, ϕ)

(15)

= (t3
p−t2

p)s

(t3
p−t1

p)s U∗(t1, ϕ) + (t2
p−t1

p)s

(t3
p−t1

p)s U∗(t3, ϕ)

= (t3
p−t2

p)s

(t3
p−t1

p)s U∗(t1, ϕ) + (t2
p−t1

p)s

(t3
p−t1

p)s U∗(t3, ϕ).
(16)

From Equation (16), we have

(t3
p − t1

p)sU∗(t2, ϕ) ≤ (t3
p − t2

p)sU∗(t1, ϕ) + (t2
p − t1

p)sU∗(t3, ϕ),
(t3

p − t1
p)sU∗(t2, ϕ) ≤ (t3

p − t2
p)sU∗(t1, ϕ) + (t2

p − t1
p)sU∗(t3, ϕ),

that is [
(t3

p − t1
p)sU∗(t2, ϕ), (t3

p − t1
p)sU∗(t2, ϕ)

]
≤I
[
(t3

p − t2
p)sU∗(t1, ϕ) + (t2

p − t1
p)sU∗(t3, ϕ), (t3

p − t2
p)sU∗(t1, ϕ) + (t2

p − t1
p)sU∗(t3, ϕ)

]
.

Hence,
(t3

p − t1
p)sU(t2) 4 (t3

p − t2
p)sU(t1) + (t2

p − t1
p)sU(t3).

�

A refinement of Jensen type inequality for (p, s)-convex F-I-V-F is given in the follow-
ing theorem.

Theorem 5. Let s ∈ [0, 1], ωj ∈ R+, tj ∈ [t, s], (j = 1, 2, 3, . . . , , k, k ≥ 2) and
U : [t, s]→ FC(R) be a (p, s)-convex F-I-V-F, whose ϕ-levels define the family of I-V-Fs
Uϕ : [t, s] ⊂ R→ KC

+ are given by Uϕ(κ) = [U∗(κ, ϕ), U∗(κ, ϕ)] for all ∈ [t, s] and for
all ϕ ∈ [0, 1]. If (L, U) ⊆ [t, s], then

∑k
j=1

(
ωj

Wk

)s
U
(

tj

)
4 ∑k

j=1

((Up − tj
p

Up − Lp

)s( ωj

Wk

)s
U(L, ϕ) +

( tj
p − Lp

Up − Lp

)s( ωj

Wk

)s
U(U, ϕ)

)
, (17)

where Wk = ∑k
j=1 ωj. If U is (p, s)-concave F-I-V-F, then inequality Equation (17) is reversed.

Proof. Consider tj such that L < tj < U (j = 1, 2, 3, . . . , k). Then, by hypothesis and
inequality Equation (15), we have

U
(
tj
)
≤
(Up − tj

p

Up − Lp

)s

U(L, ϕ) +

(
tj

p − Lp

Up − Lp

)s

U(U, ϕ).
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Therefore, for each ϕ ∈ [0, 1], we have

U∗
(
tj, ϕ

)
≤
(Up−tj

p

Up−Lp

)s
U∗(L, ϕ) +

(
tj

p−Lp

Up−Lp

)s
U∗(U, ϕ),

U∗
(
tj, ϕ

)
≤
(Up−tj

p

Up−Lp

)s
U∗(L, ϕ) +

(
tj

p−Lp

Up−Lp

)s
U∗(U, ϕ).

The above inequality can be written as(
ωj
Wk

)s
U∗
(
tj, ϕ

)
≤
(Up−tj

p

Up−Lp

)s( ωj
Wk

)s
U∗(L, ϕ) +

(
tj

p−Lp

Up−Lp

)s( ωj
Wk

)s
U∗(U, ϕ),(

ωj
Wk

)s
U∗
(
tj, ϕ

)
≤
(Up−tj

p

Up−Lp

)s( ωj
Wk

)s
U∗(L, ϕ) +

(
tj

p−Lp

Up−Lp

)s( ωj
Wk

)s
U∗(U, ϕ)

(18)

Taking the sum of all inequalities (18) for j = 1, 2, 3, . . . , k, we have

∑k
j=1

(
ωj
Wk

)s
U∗
(
tj, ϕ

)
≤ ∑k

j=1

((Up−tj
p

Up−Lp

)s( ωj
Wk

)s
U∗(L, ϕ) +

(
tj

p−Lp

Up−Lp

)s( ωj
Wk

)s
U∗(U, ϕ)

)
,

∑k
j=1

(
ωj
Wk

)s
U∗
(
tj, ϕ

)
≤ ∑k

j=1

((Up−tj
p

Up−Lp

)s( ωj
Wk

)s
U∗(L, ϕ) +

(
tj

p−Lp

Up−Lp

)s( ωj
Wk

)s
U∗(U, ϕ)

)
,

that is

∑k
j=1

(
ωj

Wk

)s
Uϕ

(
tj
)
=

[
∑k

j=1

(
ωj

Wk

)s
U∗
(
tj, ϕ

)
, ∑k

j=1

(
ωj

Wk

)s
U∗
(
tj, ϕ

)]

≤I

∑k
j=1

 (Up−tj
p

Up−Lp

)s( ωj
Wk

)s
U∗(L, ϕ)

+
(

tj
p−Lp

Up−Lp

)s( ωj
Wk

)s
U∗(U, ϕ)

, ∑k
j=1

 (Up−tj
p

Up−Lp

)s( ωj
Wk

)s
U∗(L, ϕ)

+
(

tj
p−Lp

Up−Lp

)s( ωj
Wk

)s
U∗(U, ϕ)


= ∑k

j=1

(Up − tj
p

Up − Lp

)s( ωj

Wk

)s
[U∗(L, ϕ), U∗(L, ϕ)] + ∑k

j=1

(
tj

p − Lp

Up − Lp

)s( ωj

Wk

)s
[U∗(U, ϕ), U∗(U, ϕ)]

= ∑k
j=1

(Up − tj
p

Up − Lp

)s( ωj

Wk

)s
Uϕ(L) + ∑k

j=1

(
tj

p − Lp

Up − Lp

)s( ωj

Wk

)s
Uϕ(U).

