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Abstract: In this paper, by applying Petković’s iterative method to the Möbius conjugate mapping of
a quadratic polynomial function, we attain an optimal eighth-order rational operator with a single
parameter r and research the stability of this method by using complex dynamics tools on the basis of
fractal theory. Through analyzing the stability of the fixed point and drawing the parameter space
related to the critical point, the parameter family which can make the behavior of the corresponding
iterative method stable or unstable is obtained. Lastly, the consequence is verified by showing their
corresponding dynamical planes.
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1. Introduction

In 1975, the celebrated scientist Mandelbrot published his monograph Fractals: Form,
Chance and Dimension, which marked the birth of fractal geometry [1]. Mandelbrot called
the shape of a part similar to the whole in some way fractal. Fractal theory is an extraordi-
narily popular and active new theory, as well as a new discipline. Its mathematical basis is
fractal geometry, which derives fractal information [2,3], fractal design [4,5], fractal art [6]
and other applications [7,8] from fractal geometry. The most fundamental characteristic of
fractal theory is to describe and study objective things with the perspective of fractional
dimension and mathematical methods, that is, to describe and study objective things with
the mathematical tools of fractal dimension, which is closer to the description of the real
attributes and states of complex systems, as well as more in line with the diversity and
complexity of objective things.

Fractal theory is not only the frontier and essential branch of nonlinear science but
also a new cross-sectional discipline. It is a fresh mathematical discipline that studies the
characteristics of a class of phenomena. Compared with its geometric form, it is more
significantly related to differential equations and dynamic system theory [9,10].

Linear fractal is also called self-similar fractal [11]. The self-similarity principle and
iterative generation principle are crucial principles of fractal theory. They characterize
that a fractal has invariance under the usual geometric transformation, that is, metric
independence. Self-similarity starts from the symmetry of different scales, which means
recursion.

According to the degree of self-similarity, a fractal can be divided into regular fractal
and irregular fractal. Regular fractal refers to the fractal with strict self-similarity, that
is, it can be described by a simple mathematical model, such as Cantor set [12], Koch
curve [13], Julia set [14], etc. Anomalous fractals are statistically self-similar fractals,
such as meandering coastlines, floating clouds, etc. The Julia set was obtained by French
mathematicians Gaston Julia and Pierre Fatou after developing the basic theory of complex
function iteration.
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In fractal theory, the most basic is the Mandelbrot set [15], and it indicates the set
of points which are on the complex plane. It is determined by a quadratic multiform
fc(z) = z2 + c in the complex, where c ∈ C. For every c, fc(z) is iterated from z = 0 to
generate the following sequence:

{0, fc(0), fc( fc(0)), fc( fc( fc(0))), · · · }.

The Mandelbrot set is a set that does not extend the above sequence to all c points of infinity.
The Julia set [16] is also generated by the iteration of a complex function. Different from
the Mandelbrot set, c is a fixed and constant and can be taken arbitrarily. The sequence
generated at this time is:

{z, z2 + c, (z2 + c)2 + c, · · · }.

If this sequence diverges, the corresponding z set belongs to the Julia set. Next, we review
the basic theory of the Julia set.

Suppose f : C→ C is a polynomial f (z) = a0 + a1z + · · ·+ anzn of order n ≥ 2 in the
complex field. Let

f 0(z) = z, f 1(z) = f (z), f 2(z) = f ( f (z)), · · · , f n+1(z) = f ( f n(z)), · · · .

(1) If there exists w ∈ C such that f (w) = w, then w is called a fixed point of f ;
(2) If there are integers p greater than 1 and w ∈ C such that f p(w) = w, then w is called

the periodic point of f . The smallest p such that f p(w) = w is called the period of w,
and w, f (w), · · · , f p(w) is the period p orbit;

(3) Let w be a periodic point with period p, and ( f p)′(w) = λ;

• If λ = 0, then w is a superattracting point;
• If 0 ≤ |λ| < 1, then w is an attractive point;
• If |λ| = 1, then w is a neutral point;
• If |λ| > 1, then w is a repulsive point.

The closure of a repulsive periodic point of f is called a Julia set of f . The remainder
of the Julia set is called the Fatou set [17].

Based on the above theoretical support, in recent years, a variety of researchers have
been committed to using fractals to research the stability of iterative methods [18–20].
In this paper, we analyze the dynamic behavior of the optimal eighth-order iterative
method proposed by Petković in reference [21]. Its error equation is ek+1 = c2

2(−c3 + c2
2(1 +

2r))(−c2c3 + c4 + c3
2(1 + 2r))e8

k + O(e9
k), and its specific iterative scheme is as follows:

yk = xk −
f (xk)

f ′(xk)
,

zk = yk −
f (yk)

f ′(xk)

f (xk) + r f (yk)

f (xk) + (r− 2) f (yk)
,

xk+1 = zk −
f (zk)

H′(zk)
,

(1)

where H′(zk) = 2( f [xk, zk]− f [xk, yk]) + f [yk, zk] +
yk − zk
yk − xk

( f [xk, yk]− f ′(xk)), r ∈ C and

f [·, ·] is a forward divided difference of order one.
The remainder of the paper is arranged as follows. In Section 2, several fundamental

conclusions on Riemann sphere C̃ are introduced, which are the basis of the subsequent
dynamic analysis. The details of the complex dynamic analysis of (1) are described in
Section 3. Based on Möbius conjugate theory, we firstly obtain the rational operator related
to (1). After that, we utilize the principle that the fixed point and the critical point appear in
pairs on the Riemann sphere C̃ to analyze their stability and draw the fixed point stability
surface and the parameter space related to the critical point, so as to attain stable parameters
and unstable parameter ranges. In addition, the dynamic behavior of the corresponding
iterative method (1) is analyzed by the dynamical planes of the given parameters, and
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the stable parameter family is finally determined. At last, we summarize the work we
conducted.

