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Abstract: In this work, using calculations based on the density functional theory, molecular dynamics,
non-equilibrium Green functions method, and Monte Carlo simulation, we study electronic and
phonon transport in a device based on quasi-fractal carbon nitride nanoribbons with Sierpinski
triangle blocks. Modifications of electronic and thermal conductance with increase in generation g
of quasi-fractal segments are estimated. Introducing energetic disorder, we study hopping electron
transport in the quasi-fractal nanoribbons by Monte Carlo simulation of a biased random walk
with generalized Miller–Abrahams transfer rates. Calculated time dependencies of the mean square
displacement bear evidence of transient anomalous diffusion. Variations of anomalous drift-diffusion
parameters with localization radius, temperature, electric field intensity, and energy disorder level are
estimated. The hopping in quasi-fractal nanoribbons can serve as an explicit physical implementation
of the generalized comb model.

Keywords: quantum fractal; carbon nitride; density functional theory; anomalous diffusion; hopping;
Monte Carlo simulation; comb model

1. Introduction

The dimension of the electronic quantum system largely determines its properties.
Particularly, in one-dimensional systems, electrons form the Luttinger liquid [1], and in
two-dimensional systems, the quantum Hall effect is observed [2]. Little is known about
the behavior of electrons in nanosystems of fractional dimension [3]. Recent works [3–5]
on the synthesis of artificial molecular systems with quasi-fractal geometry provide new
opportunities for experimental study of electronic properties in fractal atomic systems.
The molecular quasi-fractal in the form of Sierpinski triangle was obtained in [5] by self-
assembly of organic molecules by halogen bonds, hydrogen bonds, covalent bonds, and
coordination interactions of metal–organic compounds on the surface. The resulting struc-
ture contains pores of different sizes in one triangular block and, according to forecasts
in [5], it should have unique optical, magnetic, and mechanical properties.

In works [6–8], by means of the first principles calculations and semi-empirical meth-
ods, electronic properties of fractional-sized molecular systems were studied. In [8], quan-
tum transport in the Sierpinski fractal triangles built on a graphene sheet is examined within
the Hubbard model. Significant differences in the properties of structures with “zigzag”
and “armchair” edges were found, similar to the situation with nanoribbons, quantum dots,
or anti-dots. Sierpinski triangles with zigzag edges are characterized by a large proportion
of boundary states which causes instability with respect to spin polarization. On the con-
trary, fractals with armchair edges remain balanced on spin. In both cases, the triangles
are characterized by a large energy gap leading to pronounced optical absorption in the
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visible range. It has been shown that the distribution of energy levels becomes self-similar
for fractal sets of later generations. In [9], the authors suggested a fractal Kronig–Penney
model describing the quantum behavior of a particle in a one-dimensional fractal lattice.
In [10], the properties of plasmon transport in fractal Sierpinski carpets were experimentally
examined. The observed mean squared displacements and the Polia numbers provided
evidence for anomalous diffusion of plasmons in considered carpets. The authors of [10]
related the critical point of transition from normal to anomalous transport with fractal
geometry parameters.

Diffusion on fractals was actively studied in the 80–90s of the 20th century. In the case
of quantum transport in fractal nanosystems, the wave nature of particles or quasiparticles
(electrons, holes, phonons, excitons, etc.) is of decisive importance. In review [11], within
the framework of the concept of fractons, the problems of propagation of elastic waves in
fractal lattices and the problem of multiple scattering by fractal aggregates are considered.
In these problems, the authors discover scale-invariant spectra of excitations of the medium
observed during wave processes. A recent paper [12] proposes a fractal regularized long-
wave equation describing waves in shallow water under a non-smooth boundary with
a fractal structure. The solitary wave solution was obtained using the fractal version of
the variational method. Several experiments and numerical simulations have shown that
disorder in nanosystems can be of fractal (self-similar) type [13–18]. In these works, the
studied fractal structures were assumed to be random. In the present paper, we consider
atomistic systems with deterministic quasi-fractal geometry defined below.