Thus,

∑k
j=1

(
ωj

Wk

)s
U
(
tj
)
4 ∑k

j=1

((Up − tj
p

Up − Lp

)s( ωj

Wk

)s
U(L) +

(
tj

p − Lp

Up − Lp

)s( ωj

Wk

)s
U(U)

)
,

and this completes the proof. �

We now consider some special cases of Theorems 3 and 5.
If U∗(κ, ϕ) = U∗(κ, ϕ), then Theorems 3 and 5 reduce to the following results:

Corollary 2 ([21]). (Jensen inequality for (p, s)-convex function) Let s ∈ [0, 1], ωj ∈ R+,
tj ∈ [t, s], (j = 1, 2, 3, . . . , k, k ≥ 2) and let U : [t, s]→ R+ be a non-negative real-valued
function. If U is a (p, s)-convex function, then

U

[ 1
Wk

k

∑
j=1

ωjtj
p

] 1
p
 ≤ ∑k

j=1

(
ωj

Wk

)s
U
(
tj
)
, (19)

where Wk = ∑k
j=1 ωj. If U is (p, s)-concave function, then inequality (19) is reversed.
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Corollary 3. Let s ∈ [0, 1], ωj ∈ R+, tj ∈ [t, s], (j = 1, 2, 3, . . . , k, k ≥ 2), and U : [t, s]→ R+

be a non-negative real-valued function. If U is a (p, s)-convex function and t1, t2, . . . , tj ∈
(L, U) ⊆ [t, s], then

∑k
j=1

(
ωj

Wk

)s
U
(

tj

)
≤ ∑k

j=1

((Up − tj
p

Up − Lp

)s( ωj

Wk

)s
U(L) +

( tj
p − Lp

Up − Lp

)s( ωj

Wk

)s
U(U)

)
, (20)

where Wk = ∑k
j=1 ωj. If U is a (p, s)-concave function, then inequality (20) is reversed.

4. Hermite–Hadamard Type Inequalities for (p, s)-Convex F-I-V-F in the Second Sense

In this section, we will continue with the H–H inequality for (p, s)-convex fuzzy-I-V-Fs
as well as the fuzzy-interval H–H Fejér inequality for (p, s)-convex fuzzy-I-V-Fs using the
fuzzy order relation. Firstly, we start with the following H–H inequality for (p, s)-convex
fuzzy-I-V-Fs:

Theorem 6. Let U : [t, s]→ FC(R) be a (p, s)-convex F-I-V-F, whose ϕ-levels define the
family of I-V-Fs. Uϕ : [t, s] ⊂ R→ KC

+ are given by Uϕ(κ) = [U∗(κ, ϕ), U∗(κ, ϕ)] for all
∈ [t, s] and for all ϕ ∈ [0, 1]. If U ∈ FR([t, s]), then

2s−1 U

([
tp + sp

2

] 1
p
)
4

p
sp − tp (FR)

∫ s

t
κp−1U(κ)dκ ≤p

U(t)+̃U(s)
s + 1

. (21)

If U is a (p, s)-concave F-I-V-F, then

2s−1 U

([
tp + sp

2

] 1
p
)
<

p
sp − tp (FR)

∫ s

t
κp−1U(κ)dκ < U(t)+̃U(s)

s + 1
. (22)

Proof. Let U be a (p, s)-convex F-I-V-F. Then, by hypothesis, we have

2sU

([
tp + sp

2

] 1
p
)
4 U

(
[ζtp + (1− ζ)sp]

1
p

)
+̃U

(
[(1− ζ)tp + ζsp]

1
p

)
.

Therefore, for each ϕ ∈ [0, 1], we have

2sU∗

([
tp+sp

2

] 1
p , ϕ

)
≤ U∗

(
[ζtp + (1− ζ)sp]

1
p , ϕ

)
+ U∗((1− ζ)tp + ζsp, ϕ),

2sU∗
([

tp+sp

2

] 1
p , ϕ

)
≤ U∗

(
[ζtp + (1− ζ)sp]

1
p , ϕ

)
+ U∗((1− ζ)tp + ζsp, ϕ).

Then,

2s ∫ 1
0 U∗

([
tp+sp

2

] 1
p , ϕ

)
dζ ≤

∫ 1
0 U∗

(
[ζtp + (1− ζ)sp]

1
p , ϕ

)
dζ +

∫ 1
0 U∗((1− ζ)tp + ζsp, ϕ)dζ,

2s ∫ 1
0 U∗

([
tp+sp

2

] 1
p , ϕ

)
dζ ≤

∫ 1
0 U∗

(
[ζtp + (1− ζ)sp]

1
p , ϕ

)
dζ +

∫ 1
0 U∗((1− ζ)tp + ζsp, ϕ)dζ.

It follows that

2s−1U∗

([
tp+sp

2

] 1
p , ϕ

)
≤ p

sp−tp
∫ s

t κp−1U∗(κ, ϕ)dκ,

2s−1U∗
([

tp+sp

2

] 1
p , ϕ

)
≤ p

sp−tp
∫ s

t κp−1U∗(κ, ϕ)dκ.

