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Abstract: The aim of this article is to consider a class of neutral Caputo fractional stochastic evolution
equations with infinite delay (INFSEEs) driven by fractional Brownian motion (fBm) and Poisson
jumps in Hilbert space. First, we establish the local and global existence and uniqueness theorems of
mild solutions for the aforementioned neutral fractional stochastic system under local and global
Carathéodory conditions by using the successive approximations, stochastic analysis, fractional
calculus, and stopping time techniques. The obtained existence result in this article is new in the
sense that it generalizes some of the existing results in the literature. Furthermore, we discuss the
averaging principle for the proposed neutral fractional stochastic system in view of the convergence
in mean square between the solution of the standard INFSEEs and that of the simplified equation.
Finally, the obtained averaging theory is validated with an example.

Keywords: fractional neutral system; successive approximations; fractional Brownian motion; Poisson
jumps; fractional calculus; averaging principle

1. Introduction

The subject of fractional calculus has received considerable critical attention due to its
applications in widespread areas of engineering and science. It is significant and successful
in describing systems which have long-term memory and long-range interaction [1-3]. The
theory of fractional differential Equations (FDEs) is a major area of interest within the field
of fractional calculus. Evidence suggests that different kinds of FDEs appear frequently
as the mathematical modeling of systems in various engineering and scientific disciplines,
such as solid mechanics [4], physics [5,6], finance [7], chemistry [8], physiology [9] and
electromechanics [10]. Mostly, the FDEs models seem to be more regular with the real
events compared with the integer-order models, because the fractional integrals and deriva-
tives allow the explanation of the hereditary and memory properties inherent in various
processes and materials [11,12]. There are a large number of published studies (e.g., [13-17],
and their cited references) that describe the existence of solutions for FDEs.

In light of recent events in the theory of dynamical systems, it is becoming extremely
difficult to ignore the existence of random fluctuations. Recently, fractional stochastic differ-
ential equations (FSDEs) have been attracting considerable interest due to their successful
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and potential applications [18-20]. Many results have been investigated on the existence
and uniqueness problem for various kinds of fractional stochastic systems, see [21-34] and
the references therein. Most studies of dynamical systems depend not only on current
and past states but also involve derivatives with delays, as well as the function itself.
This motivates people to focus on the theory of neutral functional differential systems,
see [35,36]. However, along with this growth in chemical engineering models, as well as
the aeroelasticity theory, there is increasing concern over the neutral fractional stochas-
tic differential systems. For example, Cui and Yan [37] proved the existence result for
fractional neutral stochastic integro-differential equations with infinite delay. Alnafisah
and Ahmed [38] proved the existence and uniqueness of mild solutions for neutral delay
Hilfer fractional integro-differential equations perturbed with fBm. Rajivanthi et al. [39]
derived the existence and optimal control for delay neutral fractional stochastic differential
equations (NFSDEs) driven with Poisson jumps by using successive approximations under
non-Lipschitz condition. Dineshkumar et al. [40,41] derived the approximate controllabil-
ity for Hilfer fractional neutral stochastic delay integro-differential equations driven by
Brownian motion.

However, the averaging method is a powerful tool for studying various kinds of
nonlinear dynamical systems, since it permits the simplified averaged autonomous system
to replace the original complex time-varying system, thus giving a reasonable way for
reduction in complexity. The key to establishing an averaging principle is to ascertain the
conditions under which the solution for averaged system can approximate the solution
for original system. Starting with the work of Khasminskii [42], averaging principles for
SDEs and FSDEs have been developed and applied widely [43-54]. On the other hand,
the averaging principle for NFSDEs still in its infancy. For example, Liu and Xu [55]
derived the averaging principle for impulsive NFSDEs driven by Brownian motion under
non-Lipschitz condition. Shen et al. [56] proved the averaging principle for NFSDEs with
variable delays driven by Lévy noise. Xu and Xu [57] obtained the averaging theory for
Lipschitz NFSDEs driven by Poisson jumps.

