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Abstract: This paper investigates the existence and approximate controllability of Riemann–Liouville
fractional evolution systems of Sobolev-type in abstract spaces. At first, a group of sufficient condi-
tions is established for the existence of mild solutions without the compactness of operator semigroup.
Then the approximate controllability is studied under the assumption that the corresponding linear
system is approximate controllability. The proof is based on the fixed point theory and the method of
operator semigroup. An example is given as an application of the obtained results.
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1. Introduction

Let X be a Hilbert space, whose norm is denoted by ‖ · ‖. We consider the fractional
evolution equation of sobolev type with the Riemann–Liouville derivative of the form{ LDα

t (Ex(t)) = Ax(t) + f (t, x(t)) + Bu(t), t ∈ J′ := (0, b],

I1−α
t (Ex(t))|t=0 + g(x) = x0,

(1)

where LDα
t is the Riemann–Liouville fractional derivative operator of order α ∈ (0, 1), I1−α

t
is the fractional integral operator of order 1− α, A : D(A) ⊂ X → X and E : D(E) ⊂ X →
X are linear operators, B is a linear bounded operator from U to X; here U is another Hilbert
space, the control function u ∈ Lp(J, U) for pα > 1, x0 ∈ X, f is the nonlinear function and
g represents the nonlocal function which satisfies specific conditions.

Fractional differential equations, including of the Caputo type and Riemann–Liouville
type, have been proved to be crucial tools in portraying the hereditary and memory
property of various materials and processes. In 2011, Du et al. [1] pointed out that Riemann–
Liouville fractional derivatives are more suitable to describe certain characteristics of
viscoelastic materials than Caputo ones. Therefore, it is significant to study Riemann–
Liouville fractional differential systems. In 2013, Zhou et al. [2], applying the Laplace
transform technique and probability density functions, presented a suitable concept of mild
solutions of Riemann–Liouville fractional evolution equations, and proved the existence of
mild solutions for the fractional Cauchy problems under the cases that the C0-semigroup
is compact or noncompact. For the existence of mild solutions of fractional evolution
equations, we refer to [3–8] and the references therein. In these papers, the compactness
of operator semigroup or the measure of non-compactness conditions on nonlinearity are
required. Sometimes, in order to obtain the uniqueness of mild solutions, the Lipschitz
condition is also assumed.

In recent years, the controllability of fractional evolution equations has gained consid-
erable attention. Generally speaking, the controllability of fractional evolution equations in
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abstract spaces includes two cases: the exact controllability and the approximate controlla-
bility. When we study the exact controllability of fractional evolution systems in abstract
spaces, we assume that the control operator has a bounded inverse operator in a quotient
space. However, if the state space is infinite dimensional and the operator semigroup is
compact, the inverse of the control operator may not exist, see [9]. Hence, the assumptions
for the exact controllability are too strong. Contrasting with the exact controllability, ap-
proximate controllability is more suitable to describe the natural phenomena. There are
many research works focusing on the approximate controllability of fractional evolution
systems, see [10–12] and the references therein. In [10], Chang et al. investigated the
approximate controllability of fractional differential systems of Sobolev type in Banach
spaces under the assumption that the resolvent operators, generated by the linear part, are
compact. Sakthivel et al. [11] studied the approximate controllability of nonlinear fractional
stochastic evolution systems when the linear part generates a compact semigroup. Recently,
In [12], Yang demonstrated the existence and approximate controllability of mild solutions
for α ∈ (1, 2)-order fractional evolution equations of Sobolev type when the pair (A, E)
generates a compact resolvent family.

Inspired by the above mentioned papers, the aim of this work is to investigate the
existence and approximate controllability of Riemann–Liouville fractional evolution system
(1) in Hilbert space X. By using the Schauder fixed point theorem and the operator
semigroup theory, we first prove the existence of mild solutions of the considered system
without the compactness of operator semigroup and the measure of non-compactness
conditions on nonlinearity. Then the approximate controllability is studied under the
assumption that the corresponding linear system is approximate controllability. It is
emphasized that the compactness of the operator semigroup and the Lipschitz continuity
of nonlinearity are deleted in our work. The redundant assumptions on the linear operator
E, such as the conditions [C1] and [C4] of [13], are removed in this paper.