Recent works [3–5] have shown that molecular fractals are not exotic structures, but
real systems whose geometry can be controlled. Na Li et al. [4] implemented the packing of
molecular Sierpinski triangles into one-dimensional crystals. The obtained structures were
studied by means of low-temperature scanning tunneling microscopy. The states described
by electron wave functions of fractional dimension were observed. The wave functions
delocalized over the Sierpinski structure are spread out on self-similar parts at higher
energies, and this large-scale invariance can also be recovered in the reciprocal space.

We consider monolayers and nanoribbons constructed from quasi-fractal triangles.
The geometry of our nanoribbons is similar to the geometry of experimental structures
synthesized in [4], but we use carbon nitride triangles as structural blocks. Recently,
nitrogen and carbon compounds with high N:C ratio and graphite polymer structure have
been actively explored as potential next-generation materials for energy conversion and
storage devices, as well as for optoelectronic and catalytic applications [19]. Among them,
popular materials consist of C- and N-containing heterocycles with heptazine or triazine
rings bound via sp2-linked nitrogen atoms N(C)3 or –NH– groups [19,20] (Figure 1). In
some works (see, e.g., [21]), the authors consider structures where the central nitrogen atom
in a heptazine triangle is substituted with a carbon atom (Figure 1c). Fractal molecular
system can be obtained by creating triangular pores (by excluding the corresponding
fragments), as shown in the figure. The shaded areas denote the excluded fragments to
obtain a quasi-fractal monolayer of generation g = 3 with pores of three different sizes.

(a)
(b)

Figure 1. Triazine-based structure C3N4 (a) and poly-heptazine structure (tri-s-triazine) (b). Panel (c)
shows the monolayer where the central nitrogen atom in a heptazine triangle is substituted with a
carbon atom. Fractal molecular system can be obtained by creating triangular pores (by excluding
the corresponding fragments), as shown in the figure. Shaded areas indicate these fragments.
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In our work, quasi-fractal atomistic systems based on existing 2D materials are stud-
ied. The monolayers are subject to the DFT optimization procedure. Then, we calculate
electronic properties of quasi-fractal monolayers and discuss changes of the properties
with generation g of quasi-fractal blocks. Further, we construct quasi-fractal carbon nitride
nanoribbons and study electron and phonon transport in a related device with attached
graphene ribbons as electrodes. In the final part of the work, using the Monte Carlo
simulation method, we investigate the properties of hopping transport in quasi-fractal
nanoribbons and discuss the observed regimes of anomalous advection-diffusion.

2. Electronic Properties of Quasi-Fractal Carbon Nitride Monolayers
2.1. Materials and Methods

First, we consider quasi-fractal carbon nitride monolayers. These monolayers are
translationally symmetric and characterized by hexagonal crystal lattice. The unit cell
contains a quasi-fractal Sierpinski triangle of a certain generation g obtained by means
of the procedure demonstrated in Figure 1c. We optimize the structure of these mono-
layers and then calculate their electronic properties. Optimization is performed by the
DFT method implemented in Quantum ATK software [22]. We used the PseudoDojo pseu-
dopotential [23] with the linear combination of atomic orbitals (LCAO) basis sets. The
exchange correlation potential is described by the generalized gradient approximation
(GGA) with Perdew–Burke–Ernzerhof, (PBE) functional [24]. Optimization of the structures
is carried out while the atomic Hellman–Feynman force exceeded 0.01 eV/Å. Quite large
vacuum region of 20 Å was used to eliminate the boundary effects. The density mesh
cutoff of 105 Ha (1 Ha = 27.21 eV) was used and the 7 × 7 × 1 set of k points was taken
for the geometric optimization of monolayers and for calculation of their properties. The
Monkhorst–Pack method [25] was used to generate k points in the Brillouin zone.

Sizes of primitive unit cells of quasi-fractal carbon nitride monolayers after optimiza-
tion are listed in Table 1 for different generation g. The last column contains data on
deformation ε of monolayers relative to the original 2d material (g = 1). As g increases, the
monolayers shrink slightly. The geometry of elementary cell and the arrangement of atoms
in it for four generations g are shown in Figure 2.
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Figure 2. Band structures of quasi-fractal lattices for g = 1 (a), g = 2 (b), g = 3 (c), g = 4 (d).
Corresponding primitive unit cells are shown in figures (e–h).
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Table 1. Size of unit cell, bandgaps and deformation of quasi-fractal carbon nitride monolayers.