Motivated by the above studies, we consider the following INFSEEs driven by fBm
and Poisson jumps in Hilbert space:

DPly(t) — F(t,y)] = Aly(t) — f(t,y)] +T; P [g<s,ys>d””§<”
+fzh(tr1/t/77)N(dt,d77)],t € 0,1, e))

y(t) =o(t) € p, t<O,

where Dtﬁ , 0 < B < 1is the Caputo fractional derivative of g-order. T z_ﬁ (.) denotes the
1 — B order fractional integral. Let A : D(A) C X — X’ is the infinitesimal generator of a
solution operator, {Tg(t) };>0, defined on a Hilbert space, X', endowed by inner product,
(.,.), and norm, ||.||x. wH(t) is a fBm with Hurst parameter, 1/2 < H < 1, defined on
a real separable Hilbert space, ), endowed with inner product, (.,.), and norm, |.|y.
N(dt,dy) = N(dt,dy) — A(dy)dt represents the compensated Poisson random measure
that is independent of w!!. Assume that f: [0,T] x p — X, g:[0,T] x p — L3(V, X),
h:[0,T] x p x Z — X are nonlinear mappings. Let p = o((—0c0,0]; L2(Q, X)) denote
the family of all Fy-measurable bounded continuous functions, ¢ : (—c0,0] — L?(Q, X),
equipped with the norm, ||0||7 = sup_._p(l0(0)]*. Let pg_-o((—oo, 0]; X) denote the
family of all almost surely bounded, Fy-measurable, p-valued random variables. Let B; be
a Banach space of all F;-adapted processes, o(t, w), which are almost surely continuous in
t for fixed w € ) with the following norm:

Nl—=

lolls, = ( sup loll?)?.

SIS
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Suppose y; = y(t +6), —co < 6 < 0 can be regarded as a p-valued stochastic process.
The initial value ¢ = {0(f) : —o0 < 6 < 0} is an Fp-measurable, valued random variable
independent of w" and Poisson process, N, with finite second moment.

Recently, Ramkumar et al. [58] utilized the existence and optimal control for NFSEEs (1)
with finite delay driven by fBm and Poisson jumps under non-Lipchitz conditions. We ob-
serve that the non-Lipchitz conditions do not conclude Carathéodory conditions in general.
However, the Carathéodory conditions may derive Lipschitz and non-Lipschitz conditions.
Generally speaking, this is an irreversible process. If the existence and uniqueness problem
of INFSEEs (1) under Carathéodory conditions is proved, then we may obtain a much
bigger degree of freedom for choosing drift and diffusion coefficients in applications. So,
existence and uniqueness problem of INFSEEs driven by fBm and Poisson jumps under
Carathéodory conditions is desired. However, local and global existence and uniqueness
theorems, as well as averaging principle for solutions of INFSEEs under local and global
Carathéodory type conditions, have not been considered so far.

The main contributions of this paper are summarized as follows:

* In view of the research gaps and pressing needs, the infinite delays are taken into
consideration, which makes the underlying model and the obtained results more
general and applicable.

*  Thelocal and global existence and uniqueness results for Equation (1), under local and
global Carathéodory conditions by means of successive approximation and stopping
time techniques, are rarely available in the literature, which is the key inspiration to
our research work in this article and seems to be new to our knowledge.

* By using stochastic analysis techniques, we analyzed the averaging results under
global Carathéodory conditions for the proposed model (1).

A brief outline of this article is arranged as follows. Section 2 introduces some needed
notions and preliminaries about fBm and fractional calculus. In Section 3, we discuss the
local and global existence and uniqueness results for system (1) under local and global
Carathéodory conditions. In Section 4, we extend the averaging principle for (1) under
global Carathéodory conditions. Finally, Section 5 shows an example to illustrate the utility
of our obtained averaging theoretical results.

2. Preliminaries

In the present section, some elementary notations and preliminaries are reviewed.
Assume (Q), F,P) is a filtered probability space with Fy contains all P-null sets. The
fBm wf = {wf(t)}o<i<r, H € (},1) is a centered Gaussian process with the following
variance—covariance function:

Ky (u,v) = E(w (u)w (v)) = %(uZH +?H — Ju— o), u,0 € (—o0,00)

and the following second partial derivative [59]:

Ky
Judv

= (2H -2)H|u —v|*#2, H > %

so, we can write the following :
u v
Ky (u,v) = (2H — Z)H/ / luy — v1|*H 2 duq doy.
0 Jo

For any real and separable Hilbert spaces, X and ), assume £(), X) is the space of
all bounded linear operators from ) to X. Let Q € £(), X') be the operator defined by
Qe,, = Aye, with finite trace rrQ = Y 5”1 Ay < oo; for A, > 0 (n = 1,2,...) are non-negative
real numbers and {e, } is a complete orthonormal basis in ). The infinite dimensional fBm
on Y is defined as follows:
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[ee]

w(t) =wg(t) = Y VAueaw) (),

n=1

with real independent fBm’s wl. Construct the space £ := £3(), X) of all Q-Hilbert
Schmidt operators, { : Y — X, equipped with the inner product (¢, ) = Yoo 1 (pen, Cen)
and the following norm:

1212y = X IV Anenll? < o
n=1

For any ¢(s) € £L3(Y, X), s € [0, T), such that Y5, ||R*(,I>Q%en||2£0 < 00, the Weiner
2

integral of ¢, with respect to w'!, is defined by the following:
t o ot
| ot s) = Y [ VAup(s)endnf (). @)
n=1

Lemma 1. Ref. [60] For any ¢ : [0,T] — L3(Y, X) with fOT [§(s)[|%.0ds < oo, satisfying
2
Equation (2), what follows is satisfied:

2

E| [ p(s)i (5

We refer to [61-65] for more details on the stochastic integral with respect fBm.