2. Preliminaries

Let J = [0, b] and C(J, X) be the continuous function space. Denote by

C1−α(J, X) := {x : ·1−αx(·) ∈ C(J, X)}.

Then C1−α(J, X) is a Banach space endowed with the norm ‖x‖C1−α
= sup

t∈J
t1−α‖x(t)‖.

At first, for any h ∈ Lp(J, X) with pα > 1, we consider the following linear fractional
initial value problem { LDα

t (Ex(t)) = Ax(t) + h(t), t ∈ J′,

I1−α
t (Ex(t))|t=0 + g(x) = x0.

(2)

Throughout this paper, we suppose the following assumptions on A and E.
(A1) The linear operator A is densely defined and closed.
(A2) D(E) ⊂ D(A) and E is bijective.
(A3) The linear operator E−1 : X → D(E) ⊂ X is compact.
By (A1)–(A3), the linear operator AE−1 : X → X is bounded due to the closed graph

theorem. Hence, AE−1 generates a C0-semigroup T(t)(t ≥ 0), which is expressed by
T(t) = eAE−1t for t ≥ 0. We suppose that M := sup

t≥0
‖T(t)‖ < +∞.

Remark 1. Contrasting with [13], we delete the redundant conditions [C1] and [C4] of [13] in our
paper. Hence, the results obtained in this work extends the results of [13].

Applying the Riemann–Liouville fractional integral operator on both sides of (2),
we obtain
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Ex(t) =
tα−1

Γ(α)
I1−α
t (Ex(t))|t=0 + Iα

t Ax(t) + Iα
t h(t)

=
tα−1

Γ(α)
[x0 − g(x)] +

1
Γ(α)

∫ t

0
(t− s)α−1[Ax(s) + h(s)

]
ds.

Let λ > 0. Taking the Laplace transform

x̂(λ) =
∫ ∞

0
e−λtx(t)dt

and
ĥ(λ) =

∫ ∞

0
e−λth(t)dt

on both sides of the above equality, we can obtain

Ex̂(t) =
1

λα
[x0 − g(x)] +

1
λα

AE−1Ex̂(λ) +
1

λα
ĥ(λ)

= (λα I − AE−1)−1[x0 − g(x)] + (λα I − AE−1)−1ĥ(λ)

=
∫ ∞

0
e−λαsT(s)[x0 − g(x)]ds +

∫ ∞

0
e−λαsT(s)ĥ(λ)ds,

where (λα I − AE−1)−1 =
∫ ∞

0 e−λαsT(s)ds. Consider the one-side stable probability density
function

ξα(θ) =
1
π

∞

∑
n=1

(−1)n−1θ−αn−1 Γ(nα + 1)
n!

sin(nπα), θ ∈ (0,+∞),

whose Laplace transform is given by∫ ∞

0
e−λθξα(θ)dθ = e−λα

, α ∈ (0, 1).

A similar argument as in [2] shows that

Ex̂(λ) =
∫ ∞

0
e−λt

∫ ∞

0
αθξα(θ)T(tαθ)tα−1[x0 − g(x)]dθdt

+
∫ ∞

0
e−λt

∫ t

0

∫ ∞

0
αθξα(θ)T((t− s)αθ)(t− s)α−1h(s)dθdsdt,

where ξα(θ) =
1
α θ−1− 1

α vα(θ
− 1

α ). This fact implies that

Ex(t) =
∫ ∞

0
αθξα(θ)T(tαθ)tα−1[x0 − g(x)]dθ

+
∫ t

0

∫ ∞

0
αθξα(θ)T((t− s)αθ)(t− s)α−1h(s)dθds.