Generation a, Å Direct BG, meV Indirect BG, meV ε, %

g = 1 7.1316 0 0 0
g = 2 13.9941 66.5 66.5 −1.89
g = 3 27.9662 6.70 6.34 −1.96
g = 4 55.9194 2.12 1.73 −1.99

2.2. Band Structures

Calculated band structures for quasi-fractal carbon nitride monolayers are shown
in Figure 2. Direct and indirect bandgaps are listed in Table 1. From these data, one can
conclude that monolayers with g = 2, 3, and 4 are narrow-gap semiconductors. With the
increase of g for the elementary blocks of the crystal structure, the flattening of branches
is observed and, consequently, the increase in effective masses of charge carriers takes
place. Individual zones for large g become simple lines of the molecular system due to
the localization of charge carriers in fragments of the quasi-fractal blocks. This fact is
consistent in some sense with the phenomenon of electron superlocalization [26]. Lévy
and Souillard [26] showed that impurity quantum states and localized Anderson states
exhibit superlocalization in fractal media, that is, their wave function decays with distance
faster than exponentially. The superlocalization theory was suggested for application to
amorphous or porous materials [26] with random fractal structure.

Changes in the bandstructures and density of electronic states will certainly be reflected
in the modification of optical properties. Particularly, the fractal structure of mesoscopic
and macroscopic electromagnetic wave receivers is often associated with the advantage of
multi-band and broadband at a relatively smaller size (see, e.g., [27,28]). It is of particular
interest to calculate the optical properties of atomistic quasi-fractal structures.

2.3. Absorption Spectra and Optical Conductivity

To study the absorption spectra and optical conductivity, the frequency-dependent
complex dielectric function is calculated,

εr(ω) = 1 + χ(ω), (1)

where ω is the photon frequency. The dielectric susceptibility χ(ω) is calculated within
the framework of the Kubo–Greenwood formalism implemented in the QuantumATK
package [22]:

χij(ω) = − e2h̄4

m2ε0 Aω2 ∑
nm

f (Em)− f (En)

Enm − h̄ω− iΓ
πi

nmπ
j
mn, (2)

where A is area, f is the Fermi–Dirac function, Γ = 0.1 eV is the broadening, πi
nm is the i-th

dipole matrix element between the states n and m. Local field effects are not included in the
calculated permitivities and absorption spectra. The absorption coefficient is determined
by the real part ε1 and the imaginary part ε2 of the dielectric function, and is calculated by
the following formula

α(ω) =
√

2
ω

c

(√
ε2

1(ω) + ε2
2(ω)− ε2

1(ω)

)1/2
. (3)

Optical conductivity is determined as follows

σ = −iωε0χ(ω).

Figure 3 demonstrates the absorption spectra of quasi-fractal monolayers for g = 1, 2, 3,
and 4. As is mentioned above, fractal systems are often characterized by a wider absorption
frequency range (see, e.g., [27,28]). The absorption spectra in Figure 3 indicate contrary
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behavior. With increasing g, the absorption coefficient decreases, and the corresponding
monolayers are characterized by narrower absorption bands. We suppose that this is related
to the changes in electronic bandstructures and density of states. The spectrum of the quasi-
fractal monolayers transforms from the spectrum of periodic 2d material to the spectrum
of an isolated molecular system due to electron localization in quasi-fractal segments.

0
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�
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g = 4

Figure 3. Absorption spectra of quasi-fractal monolayers for generations g = 1, 2, 3, and 4.

The enhancement of localization for larger g is also reflected in the suppression of
optical conductivity. Figure 4 shows the frequency dependencies of the real and imaginary
parts of the optical conductivity for the investigated quasi-fractal monolayers. As the
generation g increases, the optical conductivity decreases and the nonzero conduction
bands become narrower. The imaginary part of conductivity decreases as well.
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Figure 4. Real (a) and imaginary (b) parts of optical conductivity of quasi-fractal carbon nitride
monolayers for g = 1, 2, 3, and 4.