Definition 1. Ref. [66,67] The B-order fractional integral of Riemann—Liouville sense for g :
[0, T] — X is expressed by the following:

]fg(t) = 1“(1,8) /Ot(t —5)P1g(s)ds, B> 0.

Definition 2. Refs. [68] The Caputo B-order derivative with 0 lower bound for g : [0, T] — X
is expressed as follows:

k
Dfg(t) = r(kl— B) /ot (t _gs>(21kds =Ji g, pro o0

For further discussion on the fractional Riemann-Liouville and Caputo derivatives,
refer to [66—69].

Next, a two parameter Mittag—Leffler function is defined by the following series
expansion:

0 wk 1 AP

Eﬁ,a(w):kgm:ﬁicmm\, a,B>0 weC

where C is a contour that starts and ends with —oco and encircles the disk [A] < |w|%
counter clockwise.
We construct the following definition for the mild solution of Equation (1):

Definition 3. A stochastic process, {y(t),t € (—oo,T|}, (0 < T < 00), is called a mild solution
of Equation (1) if

(i) y(t) is Fy-adapted;

(i) forarbitrary t € [0, T], y(t) satisfies the following integral form:
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y(t) = Tﬁ(tf) [0(0) — £(0,0)] + f(t,y) + fy Tp(t — s)g(, yr)dw! (s)
+ Jo J7 Tp(t —s)h(s,ys, 1)N(ds,dn),
Yo =0 € .
where Tg(t) is the solution operator generated by A and given by the following:

1 p-1
Tﬁ()_Eﬁl(Atﬁ) 27'(1/ yt}lg_ dy.

The coming assumptions on the coefficients of (1) are prepared for achieving the
main results.

Condition 1. If A : D C X — X is the infinitesimal generator of a strong and contin-
uous semigroup of bounded and linear operator Tg(t), then there exists some constant
B > 0 obeying, as follows:

ITg(t)|> < B, forallte0,T].

Condition 2. There exists a positive constant ¢ € (0,1) such that for all x, y¢ € p, we have
the following:

1f(txe) = f(by)|l < cellx—ylle, and f(t,0) =0, t>0.
Condition 3. (a) There exists a function, K(t,v) : [0,00) X [0,00) — [0, c0), such that
KC(t,v) is locally integrable in t for any fixed v > 0 and is continuous, non-decreasing,

and concave in v for each fixed t € [0, T|. Furthermore, for any t € [0,T], y; € g, the
following holds:

t t
E 2dsVE h 27
| sty PasVE [ ins, v m) [2AGp)ds

e( [/ IIh(s,ys/n)l‘*?\(ﬂ)dSY < [ k(s Blyl2)as

(b) For any C > 0, the following differential equation:

do

E - C’C(t,v)

has a global solution for any initial value vy.
Condition 4. (Global conditions) (a) There exists a function, A(t,v) : [0,00) x [0,00) —>
[0, 00), such that A(t,v) is locally integrable in t for any fixed v > 0 and is continuous,

non- decreasmg, and concave in v for each fixed t € [0, T], A(t,0) = 0 and for any fixed
0<t<T, f0+ dv = oo. Furthermore, for any ¢ € [0, T], x¢, y: € p, the following holds:

E / (s, %) — g(s,ys)|Pds VE / ], (s, xe,) = (s, ys, ) PA ) s

1
B 43 2 f o
VE( [ [ Ihts ) = s A0 ) < [ AG Bllx -yl

(b) For any constant K > 0, if a non-negative function v(f) satisfies the following:
t
o(t) < K/ Als,0(s))ds, te[0,T],
0

then v(t) =0 forany t € [0, T].
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Condition 5. (Local conditions) (a) For any integer, N > 0, there exists a function,
An(t, v) [0,00) X [0,00) — [0,00), such that Ax(t,v) is locally integrable in t for any
fixed v > 0 and is continuous, non-decreasing and concave in v for each fixed t € [0, T],
An(t,0) = 0 for any t € [0, T]. Furthermore, for any t € [0, T], x, y; € p with ||x|[; < N,
llyll < N, the following holds:

& [ g(s,2) — g 0)PasVE [ [ s, 3m) ~ hGs, e mIPAGr)ds

([, 50~ s PGS < [ At Bl s

(b) For any positive constant K, if a non-negative function v(t) satisfies the following:

t
v(t) < K/o An(s,v(s))ds, te€[0,T],

then forall t € [0, T], v(t) = 0.