Thus, we obtain

x(t) = tα−1TE(t)[x0 − g(x)] +
∫ t

0
(t− s)α−1TE(t− s)h(s)ds,

where
TE(t) = E−1

∫ ∞

0
αθξα(θ)T(tαθ)dθ.

Remark 2. When E = I, I : X → X is the identity operator, we have

TI(t) =
∫ ∞

0
αθξα(θ)T(tαθ)dθ, t ≥ 0.
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Therefore, TE(t) = E−1TI(t) for all t ≥ 0.

From the above arguments, we introduce the definition of mild solution of the
system (1) as follows.

Definition 1. For each u ∈ Lp(J, U), pα > 1, a function x ∈ C1−α(J, X) is called a mild solution
of the system (1) if I1−α

t (Ex(t))|t=0 + g(x) = x0 and

x(t) = tα−1TE(t)[x0 − g(x)] +
∫ t

0
(t− s)α−1TE(t− s)[ f (s, x(s)) + Bu(s)]ds, t ∈ J′. (3)

For the operator family {TE(t)}t≥0, we have the following lemma.

Lemma 1. Let the assumptions (A1)–(A3) hold. Then {TE(t)}t≥0 has the following properties:
(i) For fixed t ≥ 0, TE(t) is a linear and bounded operator, i.e., for any x ∈ X,

‖TE(t)x‖ ≤ M‖E−1‖
Γ(α)

‖x‖.

(ii) {TE(t)}t≥0 is continuous in the uniform operator topology for t ≥ 0.
(iii) {TE(t)}t≥0 is compact.

Proof. From Proposition 3.1 of [2] and Remark 2, it is easy to verify that (i) holds. By virtue
of the definition of the operator T(t)(t ≥ 0) and the Lebesgue dominated convergence
theorem, we can deduce (ii). Next, we prove (iii). For any r > 0, x ∈ X with ‖x‖ ≤ r,
we have

‖TI(t)x‖ ≤ αM
∫ ∞

0
θξα(θ)dθ‖x‖

≤ αM
Γ(α + 1)

‖x‖

≤ Mr
Γ(α)

.

This fact means that TI(t) maps bounded subset of X into the bounded set. Then E−1TI(t)
maps the bounded subset of X into relatively compact set due to the compactness of E−1.
Thus, {TE(t)}t≥0 is compact.

Definition 2. Let K f (b) = {x(b) : x be a mild solution of the system (1) for some u ∈ Lp(J, U)}.
If K f (b) = X, the system (1) is said to be approximate controllability on J.

We consider the linear fractional control system corresponding to (1) in the form{ LDα
t (Ex(t)) = Ax(t) + Bu(t), t ∈ J′,

I1−α
t (Ex(t)) = x0.

(4)

Define two operators Πb
0 and R(ε, Πb

0) by

Πb
0 =

∫ b

0
(b− s)α−1TE(b− s)BB∗T∗E(b− s)ds,

R(ε, Πb
0) = (εI + Πb

0)
−1, ε > 0,

where B∗ and T∗E(t) denote the adjoint operators of B and TE(t), respectively. Then, Πb
0 is a

linear operator. From [14], we obtain the following result.
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Lemma 2. The following conditions are equivalent:
(i) The linear fractional control system (4) is approximately controllable on J.
(ii) The operator Πb

0 is positive, that is, 〈x∗, Πb
0x∗〉 > 0 for all nonzero x∗ ∈ X∗.

(iii) For any x ∈ X, ‖εR(ε, Πb
0)x‖ → 0 as ε→ 0+.

3. Existence and Approximate Controllability

In order to study the approximate controllability of the fractional control system (1),
we first investigate the existence of solutions for the following integral system

x(t) = tα−1TE(t)[x0 − g(x)] +
∫ t

0 (t− s)α−1TE(t− s)[ f (s, x(s)) + Bu(s; x)]ds, t ∈ J′,

u(t; x) = B∗T∗E(b− t)R(ε, Πb
0)P(x),

P(x) = xb − bα−1TE(b)(x0 − g(x))−
∫ b

0 (b− s)α−1TE(b− s) f (s, x(s))ds,

(5)

where xb is an arbitrary element in X which is different from x0. By Definition 1, the mild
solution of the system (1) is equivalent to the solution of the integral system (5) for u(·; x) ∈
Lp(J, X).