That is,
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2s−1

[
U∗

([
tp + sp

2

] 1
p
, ϕ

)
, U∗

([
tp + sp

2

] 1
p
, ϕ

)]
≤I

p
sp − tp

[∫ s

t
κp−1U∗(κ, ϕ)dκ,

∫ s

t
κp−1U∗(κ, ϕ)dκ

]
.

Thus,

2s−1U

([
tp + sp

2

] 1
p
)
4

p
sp − tp (FR)

∫ s

t
κp−1U(κ)dκ. (23)

In a similar way as above, we have

p
sp − tp (FR)

∫ s

t
κp−1U(κ)dκ 4 1

s + 1
[
U(t)+̃U(s)

]
. (24)

Combining Equations (23) and (24), we have

2s−1 U

([
tp + sp

2

] 1
p
)
4

p
sp − tp (FR)

∫ s

t
κp−1U(κ)dκ 4 1

s + 1
[
U(t)+̃U(s)

]
.

Hence, we obtain the required result. �

Remark 4. On the basis of Theorem 6, we consider the certain the special situation as
below:

- If we attempt to take U∗(κ, ϕ) = U∗(κ, ϕ) with ϕ = 1, then we achieve the (p, s)-
convex function, see [9];

- If we attempt to take s = 1, then we achieve the result for p-convex F-I-V-F-:

U

([
tp + sp

2

] 1
p
)
4

p
sp − tp (FR)

∫ s

t
κp−1U(κ)dκ 4 U(t)+̃U(s)

2
; (25)

- If we attempt to take p = 1, then we achieve the result for s-convex F-I-V-F, see [13]:

U

(
t + s

2

)
4

1
s− t

(FR)
∫ s

t
U(κ)dκ 4 U(t)+̃U(s)

s + 1
; (26)

- If we attempt to take s = 1 and p = 1, then we achieve the result for p-convex F-I-V-F,
see [13]:

U

(
t + s

2

)
4

1
s− t

(FR)
∫ s

t
U(κ)dκ 4 U(t)+̃U(s)

2
; (27)

- If we attempt to take U∗(κ, ϕ) = U∗(κ, ϕ) with ϕ = 1, then we acquire the result for
classical (p, s)-convex function, see [21]:

2s−1 U

([
tp + sp

2

] 1
p
)
≤ p

sp − tp (R)
∫ s

t
κp−1U(κ)dκ ≤ 1

s + 1
[
U(t)+̃U(s)

]
; (28)

- If we attempt to take U∗(κ, ϕ) = U∗(κ, ϕ) with ϕ = 1 and s = 1, then we acquire the
result for classical p-convex function:

U

([
tp + sp

2

] 1
p
)
≤ p

sp − tp (R)
∫ s

t
κp−1U(κ)dκ ≤ U(t) + U(s)

2
; (29)
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- If we attempt to take U∗(κ, ϕ) = U∗(κ, ϕ) with, ϕ = 1, p = 1 and s = 1, then we
acquire the result for classical convex function:

U

(
t + s

2

)
≤ 1

s− t
(R)

∫ s

t
U(κ)dκ ≤ U(t) + U(s)

2
. (30)

Example 2. Let p be an odd number and s ∈ [0, 1], and the F-I-V-F U : [t, s] = [2, 3]→ FC(R)
defined by

U(κ)(σ) =



σ(
2−κ

p
2

) , σ ∈
[
0, 2−κ

p
2

]
2
(

2−κ
p
2

)
−σ(

2−κ
p
2

) , σ ∈
(

2−κ
p
2 , 2

(
2−κ

p
2

)]
0, otherwise.

(31)

Then, for each ϕ ∈ [0, 1], we have Uϕ(κ) =
[

ϕ
(

2−κ
p
2

)
, (2− ϕ)

(
2−κ

p
2

)]
. Since

end point functions U∗(κ, ϕ) = ϕ
(

2−κ
p
2

)
, U∗(κ, ϕ) = (2− ϕ)

2−κ
p
2

 are (p, s)-

convex functions for each ϕ ∈ [0, 1]. Then, U(κ) is (p, s)-convex F-I-V-F. We now compute
the following:

2s−1U∗

([
tp+sp

2

] 1
p , ϕ

)
= 4−

√
10

2 ϕ,

2s−1U∗
([

tp+sp

2

] 1
p , ϕ

)
= 4−

√
10

2 (2− ϕ),

p
sp−tp

∫ s
t κp−1U∗(κ, ϕ)dκ = ϕ

∫ 3
2

(
2−κ

p
2

)
dκ = 21

50 ϕ,
p

sp−tp
∫ s

t κp−1U∗(κ, ϕ)dκ = (2− ϕ)
∫ 3

2

(
2−κ

p
2

)
dκ = 21

50 (2− ϕ),
U∗(t, ϕ)+U∗(s, ϕ)

s+1 = 4−
√

2−
√

3
2 ϕ,

U∗(t, ϕ)+U∗(s, ϕ)
s+1 = 4−

√
2−
√

3
2 (2− ϕ),

for all ϕ ∈ [0, 1]. That means[
4−
√

10
2

ϕ,
4−
√

10
2

(2− ϕ)

]
≤I

[
21
50

ϕ,
21
50

(2− ϕ)

]
≤I

[
4−
√

2−
√

3
2

ϕ,
4−
√

2−
√

3
2

(2− ϕ)

]
, for all ϕ ∈ [0, 1],

and the Theorem 6 has been verified.