3. Existence and Uniqueness

In this section, we provide the problem of existence and uniqueness of mild solution
to Equation (1) under global and local Carathéodory conditions.

Theorem 1. If Conditions 14 hold, then the system (1) admits a unique mild solution, y(t) € B
Proof. In order to prove the existence of the solution to Equation (1), let us introduce

the sequence of successive approximations, as follows: y°(t) = Tg(t)e(0), t € [0,T] and
y*(t) =o(t),n > 1fort € (—o0,0],and for t € [0, T] and n > 1, we have the following;:

y'(t) = Tgp(t)[e(0) - f(0,0)] +f(f/y?)+/ot Tg(t —s)g(T,y3 ")dw' (s)
—l—/ / Tg(t —s)h(s,ys LinN(ds,dy), n=1,2,.. 3)

The proof will be split into three parts.
Part 1. For all t € (—oo, T], we claim that the sequence y" € By, n > 0 is bounded. It is ob-
vious that 4°(t) € By. From (3), for 0 < t < T, we have by elementary inequality, Lemma 1,
Burkholder-Davis-Gundy (B-D-G) inequality for pure jump stochastic integral [70] in X
and Conditions 1-3, as follows:
Ely"()]> < 8B[Ele(0)]*+cFE[ollg] + 4ctEly" |7

t
+8BHTIE [ g(r,yi ") Pds
+4BCTE//||h s,yd ) |IPA(dy)ds

| )
sasce( [ [ ||h<s,y2-1,n>||4i<dn>ds)

< 8B[E[o(0)|I* + cFEllol§] + 4cFElly" 17

t
+8B(Cr + HT2H 1) / K (s, Elly"||?)ds
0

Thus,
SBIEI o) + Ell3]  sB(cy 1 HRH-1) ]
By < e ) [ k(s Bl )as
—dcy 1—4cf 0
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Then, Condition 3(b) implies that there is a solution, u;, that satisfies the following:

t
v < C1+C2/ K (s, vs)ds,
0

8B[E[0(0)[I*+c3El ]3] 2H-1
where C; = R and ¢y = SBCrHHETT)
lf4cf 174cf

Since E||y°(t) > < BE||0(0)||> < oo, we have E||y"||? < vy < v < o0, which indicates

the boundedness of {y"(t) },>0 in Br.

Part 2. We claim that {y"(t),n > 0} is a Cauchy sequence.

Foralln,m > 0and t € [0, T], from (3), we have by Lemma 1, B-D-G inequality and

Conditions 1, 2 and 4, as follows:

Elly" " (6) —y" ()2
<E[f(6yi ™) = flty P

438 | [Tt - 9)g(e,yi™) - gl yr (o)

2

2

t ~
+3E o /ZT/g(l‘—S)[ s, y;l+1’17) h(S ]/;n+1/77)]N(dS,d17)

t
<BHE[y" -y ? +6BT2H’1/ Ellg(t,yi™) — g(r, ™) | %ds

+3BCrE [ [ (s, ) = sy, ) A a s

1
2

+3BCTIEJ< / / h(s, "1, ) — h(s, yTH,iy)||45t(d17)ds>
t
<BcHE[ly" ! —y" |7 + 6B(Cr + HTZH*l)/O A(s Elly" —y™|3)ds

Thus,

t
Ely" —y"E = sup E[ly"(s) —y" ()7 < Ca/o A(s, Elly" — y"[13)ds

—co<s<t

6B(Cr+HT1)
173c;

By Equation (4), Fatou’s lemma and Condition 4(b), we obtain the following;:

where C3 =

limsup( sup Elly"(s) —y" ' (s)]1?)

nm—soo 0Ls<t

< Cs [[ Als limsup( sup BJy*1(6) —y"+1()])ds

nm—roo 0<O<s

which gives the following;:

lim  sup Elly"'(s) —y" " (s)|* =0,

HTHHOOO<S<T

and implies that {y" },,>0 is Cauchy sequence in B7.

(4)

Part 3. We claim the existence and uniqueness of the mild solution to Equation (1). The
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completeness of B guarantees the existence of a process y € B, such that we obtain the
following:

: n _ 2 _
Jim - sup  E[[y"(s) —y(s)|” = 0.