For this purpose, we make the following assumptions.
(A4) f : J × X → X satisfies the following conditions.
(i) For each x ∈ X, f (·, x) : J → X is strongly measurable, and for every t ∈ J, f (·, x) :

X → X is continuous.
(ii) For any r > 0, there is a function φ ∈ Lp(J,R+), pα > 1 such that

‖ f (t, x)‖ ≤ φ(t)

for any t ∈ J and x ∈ X with ‖x‖ ≤ r.
(A5) g : C1−α(J, X)→ X is continuous and maps bounded subset of C1−α(J, X) into

the bounded set.
(A6) B : U → X is a bounded linear operator, i.e., ∃ MB > 0 such that ‖B‖ ≤ MB.
(A7) ‖R(ε, Πb

0)‖ ≤
1
ε for all ε > 0.

For any r > 0, let Br =
{

x ∈ C1−α(J, X) : ‖x‖C1−α
≤ r

}
. Then Br is a nonempty

bounded, closed and convex subset of C1−α(J, X). By the assumption (A5) we know that
there exists a constant M1 > 0 such that ‖g(x)‖ ≤ M1 for any x ∈ Br. From the assumption
(A6) we deduce that Bu ∈ Lp(J, X) for any u ∈ Lp(J, X) with pα > 1.

Lemma 3. For any F ∈ Lp(J, X), the operator ℵ : Lp(J, X)→ C(J, X), defined by

(ℵF )(·) = ·1−α
∫ ·

0
(· − s)α−1TE(· − s)F (s)ds,

is compact.

Proof. Denote by

(ℵ0F )(t) = t1−α
∫ t

0
(t− s)α−1TI(t− s)F (s)ds.

It follows from Lemma 1 that

‖(ℵ0F )(t)‖ ≤
M

Γ(α)
(

bp− b
pα− 1

)
1− 1

p ‖F‖Lp .

So, owing to the compactness of E−1, we conclude that the set

{(ℵF )(t) = E−1(ℵ0F )(t) : F ∈ Lp(J, X), t ∈ J}

is relatively compact in X.
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Next, we will prove that the set {ℵF : F ∈ Lp(J, X)} is equi-continuous in C(J, X).
For t1, t2 ∈ J with 0 ≤ t1 < t2 < b, we have

‖(ℵF )(t2)− (ℵF )(t1)‖ ≤ ‖(t1−α
2 − t1−α

1 )
∫ t2

0
(t2 − s)α−1TE(t2 − s)F (s)ds‖

+ t1−α
1 ‖

∫ t1

0
[(t2 − s)α−1 − (t1 − s)α−1]TE(t2 − s)F (s)ds‖

+ t1−α
1 ‖

∫ t1

0
(t1 − s)α−1[TE(t2 − s)− TE(t1 − s)]F (s)ds‖

+ t1−α
1 ‖

∫ t2

t1

(t2 − s)α−1TE(t2 − s)F (s)ds‖

=
4

∑
i=1

Ii.

Obviously, if t2 − t1 → 0, we have

I1 = ‖(t1−α
2 − t1−α

1 )
∫ t2

0
(t2 − s)α−1TE(t2 − s)F (s)ds‖

≤ M‖E−1‖
Γ(α)

(
p− 1

pα− 1
)

1− 1
p ‖F‖Lp(t2 − t1)

1−α

→ 0,

I2 = t1−α
1 ‖

∫ t1

0
[(t2 − s)α−1 − (t1 − s)α−1]TE(t2 − s)F (s)ds‖

≤ M‖E−1‖b1−α

Γ(α)

∫ t1

0
[(t2 − s)α−1 − (t1 − s)α−1]F (s)ds

→ 0

and

I4 = t1−α
1 ‖

∫ t2

t1

(t2 − s)α−1TE(t2 − s)F (s)ds‖

≤ M‖E−1‖b1−α

Γ(α)
(

p− 1
pα− 1

)
1− 1

p ‖F‖Lp(t2 − t1)
pα−1

p

→ 0.