Theorem 7. Let U : [t, s]→ FC(R) be a (p, s)-convex F-I-V-F, whose ϕ-levels define the
family of I-V-Fs Uϕ : [t, s] ⊂ R→ KC

+ are given by Uϕ(κ) = [U∗(κ, ϕ), U∗(κ, ϕ)] for all
∈ [t, s] and for all ϕ ∈ [0, 1]. If U ∈ FR([t, s]), then

4s−1 U

([
tp + sp

2

] 1
p
)
4 32 4

p
sp − tp (FR)

∫ s

t
κp−1U(κ)dκ 4 31 4

U(t)+̃U(s)
s + 1

[
1
2
+

1
2s

]
, (32)

where

31 =

U(t)+̃U(s)
2 +̃U

([
tp+sp

2

] 1
p
)

s + 1
,32 = 2s−2

[
U

([
3tp + sp

4

] 1
p
)
+̃U

([
tp + 3sp

4

] 1
p
)]

,

and 31 = [31∗ , 31
∗], 32 = [32∗ , 32

∗].
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Proof. Take
[
tp, tp+sp

2

]
, and we have

2sU

([
ζtp+(1−ζ) tp+sp

2
2 +

(1−ζ)tp+ζ tp+sp
2

2

] 1
p
)

4 U

([
ζtp + (1− ζ) tp+sp

2

] 1
p
)
+̃U

([
(1− ζ)tp + ζ tp+sp

2

] 1
p
)

.

Therefore, for each ϕ ∈ [0, 1], we have

2sU∗

([
ζtp+(1−ζ) tp+sp

2
2 +

(1−ζ)tp+ζ tp+sp
2

2

] 1
p
, ϕ

)
≤ U∗

([
ζtp + (1− ζ) tp+sp

2

] 1
p , ϕ

)
+ U∗

([
(1− ζ)tp + ζ tp+sp

2

] 1
p , ϕ

)
,

2sU∗
([

ζtp+(1−ζ) tp+sp
2

2 +
(1−ζ)tp+ζ tp+sp

2
2

] 1
p
, ϕ

)
≤ U∗

([
ζtp + (1− ζ) tp+sp

2

] 1
p , ϕ

)
+ U∗

([
(1− ζ)tp + ζ tp+sp

2

] 1
p , ϕ

)
.

Consequently, we obtain

2s−2U∗

([
3tp+sp

4

] 1
p , ϕ

)
≤ p

sp−tp
∫ tp+sp

2
t κp−1U∗(κ, ϕ)dκ,

2s−2U∗
([

3tp+sp

4

] 1
p , ϕ

)
≤ p

sp−tp
∫ tp+sp

2
t κp−1U∗(κ, ϕ)dκ.

That is,

2s−2
[
U∗

([
3tp+sp

4

] 1
p , ϕ

)
, U∗

([
3tp+sp

4

] 1
p , ϕ

)]
≤I

p
sp−tp

[∫ tp+sp
2

t κp−1U∗(κ, ϕ)dκ,
∫ tp+sp

2
t κp−1U∗(κ, ϕ)dκ

]
.

It follows that

2s−2U

([
3tp + sp

4

] 1
p
)
4

p
sp − tp

∫ tp+sp
2

t
κp−1U(κ)dκ. (33)

In a similar way as above, we have

2s−2U

([
tp + 3sp

4

] 1
p
)
4

p
sp − tp

∫ s

tp+sp
2

κp−1U(κ)dκ. (34)

Combining Equations (33) and (34), we have

2s−2

[
U

([
3tp + sp

4

] 1
p
)
+̃U

([
tp + 3sp

4

] 1
p
)]
4

p
sp − tp

∫ s

t
κp−1U(κ)dκ.

By using Theorem 6, we have

4s−1 U

([
tp + sp

2

] 1
p
)

= 4s−1 U

([
1
2

.
3tp + sp

4
+

1
2

.
tp + 3sp

4

] 1
p
)

.
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Therefore, for each ϕ ∈ [0, 1], we have

4s−1U∗

([
tp+sp

2

] 1
p , ϕ

)
= 4s−1 U∗

([
1
2 . 3tp+sp

4 + 1
2 . tp+3sp

4

] 1
p , ϕ

)
,

4s−1U∗
([

tp+sp

2

] 1
p , ϕ

)
= 4s−1U∗

([
1
2 . 3tp+sp

4 + 1
2 . tp+3sp

4

] 1
p , ϕ

)
≤ 2s−2

[
U∗

([
3tp+sp

4

] 1
p , ϕ

)
+ U∗

([
tp+3sp

4

] 1
p , ϕ

)]
≤ 2s−2

[
U∗
([

3tp+sp

4

] 1
p , ϕ

)
+ U∗

([
tp+3sp

4

] 1
p , ϕ

)]
= 32∗
= 32

∗

≤ p
sp−tp

∫ s
t κp−1U∗(κ, ϕ)dκ

≤ p
sp−tp

∫ s
t κp−1U∗(κ, ϕ)dκ

≤ 1
s+1

[
U∗(t,ϕ)+U∗(s,ϕ)

2 + U∗

([
tp+sp

2

] 1
p , ϕ

)]
≤ 1

s+1

[
U∗(t,ϕ)+U∗(s,ϕ)

2 + U∗
([

tp+sp

2

] 1
p , ϕ

)]
= 31∗
= 31

∗

≤ 1
s+1

[
U∗(t,ϕ)+U∗(s,ϕ)

2 + 1
2s (U∗(t, ϕ) + U∗(s, ϕ))

]
≤ 1

s+1

[
U∗(t,ϕ)+U∗(s,ϕ)

2 + 1
2s (U∗(t, ϕ) + U∗(s, ϕ))

]
= 1

s+1 [U∗(t, ϕ) + U∗(s, ϕ)]
[

1
2 + 1

2s

]
= 1

s+1 [U
∗(t, ϕ) + U∗(s, ϕ)]

[
1
2 + 1

2s

]
,

that is

4s−1 U

([
tp + sp

2

] 1
p
)
4 32 4

p
sp − tp (FR)