3. Electron Transmission of Quasi-Fractal Nanoribbons

Nanoribbons or nanotubes can be obtained from the proposed quasi-fractal mono-
layers. In this paper, we consider nanoribbons with geometry similar to the structure
of ribbons obtained experimentally in a recent work [4]. In the cited work, the authors
implemented the packing of molecular Sierpinski triangles into one-dimensional crystals.
The quasi-fractal blocks we use are constructed as described above from a 2D carbon
nitride sheet. We attach graphene nanoribbons (nanoelectrodes) to the corners of our
one-dimensional ribbons with quasi-fractal blocks to calculate electron and phonon trans-
port, and thermolectric properties in the related devices (Figure 5). To calculate electron
and phonon transmission, we use the non-equilibrium Green functions (NEGF) method
implemented in QuantumATK in combination with DFT (LCAO).

The system simulating the device is divided into three regions (left electrode, central
part, and right electrode). The implementation is based on the screening approximation.
Within this approximation, it is assumed that the properties of the left and right electrodes
are described by solving the problem for a periodic electrode cells. The approximation
is valid when the current through a system is small enough that the electrodes can be
characterized by an equilibrium distribution of electrons.
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(a)

(b)

(c)

Figure 5. The geometry of devices based on carbon nitride nanoribbons with the Sierpinski triangle
blocks of generation g = 1 (a), g = 2 (b), and g = 3 (c).

We calculate transmission spectra for nanoribbons with quasi-fractal blocks of three
generations (see Figure 5). Nanoribbons were chosen of similar lengths (about L = 110 Å),
but with a different number of quasi-fractal blocks. The difference in length is related to
the optimization procedure performed for the blocks (see Section 2).

In QuantumATK, the transfer matrix is calculated according to the following formula

Tnm(E, k) = ∑
`

tn`(E, k)t†
`m(E, k),

where tnk is the transfer amplitude from the Bloch state ψn in the left electrode to the Bloch
state ψk in the right electrode. The matrix t† is an Hermitian conjugate. The transmittance
is defined as the trace of the transmission matrix,

T(E, k) = ∑
n

Tnn(E, k).

Let λα be the eigenvalues of the transfer matrix Tnm. From the invariance of the trace
of the matrix:

T(E, k) = ∑
α

λα(E, k),

where λα ∈ [0, 1] are transmission eigenvalues for each spin channel.
The transmission eigenstates are calculated by diagonalizing a linear combination

of Bloch states, ∑n eα,nψn, where eα,n are vectors of the basis diagonalizing the transmis-
sion matrix:

∑
m

Tnmeα,m = λαeα,n.

Figure 6 presents the transmission spectra for devices based on a nitrogen–carbon
quasi-fractal nanoribbon for generations g = 1, 2, and 3. We observe a transition from trans-
mission bands to narrow transmission channels with increase in g. Figure 7 demonstrates
examples of transmission eigenstates in quasi-fractal nitrogen–carbon nanoribbons. These
states correspond to the peaks in the transmission spectra marked with points A, B, C, and
D in Figure 6. The transmission eigenstates are distributed throughout the structure and
take on maximum values at the edges of the quasi-fractal structure.
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Figure 6. Transmission spectra of devices based on a nitrogen–carbon quasi-fractal nanoribbon for
generations g = 1 (a), 2 (b), and 3 (c).
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Figure 7. Visualisation of transmission eigenstates in quasi-fractal carbon nitride nanoribbons. The
states correspond to points A, B, C, and D on the transmission spectra of the quasi-fractal nanoribbon
for generations g = 1 (a), 2 (b), and 3 (c,d). All nanoribbons are located at the same angle (θ = 2π/3).
Angular inclination θ = 0 corresponds to the top view, the rotation axis passes through the system
center along nanoribbons. The color and height of the surface correspond to the eigenstate values in
the nanoribbon plane. The color palette is the same for all pictures. Correspondence of transmission
eigenstate values to a certain color is indicated on the palette scale.

4. Thermoelectric Properties

The search for new thermoelectric nanosystems is an important area of research asso-
ciated with possible applications in power generation and cooling systems on nanoscales.
Several studies point to the important role of quasi-one-dimensional geometry in improv-
ing the thermoelectric properties of nanosystems [29,30]. It is interesting to know how
the quasi-fractal geometry of segments affects the thermoelectric characteristics. Here,
we estimate thermoelectric figure of merit for quasi-fractal carbon nitride nanoribbons
considered in the previous section.