—oo<s<T

Hence, letting 1 — o0 and taking limits on both sides of (3), we obtain that y(t) is a
mild solution to Equation (1). This shows the existence proof. Furthermore, the uniqueness
of the solutions could be obtained by the same procedure as Part 2. This completes the
proof of Theorem 1. [

Remark 1. Let A(t,v) = L(t).A(v), t € [0, T|, where L(t) > 0 is locally integrable and A(v)
isa concave non- decreasingfunctionfrom Ry to Ry, such that A(0) =0, A(v) > 0forv >0
and f0+ Ao dv = oo. Then, by the comparison theorem of differential equations we know that

Condition (4b) holds.

Remark 2. If L(t) = 1 in Remark 1, the condition is considered in [58]. Therefore, some previous
results in [58] are improved and enhanced.

Next, we will prove the existence and uniqueness of solutions to Equation (1) under
local Carathéodory conditions.

Theorem 2. If Conditions 1-3 and 5 hold, the system (1) admits a unique local mild solution, as
follows: y(t) € Br.

Proof. Let N be a positive integer and Ty € (0, T). We introduce the sequence of functions
gN(t, v;) and hN (¢, v, 1), (t,v¢) € [0, T] x B, as follows:

N gt ol <N;
top) =
e { g('uvu,)f lolls > N,

h(t,on,m), o)l < N;
N _
W™ (t,0,1) = { ht, ﬁ;’li\zit'n)' o]l > N.

Then, the functions {g" (t,v¢)} and hN (¢, vy, 17) satisfy Condition 3, and for any x,y €
B, t € [0, T], the following inequality holds:

t t .
E [ 18¥(s,xe) = ¥ (s,0) Pas VE [ [0 (s,xe,m) = 1G5, e, )2 ()ds

B( [ 186 5m) ~ WG vl A) ) < [ Ants Bl - ylRyas

As a consequence of Theorem 1, there exists a unique mild solutions y™ (t) and yNT1(¢),
respectively, to the following integral equations:

yN(t) = Tp()[0(0) — £(0,0)] + f(t,yN) + [y Tg(t — 5)gN (7, yN)dw" (s)
+ fy [, Te(t —s)hN(s,yN, )N (ds, dy), t € [0,T],  (5)

yNEL(E) = Tp(1)[0(0) — £(0,0)] + f(tyN ™) + [y Ta(t — 5)gN+1 (7, yN+1)dwH (s)
+f0 [ Tg(t —s)pN*1(s,yN+1, )N (ds, dn), t € [0,T],

(6)
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Define the stopping times, as follows:

oy = To Ainf{t € [0,T] : [|yN|s > N},
Ong1 = ToAinf{t € [0, T] : lyN s > N+ 1},

TN = ON A ON41-

In view of (5) and (6), we obtain the following:

EyN () — yN ()2
<3EIf Ly ™) = f( )P

+3EH /Ot Tﬁ(t — S)[gN+1(T, yTN—H) . gN(T, y{r\])]de(s) 2

2

t
N+ NHT N N(e N TR
438 [ T N ) = s, )| e, )

By using the technique of plus and minus, Lemma 1, B-D-G inequality and Condi-
tions 1 and 2, we obtain the following:

E[lyN* () —yN(1)]?
<BE[|f(tyM ™) — f(t,yN)|

/Ot Tg(t—s)[gN T (r,yy ™) — gN (T, 7 ) Jdw' (5) 2

+6E‘

f 2
0 JZ

< BGE[yN T - yN|1F

t
+1ZBHT2H’1IE/ 1§V (T, yN+Y) — gN (7, yN)|Pds
0

t ~
+6BCTE/ / [BN*L (s, yN T, ) — WNT (s, yN, ) [|PA (dyp ) ds
0 Jz

1

t _ 2
+6BCTE< [/ |hN+1<s,ysN+1,n>—hN+1<s,y§V,n>|4A<dn>ds) ,
0 JZ

where we have used that for 0 < v < Ty, as follows:

gV (o, y)) =gN(w,yl), BN o,y ) =nN(0,y), 7).

Employing Condition 5, we obtain the following:
Ely™(H) —y" O < 3cGE[y" —yN|?

t
+1213(CT+HT2H*1)/O An1(s, E|yNTyN|2)ds.

Therefore, for all t € [0, Tp|, we obtain the following:

12B(Cr + HT?H-1)
sup By (s) Vo) < P2
—c0<s<IATY 9%

EATN
></o Ansi(s,  sup  EyNTyN|3)ds.