∫ s

t
κp−1U(κ)dκ 4 31 4

U(t)+̃U(s)
s + 1

[
1
2
+

1
2s

]
,

hence, the result follows. �

Example 3. Let p be an odd number and the F-I-V-F U : [t, s] = [2, 3]→ FC(R) defined by,

Uϕ(κ) =

ϕ
(

2−κ
p
2

)
, (2− ϕ)

2−κ
p
2


, as in Example 2, then U(κ) is (p, s)-convex

F-I-V-F and satisfies Equation (21). We have

U∗(κ, ϕ) = ϕ
(

2−κ
p
2

)
and U∗(κ, ϕ) = (2− ϕ)

(
2−κ

p
2

)
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We now compute the following:

U∗(t, ϕ)+U∗(s, ϕ)
s+1

[
1
2 + 1

2s

]
= 4−

√
2−
√

3
2 ϕ,

U∗(t, ϕ)+U∗(s, ϕ)
s+1

[
1
2 + 1

2s

]
= 4−

√
2−
√

3
2 (2− ϕ),

31∗ =

U∗(t, ϕ)+U∗(s, ϕ)
2 +U∗

([
tp+sp

2

] 1
p , ϕ

)
s+1 = 8−

√
2−
√

3−
√

10
4 ϕ,

31
∗ =

U∗(t, ϕ)+U∗(s, ϕ)
2 +U∗

([
tp+sp

2

] 1
p , ϕ

)
s+1 = 8−

√
2−
√

3−
√

10
4 (2− ϕ),

32∗ = 2s−2
[
U∗

([
3tp+sp

4

] 1
p , ϕ

)
+ U∗

([
tp+3sp

4

] 1
p , ϕ

)]
= 5−

√
11

4 ϕ,

32
∗ = 2s−2

[
U∗
([

3tp+sp

4

] 1
p , ϕ

)
+ U∗

([
tp+3sp

4

] 1
p , ϕ

)]
= 5−

√
11

4 (2− ϕ),

4s−1U∗

([
tp+sp

2

] 1
p , ϕ

)
= 4−

√
10

2 ϕ,

4s−1U∗
([

tp+sp

2

] 1
p , ϕ

)
= 4−

√
10

2 (2− ϕ).

Then, we obtain that

4−
√

10
2 ϕ ≤ 5−

√
11

4 ϕ ≤ 21
50 ϕ ≤ 8−

√
2−
√

3−
√

10
4 ϕ ≤ 4−

√
2−
√

3
2 ϕ,

4−
√

10
2 (2− ϕ) ≤ 5−

√
11

4 (2− ϕ) ≤ 21
50 (2− ϕ) ≤ 8−

√
2−
√

3−
√

10
4 (2− ϕ) ≤ 4−

√
2−
√

3
2 (2− ϕ).

Hence, Theorem 7 is verified.

The next Theorems 8 and 9 give the second H–H Fejér inequality and the first H–H
Fejér inequality for (p, s)-convex F-I-V-F, respectively.

Theorem 8. (Second H–H Fejér inequality for (p, s)-convex F-I-V-F) Let U : [t, s]→ FC(R)
be a (p, s)-convex F-I-V-F with t < s, whose ϕ-levels define the family of I-V-Fs
Uϕ : [t, s] ⊂ R→ KC

+ are given by Uϕ(κ) = [U∗(κ, ϕ), U∗(κ, ϕ)] for all κ ∈ [t, s] and for
all ϕ ∈ [0, 1]. If U ∈ FR([t, s]) and Ψ : [t, s]→ R, Ψ(κ) ≥ 0, p-symmetric with respect to[

tp+sp

2

] 1
p , then

p
sp − tp (FR)

∫ s

t
κp−1U(κ)Ψ(κ)d 4

[
U(t)+̃U(s)

] ∫ 1

0
ζsΨ

(
[(1− ζ)tp + ζsp]

1
p

)
dζ. (35)

If U is (p, s)-concave F-I-V-F, then Equation (35) is reversed.

Proof. Let U be a (p, s)-convex F-I-V-F. Then, for each ϕ ∈ [0, 1], we have

U∗

(
[ζtp + (1− ζ)sp]

1
p , ϕ

)
Ψ
(
[ζtp + (1− ζ)sp]

1
p

)
≤
(
ζsU∗(t, ϕ) + (1− ζ)sU∗(s, ϕ)

)
Ψ
(
[ζtp + (1− ζ)sp]

1
p

)
,

U∗
(
[ζtp + (1− ζ)sp]

1
p , ϕ

)
Ψ
(
[ζtp + (1− ζ)sp]

1
p

)
≤
(
ζsU∗(t, ϕ) + (1− ζ)sU∗(s, ϕ)

)
Ψ
(
[ζtp + (1− ζ)sp]

1
p

)
.

(36)
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and

U∗

(
[(1− ζ)tp + ζsp]

1
p , ϕ

)
Ψ
(
[(1− ζ)tp + ζsp]

1
p

)
≤
(
(1− ζ)sU∗(t, ϕ) + ζsU∗(s, ϕ)

)
Ψ
(
[(1− ζ)tp + ζsp]

1
p

)
,

U∗
(
[(1− ζ)tp + ζsp]

1
p , ϕ

)
Ψ
(
[(1− ζ)tp + ζsp]

1
p

)
≤
(
(1− ζ)sU∗(t, ϕ) + ζsU∗(s, ϕ)

)
Ψ
(
[(1− ζ)tp + ζsp]

1
p

)
.