The thermoelectric figure of merit ZT determines maximum efficiency of the energy
conversion process in a thermoelectric material. It can be calculated by the expression

ZT =
S2GT

λ
,
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where S is the Seebeck coefficient, G electrical conductivity, T absolute temperature, λ
thermal conductivity, which is equal to the sum of the electron λe and phonon λph ther-
mal conductivity.

The transfer coefficients were calculated using the NEGF-method, DFT, and nonequi-
librium molecular dynamics. We used a model in which the central part (quasi-fractal
nanoribbon) is connected to semi-infinite left and right electrodes (graphene nanoribbons).
QuantumATK [22] calculates the specified thermoelectric coefficients and Peltier coefficient
according to the linear response theory. The following relationships are used

Ge =
dI

dVbias

∣∣∣∣
dT=0

, S = − dVbias
dT

∣∣∣∣
I=0

, λe =
dIQ

dT

∣∣∣∣
I=0

, Π =
IQ

I

∣∣∣∣
dT=0

= SVbias.

Here IQ = dQ/dT is the electronic component of the heat flux. We use DFT method to
calculate electron transmission and the molecular dynamics method to calculate phonon
transmission. The optimized empirical potential ReaxFF [31] is chosen. Previously, similar
computational tools have been successfully applied to a number of carbon and non-carbon
nanoscale systems (see, e.g., [32–34] for details).

Figure 8 shows conductance, thermal conductivity, and thermoelectric figure of merit of
devices based on nitrogen–carbon nanoribbons with molecular quasi-fractal blocks of three
generations. As can be seen from the formula for ZT, an increase in the thermoelectric figure
of merit can be associated, in particular, with a decrease in thermal conductivity with a slight
change in electrical conduction. As the depth g of the quasi-fractal increases, the electrical
conductivity and electron thermal conductivity decrease. As a result, the thermoelectric
figure of merit decreases with increasing g. Thermal conductivity due to phonons does not
behave monotonically with a change of g: λph(E; g = 1) < λph(E; g = 3) < λph(E; g = 2).
The obtained values of the thermoelectric figure of merit are several tenths, and at some
values of chemical potential are close to 1, that for some thermoelectric applications can
be acceptable.
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Figure 8. Conductance (a), thermal conductivity (b), and thermoelectric figure of merit (c) of devices
based on quasi-fractal nitrogen–carbon nanoribbons.
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5. Hopping in Quasi-Fractal Nanoribbons with Energetic Disorder

In this section, we introduce energetic disorder into the considered quasi-fractal
nanoribbons and study hopping electron transport by Monte Carlo simulation of a biased
random walk with Miller–Abrahams transfer rates. Recently, different hopping regimes
have been observed in arrays of graphene quantum dots. In [35], temperature-dependent
electrical measurements for graphene oxide sheets suggest that charge transport occurs via
variable range hopping between intact graphene islands with sizes on the order of several
nanometers. Mott variable range hopping neglects the Coulomb interaction between local-
ized electrons in graphitic domains. At low temperatures, the Coulomb interaction should
be significant and Efros–Shklovskii regime should be observed. Joung et al. [36] have
shown that the low-temperature electron transport properties of chemically functionalized
graphene can be explained as sequential tunneling of charges through a two-dimensional
array of graphene quantum dots and resistance data exhibit Efros–Shklovskii variable
range hopping arising from structural and size-induced disorder.

To perform Monte Carlo simulation of hopping between localized states, we need
to define the distribution of localized states. There are two most popular forms used
for disordered semiconductors. The exponential density of localized states has been sub-
stantiated for amorphous silicon, a-As2Se3 and some other amorphous semiconductors
(see, e.g., [37]). Normal distribution is usually assumed for Gaussian disorder in organic
semiconductors [38]. Lacking evidence for one of these distributions in our nanoribbons,
we assume the exponential distribution of localized states

ρ(ε) = ρ0 exp(−|ε|/ε0).

This distribution leads to ‘heavy-tailed’ distribution of waiting times and subdiffusive
behavior in the dispersive transport model. In our case, the interest is related to the
combined influence of the sojourn times in traps and fractal geometry. Blumen et al. [39]
have shown that for particle diffusion and trapping on fractals with heavy-tailed waiting-
time distributions, the mean squared displacement behaves as 〈r2(t)〉 ∝ tαβ, whereas the
particle decay is algebraic, S(t) ∝ t−α. Exponent α corresponds to power law of waiting
time distribution, and β is related to walk dimension of a fractal.