— o< USSATN
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Thus, Condition 5 indicates the following:

sup  E[yN*(s) —yN(s)]7 = 0.

—00<SEATN
Then, for a.e. w, as follows:
yNT(E) = yN(t), for 0<t < Ty A

Note that for each w € (), there exists an Ny(w) > 0, such that 0 < Ty < 1y,. Define
y(t) by the following:

y(£) =y™o(t), for t €0, To).
Since y(t A tv) = yN (t A Ty), the following holds:
y(trty) = Ta(tA)[0(0) = £(0,0)] + f(EATN, Yiney)
+ /OMTN Tﬁ(t ANTN — s)gN(s, yg\])de(s)
—|—/Ot/\TN/ZTﬁ(t/\TN —s)hN(s,yN,n)N(ds,dn)
= Tg(tAtw)[e(0) — £(0,0)] + f(t A TN, Yeny)

EATN H
—l—/o Tg(t A Tn —8)8(8,ys)dw™ (s)
EATN -
—l—/o /ZT/g(t/\TN—s)h(s,ys,iy)N(ds,dn).

Allowing N — oo, we obtain the following:

y(t) = Tp(t)[0(0) — £(0,0)] + f(t,y) + /Ot T(t = 5)3(s,ys)dw" (5)
+AtéT/g(f_S)hN(s/yS/ﬂ)N(ds’dn)’

which completes the proof of existence. The uniqueness proof can be justified by stopping
our process y(t). This completes the proof of Theorem 2. [

Remark 3. As Condition 4 implies Condition 5, Theorem 2 conditions are weaker than those of
Theorem 1. Hence, Theorem 2 generalizes Theorem 1.

Remark 4. Let Ay (t,v) = Ay (v), where An(v) is a concave, non-decreasing and continuous
function, such that An(0) =0, and f0+ #Zév) = co. Evidently, our obtained result in Theorem 2

is still new and applicable. Moreover, the results of [58] are improved and extended.

4. Averaging Principle

This section is devoted to the establishment of an averaging principle for INFSEEs
driven by fBm and Poisson jumps. Hence an interesting theoretical result to simplify the
systems is presented.

The standard INFSEEs driven by fBm and Poisson jumps is defined as follows:

Ye(t) = T;s(t>[e(0)—f(O,Q)]+f(t,ys,t)+€H/OtT,s(t—S)g(f,ye,r)de(S)

t
—l—\/E/O /;Tlg(t—S)h(S,ygls,ﬂ)N(dS,d?]), 7)
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where t € [0,T], ¢ € (0,€1] (0 < &1 << 1) is a small parameter, the coefficients satisfy the
assumptions of Theorem 1.

In what follows, we deduce that when the time scale, ¢, approaches 0, the standard
mild solution, y,(t), tends to the averaged mild solution, z.(t), of the simplified system, as
follows:

t
2l) = Tp0)[e(0) — £0,0)] + £t zer) + & [ Tylt = 9)g(zer)du’l (s
t - ~
+¢E/O /Z Ty(t — 8)(ze, )N (ds, dyp), ®)
the coefficients g(.), h(.,17) € X are all measurable functions satisfying Conditions 3 and 4

and the following assumptions:
(A1)

Til /oT1 I8(s,y) — §(W)|Pds < pr (T1) v (lylI?),

(A2)
1 T B )<
T [/0 /Z Ih(s,y,1) — Ry, n)||*A(dy)ds

v( A= bl ) 4R %} < pa(T) (1),

where 0 < T; < T, functions p;(T;) are positive bounded obeying p;(T;) — 0(i = 1,2)
as Ty — o0, and the function 7 : [0,00) — [0, %) is non-decreasing, continuous and
concave.

Theorem 3. Assume Conditions 1-4 and Assumptions (A1) and (A2) can be fulfilled. For any
given small number, 6y > 0, there exists P > 0, e € (0,¢&1], such that for all ¢ € (0,¢y],
t € [0,Pe~1] C [0, T], as follows:

E|lye(t) — ze(1) | < 6.

Proof. Owing to Condition 2, for any u € [0, T}, it follows from Equations (7) and (8) that:

sup Bl|ye(t) — ze(t) — (f(t,yet) — f(t zer)) >

sup E|lye(t) — ze(t)||> < Ostsu , 9
sup Elye(t) ~=(1)] ("
where, by elementary inequality, obtain the following:
sup B|ye(t) — ze(t) — (f(tyer) — f(t2e4)) |
0<t<u
" 2
<2218 [Tyt = 9)lg(0ee) ~ gz (5)
t B ; 2
26| [ [ Tyt = 9)(s,yes, 1) = Flzes, )N (ds, )
=0+ Ip. (10

We now deal with [, as follows:
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2

/Ot Tp(t =) [8(T, Yerr) — §(ze0)]dw™ (s)

L = ZSZHE‘
2

46218 [ Ty(t = 5)lg(r,or) — 50,200l ()

VA

2

#4298 ['Ty(t 9)lg(r,200) ~ glaun) a5

= 111 + 112.