(37)

After adding Equations (36) and (37), and integrating over [0, 1], we get∫ 1
0 U∗

(
[ζtp + (1− ζ)sp]

1
p , ϕ
)

Ψ
(
[ζtp + (1− ζ)sp]

1
p
)

dζ

+
∫ 1

0 U∗
(
[(1− ζ)tp + ζsp]

1
p , ϕ
)

Ψ
(
[(1− ζ)tp + ζsp]

1
p
)

dζ

≤
∫ 1

0

 U∗(t, ϕ)
{

ζsΨ
(
[ζtp + (1− ζ)sp]

1
p
)
+ (1− ζ)sΨ

(
[(1− ζ)tp + ζsp]

1
p
)}

+U∗(s, ϕ)
{
(1− ζ)sΨ

(
[ζtp + (1− ζ)sp]

1
p
)
+ ζsΨ

(
[(1− ζ)tp + ζsp]

1
p
)}

dζ,

∫ 1
0 U∗

(
[ζtp + (1− ζ)sp]

1
p , ϕ
)

Ψ
(
[ζtp + (1− ζ)sp]

1
p
)

dζ

+
∫ 1

0 U∗
(
[(1− ζ)tp + ζsp]

1
p , ϕ
)

Ψ
(
[(1− ζ)tp + ζsp]

1
p
)

dζ

≤
∫ 1

0

 U∗(t, ϕ)
{

ζsΨ
(
[ζtp + (1− ζ)sp]

1
p
)
+ (1− ζ)sΨ

(
[(1− ζ)tp + ζsp]

1
p
)}

+U∗(s, ϕ)
{
(1− ζ)sΨ

(
[ζtp + (1− ζ)sp]

1
p
)
+ ζsΨ

(
[(1− ζ)tp + ζsp]

1
p
)}

dζ.

= 2U∗(t, ϕ)
∫ 1

0 ζsΨ
(
[ζtp + (1− ζ)sp]

1
p
)

dζ + 2U∗(s, ϕ)
∫ 1

0 ζsΨ
(
[(1− ζ)tp + ζsp]

1
p
)

dζ

= 2U∗(t, ϕ)
∫ 1

0 ζsΨ
(
[ζtp + (1− ζ)sp]

1
p
)

dζ + 2U∗(s, ϕ)
∫ 1

0 ζsΨ
(
[(1− ζ)tp + ζsp]

1
p
)

dζ.

Since Ψ is symmetric, then

= 2[U∗(t, ϕ) + U∗(s, ϕ)]
∫ 1

0 ζsΨ
(
[(1− ζ)tp + ζsp]

1
p

)
dζ

= 2[U∗(t, ϕ) + U∗(s, ϕ)]
∫ 1

0 ζsΨ
(
[(1− ζ)tp + ζsp]

1
p

)
dζ.

(38)

Since ∫ 1
0 U∗

(
[ζtp + (1− ζ)sp]

1
p , ϕ

)
Ψ
(
[ζtp + (1− ζ)sp]

1
p

)
dζ

=
∫ 1

0 U∗

(
[(1− ζ)tp + ζsp]

1
p , ϕ

)
Ψ
(
[(1− ζ)tp + ζsp]

1
p

)
dζ

= p
sp−tp

∫ s
t κp−1U∗(κ, ϕ)Ψ(κ)dκ,∫ 1

0 U∗
(
[ζtp + (1− ζ)sp]

1
p , ϕ

)
Ψ
(
[ζtp + (1− ζ)sp]

1
p

)
dζ

=
∫ 1

0 U∗
(
[(1− ζ)tp + ζsp]

1
p , ϕ

)
Ψ
(
[(1− ζ)tp + ζsp]

1
p

)
dζ

= p
sp−tp

∫ s
t κp−1U∗(κ, ϕ)Ψ(κ)dκ,

(39)

From Equation (39) and integrating with respect to ζ over [0, 1], we have

p
sp−tp

∫ s
t κp−1U∗(κ, ϕ)Ψ(κ)dκ ≤ [U∗(t, ϕ) + U∗(s, ϕ)]

∫ 1
0 ζsΨ

(
[(1− ζ)tp + ζsp]

1
p

)
dζ,

p
sp−tp

∫ s
t κp−1U∗(κ, ϕ)Ψ(κ)dκ ≤ [U∗(t, ϕ) + U∗(s, ϕ)]

∫ 1
0 ζsΨ

(
[(1− ζ)tp + ζsp]

1
p

)
dζ,

that is,

p
sp−tp

[ ∫ s
t κp−1U∗(κ, ϕ)Ψ(κ)dκ,

∫ s
t κp−1U∗(κ, ϕ)Ψ(κ)dκ

]
≤I [U∗(t, ϕ) + U∗(s, ϕ), U∗(t, ϕ) + U∗(s, ϕ)]

∫ 1
0 ζsΨ

(
[(1− ζ)tp + ζsp]

1
p

)
dζ,
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hence

p
sp − tp (FR)

∫ s

t
κp−1U(κ)Ψ(κ)dκ 4

[
U(t)+̃U(s)

] ∫ 1

0
ζsΨ

(
[(1− ζ)tp + ζsp]

1
p

)
dζ.

�

Theorem 9. (First H–H Fejér inequality for (p, s)-convex F-I-V-F) Let U : [t, s]→ FC(R)
be a (p, s)-convex F-I-V-F with t < s, whose ϕ-levels define the family of I-V-Fs
Uϕ : [t, s] ⊂ R→ KC

+ are given by Uϕ(κ) = [U∗(κ, ϕ), U∗(κ, ϕ)] for all ∈ [t, s] and for
all ϕ ∈ [0, 1]. If U ∈ FR([t, s]) and Ψ : [t, s]→ R, Ψ(κ) ≥ 0, p-symmetric with respect to[

tp+sp

2

] 1
p , and

∫ s
t Ψ(κ)dκ > 0, then

2s−1 U

([
tp + sp

2

] 1
p
)
4

p∫ s
t κp−1Ψ(κ)dκ

(FR)
∫ s

t
κp−1U(κ)Ψ(κ)dκ. (40)

If U is (p, s)-concave F-I-V-F, then inequality (40) is reversed.