Since TE(t) is continuous in the uniform operator topology for t ≥ 0, we obtain that

I3 = t1−α
1 ‖

∫ t1

0
(t1 − s)α−1[TE(t2 − s)− TE(t1 − s)]F (s)ds‖

≤ sup
s∈[0,t1]

‖TE(t2 − s)− TE(t1 − s)‖( bp− b
pα− 1

)
1− 1

p ‖F‖Lp

→ 0

as t2 − t1 → 0. Consequently, we have

‖(ℵF )(t2)− (ℵF )(t1)‖ → 0 (t2 − t1 → 0).

This fact yields that the set {ℵF : F ∈ Lp(J, X)} is equi-continuous in C(J, X). Accord-
ing to the Ascoli–Arzela theorem, the set {ℵF : F ∈ Lp(J, X)} is relatively compact in
C(J, X).
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Theorem 1. Let the assumptions (A1)–(A7) hold. Then, the system (1) has at least one mild
solution on J.

Proof. For any ε > 0, let r > 0 be large enough such that

r ≥ N∗‖xb‖+
M‖E−1‖

Γ(α)
(N∗bα−1 + 1)(‖x0‖+ M1) +

M‖E−1‖
Γ(α)

(
bp− b
pα− 1

)
1− 1

p (‖φ‖Lp(N∗ + 1), (6)

where N∗ = b
ε (

MMB‖E−1‖
Γ(α) )2( p−1

pα−1 )
1− 1

p . Define an operator Φ : Br → C1−α(J, X) by

(Φx)(t) = tα−1TE(t)[x0 − g(x)] +
∫ t

0
(t− s)α−1TE(t− s)[ f (s, x(s)) + Bu(s; x)]ds,

where
u(s; x) = B∗T∗E(b− s)R(ε, Πb

0)P(x),

P(x) = xb − bα−1TE(b)(x0 − g(x))−
∫ b

0
(b− s)α−1TE(b− s) f (s, x(s))ds.

Step 1. We will prove Φ : Br → Br.
For any ε > 0, by assumptions (A4)–(A7) and Lemma 1, we have

‖u(t; x)‖ ≤ MMB‖E−1‖
εΓ(α)

‖P(x)‖, x ∈ Br, t ∈ J′

and

‖P(x)‖ ≤ ‖xb‖+
M‖E−1‖bα−1

Γ(α)
(M1 + ‖x0‖) +

M‖E−1‖
Γ(α)

(
bp− b
pα− 1

)
1− 1

p ‖φ‖Lp , x ∈ Br.

Together this fact with (6), for any ε > 0, we have

t1−α‖(Φx)(t)‖ ≤ ‖TE(t)[x0 − g(x)]‖+ t1−α‖
∫ t

0
(t− s)α−1TE(t− s)[ f (s, x(s)) + Bu(s)]ds‖

≤ M‖E−1‖
Γ(α)

(‖x0‖+ M1) + b1−α M‖E−1‖
Γ(α)

∫ t

0
(t− s)α−1(φ(s) + MB‖u(s)‖)ds

≤ M‖E−1‖
Γ(α)

(‖x0‖+ M1) +
M‖E−1‖

Γ(α)
(

bp− b
pα− 1

)
1− 1

p (‖φ‖Lp + MB‖u‖Lp)

≤ N∗‖xb‖+
M‖E−1‖

Γ(α)
(N∗bα−1 + 1)(‖x0‖+ M1)

+
M‖E−1‖

Γ(α)
(

bp− b
pα− 1

)
1− 1

p ‖φ‖Lp(N∗ + 1)

≤ r.

Thus, ‖Φx‖C1−α
= sup

t∈J
t1−α‖(Φx)(t)‖ ≤ r, which implies Φ : Br → Br.