By Lemma 1, Conditions 1 and 4, Assumption (A1) and Jensen inequality, we obtain

the following:
2

/Ot Tﬁ(t —8)[8(T,yer) — 8(7, Zg,-;)]de(s)

Ill 4£2HE’

t
83H82HM2H_1/0 Ellg(T, ver) — g(T, 260 ) || 2ds

¢
SBHeZHMZHfl/O A(S,Ellys—Zst)dSr

N

and
2

4£2HEH /Ot Tl;(t —9)[g(T,zer) — g‘(zg,T)]de(s)
|?ds

Iip

t
< 8BHeHy2HA1 /0 Ellg(T,zer) — §(ze)]

< SBH(eu)2H< sup pl(t))v( sup E||zg,t||2).
0<t<u

o<t<u

Consequently, we obtain the following:
t
I < 8BHeH 2H-1 / A(s, E|lye — z¢||?)ds
0

—|—8BH(su)2H< sup pl(t)>'y( sup E||z€,t|\2).
0<t<u

o<t<u

Then, by the elementary inequality, we obtain the following:
2

= 2K

L =

I Tt = 500005, ves ) = Rzes, )N s, )
2

t ~
< 4E /0 /Z Ty (t — $)[I(s, Yes, 17) — h(s, ze5,7)| N (ds, diy)

2

+4¢E /Ot /Z Ty (t — s)[h(s, zes, 17) — B(zes, )N (ds, dyp)

= I+ Ip.

(11)

(12)

(13)
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By B-D-G inequality, Conditions 1 and 4, Assumption (A2) and Jensen inequality, we
obtain the following;:

2
Iy = 4¢E (t —8)[h(s,yes,m) — (s, zes,m) N (ds,dn)
< 48BCTE/ / (s, Yes, 1) — (s, zes, ) |PA(dip)ds
1
- 2
+4eBCTIE(/ / (S, Yesr ) — h(5, Zes, )||4/\(d77)d5>
t
< 8BCr [ A5, Ellye —=/2)ds, (14)
and
t . ) 2
b = 4E| [ /Z Ty(t — 8)[(5, 2, 1) — T(zes, )| N (ds, dy)
ot
< 4€BCTE/O / ||h(SrZ£,S/77) (Zss/ )H )\(dﬂ)
1
. 2
+4chTE< / / (s, 2es, 1) — F(zes, )||4A(d11)ds>
< 8£BCTu( sup pz(t)>'y( sup E||z£/t||2) (15)
0<t<u 0<t<u

Consequently, we obtain the following:
t
L < 8£BCT/O A(s, Ellye — z¢||?)ds

+8£BCTu< sup pz(t)>'y( sup B||zes]|?). (16)

0<t<u 0<t<u

Now, combining Equations (10), (13) and (16), we obtain the following:

sup Elye(t) — ze(t) = (f(t,yer) = f(t.zen)|I?

0<t<u
u
< 8B(eCr + He 1) [ A(s, Ellye — ze|F)dt
0

+8BHsZHu2H< sup pl(t)>'y( sup E||zg,t||2)

0<t<u o<t<u

+8£BCTu< sup pz(t))'y( sup E||Ze,t||2)-

0<t<u

0<t<u

If A(t,.) is a concave function, then there exist p(t) > 0 and g(t) > 0, such that we
obtain the following;:

A(t,y)gp(t)+q(t)y,/0 £)dt < oo, / £)dt < co.
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Then, we obtain the following;:

sup Elye(t) — ze(t) = (f(t,yes) = f(tzen)|I?

o<t<u

< 8B(eCru + He?Mu?H) (sup p(t))
0<t<u

u
+8B(eCr + He2Mu2H-1) (sup g(1)) / El|ye — ze|2dt
0<t<u 0

+SBH82HMZH( sup mt))v( sup Ellzes|?)