Proof. Since U is a (p, s)-convex F-I-V-F, then, for each ϕ ∈ [0, 1], we have

2s U∗

([
tp+sp

2

] 1
p , ϕ

)
≤ U∗

(
[ζtp + (1− ζ)sp]

1
p , ϕ

)
+ U∗

(
[(1− ζ)tp + ζsp]

1
p , ϕ

)
,

2s U∗
([

tp+sp

2

] 1
p , ϕ

)
≤ U∗

(
[ζtp + (1− ζ)sp]

1
p , ϕ

)
+ U∗

(
[(1− ζ)tp + ζsp]

1
p , ϕ

)
.

(41)

By multiplying Equation (41) by Ψ
(
[ζtp + (1− ζ)sp]

1
p

)
= Ψ

(
[(1− ζ)tp + ζsp]

1
p

)
and integrating it by ζ over [0, 1], we obtain

2s U∗

([
tp+sp

2

] 1
p , ϕ

) ∫ 1
0 Ψ

(
[(1− ζ)tp + ζsp]

1
p , ϕ

)
dζ

≤


∫ 1

0 U∗

(
[ζtp + (1− ζ)sp]

1
p , ϕ

)
Ψ
(
[ζtp + (1− ζ)sp]

1
p

)
dζ

+
∫ 1

0 U∗

(
[(1− ζ)tp + ζsp]

1
p , ϕ

)
Ψ
(
[(1− ζ)tp + ζsp]

1
p

)
dζ

,

2sU∗
([

tp+sp

2

] 1
p , ϕ

) ∫ 1
0 Ψ

(
[(1− ζ)tp + ζsp]

1
p

)
dζ

≤


∫ 1

0 U∗
(
[ζtp + (1− ζ)sp]

1
p , ϕ

)
Ψ
(
[ζtp + (1− ζ)sp]

1
p

)
dζ

+
∫ 1

0 U∗
(
[(1− ζ)tp + ζsp]

1
p , ϕ

)
Ψ
(
[(1− ζ)tp + ζsp]

1
p

)
dζ

.

(42)

Since ∫ 1
0 U∗

(
[ζtp + (1− ζ)sp]

1
p , ϕ

)
Ψ
(
[ζtp + (1− ζ)sp]

1
p

)
dζ

=
∫ 1

0 U∗

(
[(1− ζ)tp + ζsp]

1
p , ϕ

)
Ψ
(
[(1− ζ)tp + ζsp]

1
p

)
dζ

= p
sp−tp

∫ s
t κp−1U∗(κ, ϕ)Ψ(κ)dκ,∫ 1

0 U∗
(
[ζtp + (1− ζ)sp]

1
p , ϕ

)
Ψ
(
[ζtp + (1− ζ)sp]

1
p

)
dζ

=
∫ 1

0 U∗
(
[(1− ζ)tp + ζsp]

1
p , ϕ

)
Ψ
(
[(1− ζ)tp + ζsp]

1
p

)
dζ

= p
sp−tp

∫ s
t κp−1U∗(κ, ϕ)Ψ(κ)dκ,

(43)
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From Equation (43), we have

2s−1U∗

([
tp+sp

2

] 1
p , ϕ

)
≤ p∫ s

t Ψ(κ)dκ

∫ s
t κp−1U∗(κ, ϕ)Ψ(κ)dκ,

2s−1U∗
([

tp+sp

2

] 1
p , ϕ

)
≤ p∫ s

t Ψ(κ)dκ

∫ s
t κp−1U∗(κ, ϕ)Ψ(κ)dκ.

From this, we have

2s−1
[
U∗

([
tp+sp

2

] 1
p , ϕ

)
, U∗

([
tp+sp

2

] 1
p , ϕ

)]
≤I

p∫ s
t Ψ(κ)dκ

[ ∫ s
t κp−1U∗(κ, ϕ)Ψ(κ)dκ,

∫ s
t κp−1U∗(κ, ϕ)Ψ(κ)dκ

]
,

that is

2s−1U

([
tp + sp

2

] 1
p
)
4

p∫ s
t κp−1Ψ(κ)dκ

(FR)
∫ s

t
κp−1U(κ, ϕ)Ψ(κ)dκ,

and this completes the proof. �

Remark 5. If we attempt to take s = 1 in Theorems 8 and 9, then we achieve the appropriate
theorems for p-convex F-I-V-Fs, see [13]:

- If we attempt to take U∗(κ, ϕ) = U∗(κ, ϕ) with ϕ = 1, then, from Theorems 8 and 9, we
achieve classical first and second H–H Fejér inequality for (p, s)-convex function, [21];

- If in Theorems 8 and 9, we attempt to take U∗(κ, ϕ) = U∗(κ, ϕ) with ϕ = 1 and s = 1,
then we acquire the classical appropriate theorems for p-convex function, see [49];

- If, in Theorems 8 and 9, we attempt to take U∗(κ, ϕ) = U∗(κ, ϕ) with ϕ = 1, s = 1
and p = 1, then we acquire the appropriate theorems for a convex function [48];

- If we attempt to take Ψ(κ) = 1, then combining Theorem 8 and Theorem 9, we acquire
Theorem 4.1.