Compared to the first-principles methods, the hopping model is less time-consuming
for computation and allows considering deep-generation quasi-fractal systems. For our
calculations, we chose ribbons with g = 7. In one cell, there are 10 pairs of blocks in
the form of a Sierpinski triangle of generation g = 7. The site in our hopping model is
associated with a single triangle depicted in Figure 2e. The distance between neighboring
sites is estimated as a distance between central carbon atoms in neighboring triangles. This
distance is equal to d = 7.13 Å. Localization radius and displacements are determined
below in the number of these distances d. Our cell contains 10 blocks along z, each block
contains 2g = 128 elementary triangles (sites) at the edge of a ribbon. The length of our cell
is equal to 2g · 10 · d = 9126.4 Å ≈ 0.9 µm. Therefore, we consider drift and diffusion on
scales from a few nanometers to micron.

Depending on the goal, different boundary conditions can be applied at the cell
boundaries. To determine the time dependencies of the average position and dispersion of
particle coordinate z, we use periodic boundary conditions.

In the nanoribbons under study, the transition between neighboring triangular blocks
along the nanoribbon (the z axis) can occur only along the nodes located at the lateral edges
of the nanoribbon. During random walk on scales much larger than the size of a single
block, the diffusion of charge carriers can be approximately described by the comb model
proposed in [40,41] for transport in low-dimensional percolation clusters. The diffusion
equation for the case of a continuous comb structure was obtained by Arkhincheev and
Baskin [42]. Its solutions, interpretation, and generalizations were considered in a number
of works [43–48]. Advection-diffusion on a comb structure can be interpreted in terms of a
continuous-time random walk (CTRW) model [49,50]. Diffusion in the teeth of the comb (in
our case, in the blocks of nanoribbon) leads to random waiting times. Efficient transport in
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the comb model is provided by transfer along the backbone. The comb model of anomalous
diffusion was generalized by taking into account traps distributed over the structure [46,48],
by introducing fractional Brownian motion [51], fractal geometry [45,47], multidimensional
geometry [52], etc. Assuming the coexistence of two subdiffusion processes—diffusion on a
fractal structure and CTRW with heavy tails, Meroz et al. [53] noticed the subordination of
an ergodic anomalous process to a nonergodic one. The resulting process is non-ergodic—
time-averaged and ensemble-averaged mean-square displacements do not match.

Simulating non-equilibrium hopping transport, we neglect the Coulomb interaction
between localized carriers assuming small concentrations of non-equilibrium charge car-
riers. The probability Wij to hop from an occupied site i to an empty site j with a higher
energy is taken in the generalized Miller–Abrahams form

Wij ∝= Γ0 exp
[
−2(rij/a)ζ − Eij/kT

]
.

Here, a is a localization radius, ζ is a superlocalization exponent, Γ0 is a constant
factor, kT is Boltzmann temperature, Eij = εi − ε j + eErij, εi and ε j energies of sites i and j,
rij = ri − rj. Related localization times are determined as

τi→j = Γ−1
0 exp

(
εi − ε j

kBT
+

eErij

kBT
+ 2
( rij

a

)ζ
)

.

These times are used in generation of a random waiting times set θi→j with exponen-
tial density

pθi→j(t) = τ−1
i→j exp

(
− t

τi→j

)
The hop is realized to site j with minimal value of generated θi→j.
We define energies ε, ε0, Eij, eErij in kT units. At room temperature, 1 kT = 0.0259 eV.

Electric field is defined in kT/(ed) units, where d = 7.13 Å, and e is an electron charge. We
present results for ζ = 1.

Figures 9–11 show time dependencies of average coordinate 〈z〉 and centralized mean
square displacement (MSD) along z-direction for different values of localization radius
(Figure 9), level of disorder ε0 (Figure 10), and different electric field (Figure 11). Parameter
α = kT/ε0. MSD is centralized to the mean position. Displacement is measured in the
amount of d = 7.13 Å; MSD in d2; τ = Γ−1
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Figure 9. Average displacement (a) and centralized mean square displacement (MSD) (b) of hopping
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Figure 11. Average displacement (a) and centralized mean square displacement (MSD) (b) of hopping
in a ribbon with Sierpinski triangle blocks for different values of external electric field E. Other
parameters ε0 = 2 kT, a = 3 d.