Step 2. Φ : Br → Br is continuous.
Let {xn} ⊂ Br with xn → x as n→ ∞. From the continuity of f and g, we have

f (t, xn(t))→ f (t, x(t)), t ∈ J

and
g(xn)→ g(x)

as n→ ∞. Since

‖(t− s)α−1[ f (s, xn(s))− f (s, x(s))]‖ ≤ 2(t− s)α−1φ(s) ∈ L1(J,R+),
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it follows from the Lebesgue dominated convergence theorem that

t1−α‖(Φxn)(t)− (Φx)(t)‖

≤ ‖TE(t)(g(xn)− g(x))‖+ b1−α M‖E−1‖
Γ(α)

∫ t

0
(t− s)α−1‖ f (s, xn(s))− f (s, x(s))‖ds

→ 0 (n→ ∞).

Hence,
‖Φxn −Φx‖C1−α

→ 0

as n→ ∞ and Φ : Br → Br is continuous.
Step 3. The set {Φx : x ∈ Br} is relatively compact in C1−α(J, X).
In order to prove the relative compactness of {Φx : x ∈ Br} in C1−α(J, X), we prove

that the set {·1−αΦx(·) : x ∈ Br} is relatively compact in C(J, X).
Denote by

(Φ1x)(t) = TE(t)(x0 − g(x)), t ∈ J

and

(Φ2x)(t) = t1−α
∫ t

0
(t− s)α−1TE(t− s)[ f (s, x(s)) + Bu(s)]ds, t ∈ J.

Then for any t ∈ J, we have

t1−αΦx(t) = (Φ1x)(t) + (Φ2x)(t).

It is sufficient to prove that {Φ1x : x ∈ Br} and {Φ2x : x ∈ Br} are relatively compact
in C(J, X).

For any x ∈ Br and t ∈ J, by virtue of

‖TI(t)(x0 − g(x))‖ ≤ M
Γ(α)

(‖x0‖+ M1),

we obtain that {(Φ1x)(t) : x ∈ Br, t ∈ J} is relatively compact in X owing to the compact-
ness of E−1. It is obvious that the set {Φ1x : x ∈ Br} is equi-continuous in C(J, X) because
TE(t) is continuous in the uniform operator topology for t ≥ 0. Hence, it follows from the
Ascoli–Arzela theorem that the set {Φ1x : x ∈ Br} is relatively compact in C(J, X).

By assumptions (A4) and (A6), we know that

f (t, x(t)) + Bu(t) ∈ Lp(J, X).

By Lemma 3, the set {Φ2x : x ∈ Br} is relatively compact in C(J, X). Consequently,
the set {Φx : x ∈ Br} is relatively compact in C1−α(J, X).

Hence, Φ is completely continuous in C1−α(J, X). By the Schauder fixed point theorem,
Φ has at least one fixed point in Br, which is the mild solution of the system (1).

Remark 3. In [15], Lian et al. proved the existence of mild solutions of fractional evolution
equations under the assumption that the nonlocal function g is continuous, uniformly bounded and
satisfies some other conditions. In [2], Zhou et al. investigated the existence of mild solutions of
fractional evolution equations when the nonlocal function g is Lipschitz continuous or completely
continuous. In our Theorem 1, we only assume that the nonlocal function g is continuous and maps
bounded subset into bounded set, without the Lipschitz continuity and the complete continuity
and any other extra conditions we obtain the existence of mild solutions of the fractional evolution
Equation (1). Hence, Theorem 1 greatly extends the main results in [2,15].

If the assumptions (A4) and (A5) are replaced by the following conditions:
(A4)′ f : J × X → X satisfies the following conditions.
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(i) For each x ∈ X, f (·, x) : J → X is strongly measurable, and for every t ∈ J, f (·, x) :
X → X is continuous.

(ii) There exists a function ψ ∈ Lp(J,R+), pα > 1 and a constant ρ > 0 such that

‖ f (t, x)‖ ≤ ψ(t) + ρt1−α‖x‖, t ∈ J, x ∈ X.