0<t<u 0<t<u

+8B£CTu< sup pz(f)>’7( sup I[“3||Zs,t||2)

0<t<u 0<t<u

U
< (eCru + H(eu)* ) Ay + (eCr + He?Hu2H 1A, /O Ellye — z¢ | ?dt

+H(eu)* Az + eCruly, (17)
where A1 = 8B( sup p(t)), A2 = 8B( sup 4(t)), Az = 8B( sup pi(t))
0<t<u 0<t<u 0<t<u
7( sup E|ze|*) and Ay = 8B( sup pa(t))7( ?).
0<t<u 0<t<u 0<t<u

Therefore, combining Equations (9) and (17), Gronwall’s inequality reads as follows:

sup Ellye(t) —z(D)IP = sup Ellye — 2|} < eQie?®,
o<t<u o<t<u

_ [(c M+H€2H_1112H)A +e2H-1gA;+C UMy (C +H(su)2H‘1)A
where Q; = =T (1_1Cf>2 3+ Crudy] ,0Qp = %}02
Choose P > 0 such that for all u € [0, Pe~!] C [0, T], we obtain the following:

sup E”yﬁ(t) - Ze(t)Hz < EQlesz = Mg,
0<t<u

where M = Qqe®2P.
Hence, given any number 6y > 0, we may obtain that there exist &, € (0, €1 ), such that
forevery e € (0,&],Vt € [0, Psfl] C [0, T], we obtain the following:

sup Elye(t) — ze(t)|* < bo.

0<t<u

Hence, consider the proof complete. [

Remark 5. If A(t,v) = L(t).A(v), t € [0, T], where L(t) > 0 is locally integrable and A(v) is a
concave non-decreasing function from Ry to Ry, such that A(0) = 0, A(v) > 0 for v > 0 and
Jo+ A )dv = oo, then our obtained averaging result is still new and applicable.

5. Example

In this section, we validate the obtained averaging result with an example. Consider
the following neutral Caputo fractional stochastic partial functional differential equations,
and its nonlinear and stochastic terms depend on a small parameter, ¢, as follows:

D [ye(t, %) — a1 (e (x)] = L [ye (£, %) — a1 (E)yes (x)] + T7 [Zstxsin%s)ys,s(x)dw;i“)

Ve J 1(co(B)yes(x ))N(dt,dm}, a8

Ye(£,0) = ye(t, 1) =0, t€ (0,7,
vo(t,x) =o(t,x), o(.,x) € p, o(t.) € L2([0,7]), t € (—00,0],
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with Dt% is a Caputo fractional derivative of order %, and wH, % < H < 1is a fractional
Brownian motion. Let X = £,([0, 7]) and the operator A = aa—; :D(A) C X — X, with
domain D(A) = {y € X;y, 7 are absolutely continuous, j € X, y(0) = y(rr) = 0}. Then,
A generates an analytic compact semigroup of bounded linear operator, (T(t));=0, on a
separable Hilbert space, X which is given by the following;:

T(Hw=Y_ (wn,en)en, we D(A)
n=1
where e, (x) = \/gsin(nx), 0<x<mneNlN.

The subordination principle of solution operator implies that A is the infinitesimal
generator of a solution operator, (Tg(t));>0. Because of the strong continuity of Tg(t) on
[0, 00) by a uniformly bounded theorem, there exist a constant B > 0, such that || Tg(t)||* <
B, for t € [0,T]. Then the system (18) can be rewritten in the abstract form of neutral

Caputo fractional stochastic evolution equation, as follows:

1 1 wh
D2 [ye(t) — ar(E)yes] = Alye(t) — ar (H)yes] +T? [stzx sin? (s) e 2270

wéfzn(cos2<t>ys,t>zv<dt,dn>], (19)

S(zer) = Mazey,  hlzer) = gze,t /anfx(dq) < co.

Then, its easy to verify that all Conditions 1-4 and Hypotheses A1l and A2 in Theorem 1
are satisfied. Hence, the averaged system for Equation (18) is given by

7 1| H,, dwl(t) e <
D} [ze(t) — a1(t)zet] = Alze(t) — a1 (t)zes] +TF | azes == + % [, 71ze:N(dt,dn)|,

z0(t) = o(t), t € (—o0,0].

(20)

Evidently, the simplified system (20) is much simpler than the standard one (18). Better
yet, Theorem 3 guarantees that only a small error is generated in the process of substitution.

6. Conclusions

In this paper, we established the local and global existence and uniqueness problems
for neutral Caputo fractional stochastic evolution equations with infinite delay driven by
fBm and Poisson jumps. The results are proved by fractional calculus, successive approxi-
mations and stopping time techniques under local and global Carathéodory conditions with
non-Lipschitz condition as a special case. Finally, the averaging principle for INFSEEs is
studied. Furthermore, we proved that the mild solution to the simplified system converges
to the mild solution to the original system in the mean square sense. Our future work will
be studying the existence and averaging principle for impulsive INFSEEs driven by fBm
and Poisson jumps.
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