Plotting time dependencies on a double logarithmic scale, we observe power laws with
different exponents for different time scales, which indicates transient anomalous diffusion.
For weak electric field, the slopes of MSD in the log–log scale are almost independent of
electric field. Strong electric field can change the long-time asymptotics and can lead to the
superdiffusive regime (Figure 11b). The latter fact is in accordance with results presented
in [54,55].

The mean square displacement for diffusion on fractal (without bias) scales with time
t asymptotically as t2/dw , where the random walk dimension dw is greater than 2 (see,
e.g., [56]). For the Sierpinski triangle dw = ln 5/ ln 2, and dw exceeds its fractal dimension
d f = ln 3/ ln 2. Therefore, for simple diffusion on the Sierpinski triangle, the power law
exponent for MSD vs. time is β = 2/dw ≈ 0.86. We indicate the corresponding slope
in our figures. According to Blumen et al. [39], for diffusion with trapping 〈r2(t)〉 ∝ tαβ.
In the multiple hopping model, α = kT/ε0. Particularly, for the case ε0 = 2 kT, product
αβ = 1/dw = 0.43. For reference, the corresponding power laws are shown in the figures.
It should be noted that the expansion law exponent depends on the electric field, and is
not determined by the simple product of α and β. The influence of energy disorder on the
scaling relations under consideration depends on the localization radius a, the parameter
that was absent in models of diffusion on fractals [56].

Establishing explicit dependencies of the considered scaling exponents on the parame-
ters of hopping model requires a more systematic study involving other fractal structures.
Here, we limited ourselves to the demonstration of transient anomalous diffusion for
hopping in quasi-fractal nanoribbons. We observe variations of anomalous drift-diffusion
parameters with localization radius, electric field intensity, and energy disorder level.
The system under consideration can serve as an explicit physical implementation of the
generalized comb model.
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6. Conclusions

In this work, using calculations based on DFT, MD, NEGF, and Monte Carlo methods,
we study electronic and phonon transport in a device based on a quasi-fractal carbon
nitride nanoribbon with Sierpinski triangle blocks. The geometry of our nanoribbons is
similar to the geometry of experimental structures synthesized in [4], but we use carbon
nitride triangles as structural units. The monolayers and nanoribbons studied in our work
are not fractals in the strict sense. The considered systems contain quasi-fractal elements
constructed by the iteration method for a finite number of iterations (g = 1, 2, 3, 4). We
calculate and analyze the change in the transport properties of nanoribbons with an increase
in the generation g of quasi-fractal elements. Based on these observations, it is possible
to establish a trend in the modification of these properties due to transition to a fractal
structure of nanosystems.

Usually, fractal systems are characterized by a wider absorption frequency range.
Contrary to this, we observe that the absorption bands are constricted for larger g and the
corresponding structures are characterized by a narrower absorption range. This is due to
the fact that, in comparison with macroscopic fractals, in atomistic structures, along with a
change in geometry, the electronic states of the system are modified. The spectrum of the
quasi-fractal system under consideration tends to range from the spectrum of the periodic
2d system to the spectrum of an isolated molecular system.

The obtained values of the thermoelectric figure of merit are several tenths, and at
some values of the energy are close to 1, which indicates the possible use of the considered
nanoribbons for thermoelectric applications, although it should be noted that with an
increase in g, the characteristic values of ZT decrease.

Using the Monte Carlo technique and the Miller–Abrahams relation for transfer rates,
we simulate hopping transport of charge carriers in quasi-fractal nanoribbons. Variations
of anomalous drift-diffusion parameters with localization radius, temperature, electric field
intensity, and energy disorder level are studied. It should be noted that the expansion law
exponent depends on the electric field, and is not determined by the simple product of α
and β. The influence of energy disorder on the time scaling of mean square displacement
depends on the localization radius a, the parameter that was absent in models of diffusion
on fractals. These nanoribbons can be considered as an explicit physical implementation of
the comb model.
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