(A5)′ g : C1−α(J, X)→ X is continuous and there exists a constant M2 > 0 such that
‖g(x)‖ ≤ M2 for any x ∈ C1−α(J, X).
then by Theorem 1 we can obtain the following existence theorem.

Theorem 2. Let the assumptions (A1)–(A3), (A4)′, (A5)′, (A6) and (A7) hold. Then the
system (1) has at least one mild solution in C1−α(J, X).

Proof. It is clear that (A5)′ ⇒ (A5) and (A4)′ ⇒ (A4) with φ(·) = ψ(·) + rρ·1−α ∈
Lp(J, X) for any r > 0 and x ∈ Br. Therefore, by Theorem 1 we can prove that the system
(1) has a mild solution x ∈ C1−α(J, X).

Now, we state and prove the approximate controllability of the fractional control
system (1).

Theorem 3. Let the conditions (A1)–(A3), (A4)′′, (A5)′ and (A6) be satisfied, where
(A4)′′ f : J × X → X satisfies the following conditions.
(i) For each x ∈ X, f (·, x) : J → X is strongly measurable, and for every t ∈ J, f (·, x) :

X → X is continuous.
(ii) There exist a function ϕ ∈ Lp(J,R+) with pα > 1 such that

‖ f (t, x)‖ ≤ ϕ(t), ∀t ∈ J, x ∈ X.

In addition, the linear fractional control system (4) is approximately controllable on J. Then the
fractional control system (1) is approximately controllable on J.

Proof. It is clear that (A4)′′ ⇒ (A4) and (A5)′ ⇒ (A5). By Lemma 2 we know that the
condition (H7) holds. It follows from Theorem 1 that the system (1) has a mild solution
xε ∈ C1−α(J, X) for every ε > 0, which is expressed by

xε(t) = tα−1TE(t)[x0 − g(x)] +
∫ t

0
(t− s)α−1TE(t− s) f (s, xε(s))ds

+
∫ t

0
(t− s)α−1TE(t− s)BB∗T∗E(b− s)R(ε, Πb

0)
[
xb − bα−1TE(b)(x0 − g(x))

−
∫ b

0
(b− θ)α−1TE(b− θ) f (θ, xε(θ))dθ

]
ds.

In view of I −Πb
0(εI + Πb

0)
−1 = εR(ε, Πb

0), we have

xε(b) = xb − εR(ε, Πb
0)p(xε),

where

p(xε) = xb − bα−1TE(b)(x0 − g(xε))−
∫ b

0
(b− s)α−1TE(b− s) f (s, xε(s))ds.

By the assumption (A5)′, we have

‖bα−1(x0 − g(xε))‖ ≤ bα−1(‖x0‖+ M2).
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Then the set {bα−1TE(b)(x0 − g(xε))} is relatively compact since TE(b) is a compact opera-
tor. There exists a subsequence of {bα−1TE(b)(x0 − g(xε))}, still denoted by itself, and a
function g∗ such that

bα−1TE(b)(x0 − g(xε))→ g∗ (ε→ 0+).

By means of (A4)′′ we have

‖ f (·, xε(·))‖Lp = (
∫ b

0
‖ f (s, xε(s))‖pds)

1
p ≤ ‖ϕ‖Lp .

Hence, the set { f (·, xε(·))} is bounded in Lp(J, X). So there is a subsequence, still
denoted by { f (·, xε(·))}, converges weakly to some f ∗(·) ∈ Lp(J, X), that is,

f (s, xε(s))
w−→ f ∗(s), a.e. s ∈ J

as ε→ 0. By Lemma 3 and the Lebesgue dominated convergence theorem, we can obtain

∫ b

0
(b− s)α−1TE(b− s) f (s, xε(s))ds→

∫ b

0
(b− s)α−1TE(b− s) f ∗(s)ds

as ε→ 0. Denote by

h = xb − g∗ −
∫ b

0
(b− s)α−1TE(b− s) f ∗(s)ds.