Example 4. We consider the F-I-V-F U : [1, 4]→ FC(R) defined by

U(κ)(σ) =


σ−eκ p

eκ p , σ ∈ [eκ p, 2eκ p],
4eκ p−σ

2eκ p , σ ∈ (2eκ p, 4eκ p],
0, otherwise,

(44)

Then, for each ϕ ∈ [0, 1], we have Uϕ(κ) = [(1 + ϕ)eκ p, 2(2− ϕ)eκ p]. Since end point
functions U∗(κ, ϕ), U∗(κ, ϕ) are (p, s)-convex functions, for each s, ϕ ∈ [0, 1], then U(κ) is
(p, s)-convex F-I-V-F. If

Ψ(κ) =
{

κp − 1, σ ∈
[
1, 5

2
]
,

4−κp, σ ∈
( 5

2 , 4
]
,

(45)

where p = 1. Then, we have

p
sp−tp

∫ 4
1 κp−1U∗(κ, ϕ)Ψ(κ)dκ = 1

3

∫ 4
1 κp−1U∗(κ, ϕ)Ψ(κ)dκ

= 1
3

∫ 5
2

1 κp−1U∗(κ, ϕ)Ψ(κ)dκ + 1
3

∫ 4
5
2
κp−1U∗(κ, ϕ)Ψ(κ)dκ

= 1
3 (1 + ϕ)

∫ 5
2

1 e(−1)dκ + 1
3 (1 + ϕ)

∫ 4
5
2

e(4−)dκ ≈ 11(1 + ϕ),
p

sp−tp
∫ 4

1 κp−1U∗(κ, ϕ)Ψ(κ)dκ = 1
3

∫ 4
1 κp−1U∗(κ, ϕ)Ψ(κ)dκ

= 1
3

∫ 5
2

1 κp−1U∗(κ, ϕ)Ψ(κ)dκ + 1
3

∫ 4
5
2
κp−1U∗(κ, ϕ)Ψ(κ)dκ

= 2
3 (2− ϕ)

∫ 5
2

1 e(−1)dκ + 2
3 (2− ϕ)

∫ 4
5
2

e(4−)dκ ≈ 22(2− ϕ),

(46)
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and

[U∗(t, ϕ) +U∗(s, ϕ)]
∫ 1

0 ζsΨ
(
[(1− τ)tp + τsp]

1
p

)
dτ

[U∗(t, ϕ) +U∗(s, ϕ)]
∫ 1

0 ζsΨ
(
[(1− τ)tp + τsp]

1
p

)
dτ

= (1 + ϕ)
[
e + e4] [∫ 1

2
0 3τ2d +

∫ 1
1
2

τ(3− 3τ)dτ

]
≈ 43

2 (1 + ϕ)

= 2(2− ϕ)
[
e + e4][∫ 1

2
0 3τ2d +

∫ 1
1
2

τ(3− 3τ)dτ

]
≈ 43(2− ϕ).

(47)

From Equations (46) and (47), we have

[11(1 + ϕ), 22(2− ϕ)] ≤ I

[
43
2
(1 + ϕ), 43(2− ϕ)

]
, for each ϕ ∈ [0, 1].

Hence, Theorem 8 is verified.
For Theorem 9, we have

2s−1U∗

([
tp+sp

2

] 1
p , ϕ

)
≈ 61

5 (1 + ϕ),

2s−1U∗
([

tp+sp

2

] 1
p , ϕ

)
≈ 122

5 (2− ϕ),
(48)

∫ s

t
κp−1Ψ(κ)dκ =

∫ 5
2

1
(κ − 1)dκ

∫ 4

5
2

(4−)dκ =
9
4

,

p∫ s
t κp−1Ψ(κ)dκ

∫ 4
1 κp−1U∗(κ, ϕ)Ψ(κ)dκ ≈ 73

5 (1 + ϕ),
p∫ s

t κp−1Ψ(κ)dκ

∫ 4
1 κp−1U∗(κ, ϕ)Ψ(κ)dκ ≈ 293

10 (2− ϕ).
(49)

From Equations (48) and (49), we have[
61
5
(1 + ϕ),

122
5

(2− ϕ)

]
≤ I

[
73
5
(1 + ϕ),

293
10

(2− ϕ)

]
.

Hence, Theorem 9 has been demonstrated.

5. Conclusions and Future Developments

Through this study, we have provided a reformative version of the different inequal-
ities in the frame of fuzzy interval space, which offers a better approximation than the
interval integral inequalities.

Then, for mappings satisfying the property “the product of two (p, s)-convex F-I-V-Fs
is a (p, s)-convex F-I-V-F”, we created certain fuzzy interval integral inequalities in terms
of the fuzzy interval H–H type inequalities. It is a fascinating topic to apply these fuzzy
interval inequalities to ϕ-type special means, numerical integration, and probability density
functions. With the methods and ideas provided in this article, the interested readers
are encouraged to further excavation on fuzzy interval inequalities. In the future, we
will try to explore this concept and its generalizations with the help of fuzzy fractional
integral operators.
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Abbreviations

KC Collection of all closed and bounded intervals
K+

C Collection of all closed and bounded positive intervals
FC(R) Collection of all closed and bounded fuzzy intervals
F-I-V-Fs Fuzzy-interval-valued functions
I-V-Fs Interval-valued functions
≤I order relation
4 fuzzy order relation
(p, s)-convex F-I-V-Fs (p, s)-Convex fuzzy-interval-valued functions
H–H inequality Hermite–Hadamard inequality
H–H Fejér inequality Hermite–Hadamard–Fejér inequality
(FR)-integrable Fuzzy Riemann integrable
R[t, s] Riemann integrable real-valued functions
IR[t, s] Riemann integrable I-V-Fs
FR([t, s]) Riemann integrable F-I-V-Fs
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