Then by the definition of p(xε), we obtain that

p(xε)→ h (ε→ 0).

Consequently, we have

‖xε(b)− xb‖ = ‖εR(ε, Πb
0)p(xε)‖

= ‖εR(ε, Πb
0)(p(xε)− h)‖+ |εR(ε, Πb

0)h‖
→ 0 (ε→ 0).

By Definition 2, the fractional control system (1) is approximately controllable on J.

4. An Example

Consider the Sobolev-type partial differential equation with Riemann-Liouville frac-
tional derivatives

LD
3
4
t [(I − ∂2

∂y2 )x(t, y)] = ∂2

∂y2 x(t, y) + e−3t
√

sin x(t,y)
3+|x(t,y)| + u(t), (t, y) ∈ (0, 1]× [0, π],

x(t, 0) = x(t, π) = 0, t ∈ [0, 1],

I1−α
0+ [(I − ∂2

∂y2 )x(t, y)]|t=0 +
m
∑

i=1
ci

3
√

sin(t1−αx(t, y)) + 7 = x0(y),

(7)

where ci > 0, i = 1, 2, · · · , m are given positive constants.
Let X = U := L2[0, π]. Denote D(A) = D(E) := {x ∈ X : x, x′ are absolutely

continuous, x′′ ∈ X and x(t, 0) = x(t, π) = 0}. We define two operators A : D(A) ⊂ X →
X and E : D(E) ⊂ X → X by

Ax =
∂2

∂y2 x, x ∈ D(A); Ex = (I − ∂2

∂y2 )x, x ∈ D(E).
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Let en(y) =
√

2
π sin ny, n ∈ N be the orthonormal set of eigenvectors of A. By [4,16],

we have
Ax = −Σ∞

n=1n2〈x, en〉en, x ∈ D(A)

and
Ex = Σ∞

n=1(1 + n2)〈x, en〉en, x ∈ D(E).

This implies, for any x ∈ H, that

E−1x = Σ∞
n=1

1
1 + n2 〈x, en〉en,

AE−1x = Σ∞
n=1
−n2

1 + n2 〈x, en〉en

and

T(t)x = Σ∞
n=1e

−n2

1+n2 t〈x, en〉en,

where T(t)x = eAE−1tx, t ≥ 0. Then E−1 is a linear operator which is compact and
‖E−1‖ ≤ 1. Hence,

TE(t) =
3
4

∫ ∞

0
E−1θξ 3

4
(θ)T(t

3
4 θ)dθ

with
‖TE(t)x‖ ≤ 1

Γ( 3
4 )
‖x‖,

where

ξ 3
4
(θ) =

1
π

∞

∑
n=1

(−1)n−1θ−
3
4 n−1 Γ( 3

4 n + 1)
n!

sin(
3
4

nπ), θ ∈ (0,+∞).

Let x(t)(y) = x(t, y). Denote

f (t, x(t))(y) =
e−3t

√
sin x(t, y)

3 + |x(t, y)|

and

g(x)(y) =
m

∑
i=1

ci
3
√

sin(t1−αx(t, y)) + 7.

Then the problem (7) can be rewritten as the abstract control system (1). Moreover, the

assumptions (A1)–(A6) are fulfilled with ‖ f (t, x)‖X = 1
3 and ‖g(x)‖X ≤ 2

m
∑

i=1
ci. If the lin-

ear system corresponding to (7) is approximately controllable on [0, 1], then by Theorem 3,
the fractional partial differential equation of (7) is approximately controllable on [0, 1].

5. Conclusions

In this paper, with the aid of the compactness of the operator E−1, we prove the
existence of mild solutions of the fractional evolution system (1) without the compactness
of operator semigroup. The Lipschitz continuity and the compactness of the nonlocal
function g are not needed in our main results. Under the assumption that the associate
linear control system (4) is approximately controllable, the approximate controllability of
the fractional evolution system (1) is also studied.
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