2. Some Concepts and Properties Related to Riemann Sphere C̃

In this section, we consider expressing (1) as a nonlinear recurrence form

xk+1 = R f (xk), k = 0, 1, 2, . . . , (2)

where R f is an iteration function, as well as a fixed point operator [22]. If the iteration
exponent n is used to represent the time index, then the nonlinear recurrence relation (2)
will represent the relevant discrete dynamical system. Therefore, the process of solving the
solution of the nonlinear equation f (x) = 0 can be expressed as an image sequence of the
initial guess x0 under the action of R f :

{x0, R f (x0), R2
f (x0), · · · , Rn

f (x0), · · · }. (3)

It can be viewed as a discrete dynamical system. Generally, the iteration function R f is a
meromorphic function. According to the Lemma 2.1 of reference [23], the meromorphic
functions on Riemann sphere C̃ can be expressed as rational functions. This solves the
difficult problem of directly studying the dynamics of meromorphic functions. Here, the
related properties of the topological conjugate are also necessary to be mentioned.

Definition 1. Let F be a function of the set X and G be a function defined on the set Y. If there
exists an isomorphism h satisfying F ◦ h = h ◦G, then F is conjugate to G through h.

Theorem 1. Let F,G ∈ C1 and there exist conjugate h such that F ◦ h = h ◦G. Consider α to be
a fixed point of G, then the following results hold:
(a) Under topological conjugate h, the fixed point property remains unchanged, namely,

α = G(α) ⇔ h(α) = F(h(α)).

(b) Let m(G, α) denote the Poincaré characteristic multiplier [24] of α by G. It remains un-
changed under the diffeomorphic conjugate h, that is,

m(h ◦G ◦ h−1, h(α)) = F′(h(α)) = G′(α) = m(G, α).

Proof. (a) Derives from α = G(α),

h ◦G(α) = h(α) = F ◦ (h(α)) = F(h(α)),

and vice versa.
(b) For z ∈ Y, there is

h ◦G(z) = F ◦ h(z),

namely,
h(G(z)) = F(h(z)).

Find the first derivative of z and obtain

[h(G(z))]′ = h′(G(z)) ·G′(z).

Let z = α,

[h(G(α))]′ = h′(G(α)) ·G′(α) = h′(α)G′(α) = F′(h(α)) · h′(α)

holds. Since h′(α) 6= 0, F′(h(α)) = G′(α).
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Lemma 1. Let ω : U ⊂ C → U be meromorphic and η ∈ U be a fixed point with |ω′(η)| < 1.
Then ω has a unique fixed point η such that the sequence {zn+1 = ω(zn)}∞

0 converges to η for any
given z0 ∈ U.

Proof. (i) For η ∈ U ⊂ C, from the analyticity at η,

zn+1 − η = ω(zn)−ω(η) = (zn − η)(ω′(η) + τ),

when zn → η, τ → 0.
∀N > 0, ∃ constant β satisfying 0 < β = |ω′(η)| + |τ| < 1, s.t. n ≥ N, ∀k ∈

N
⋃{0}, we have: |zN+k+1 − η| = |ω(zN+k)− ω(η)| = |zN+k − η||ω′(η) + τ| ≤ |zN+k −

η|(|ω′(η)|+ |τ|) = β|zN+k − η| ≤ β2|zN+k−1 − η| ≤ · · · ≤ βN+k+1|z0 − η|.
So, lim

k→∞
|zN+k+1 − η| = 0. That is, lim

n→∞
zn = η.

Suppose ζ 6= η is also a fixed point satisfying lim
n→∞

zn = ζ. Since the convergent

sequence only has a unique limit, ζ = η, contradicting the hypothesis, uniqueness is
proven.

(ii) For ω(∞) = ∞, by definition from Section 3.1 of reference [25], ω is said to

be analytic at ∞ when H ◦ ω ◦ H−1 is analytic at 0 with H(z) =
1
z

. Express

ω(z) =
a0 + a1z + · · ·+ anzn

b0 + b1z + · · ·+ bmzm as a rational function with anbm 6= 0, n > m for

n, m ∈ N
⋃{0}. If we define a function

K(z) = H ◦ω ◦ H−1(z) =
1

ω( 1
z )

and find

ω′(∞) = K′(0) =

{
bm/an, if n = m + 1
0, if n > m + 1

(4)

by computation directly. Therefore, if restriction |ω′(∞)| = | bm
an
| < 1 is made, then ∞

becomes an attractive fixed point of ω.

3. Complex Dynamics Analysis

Based on the conclusion of Section 2, we discuss the dynamic analysis of (1), analyze
the stability of this iterative method and find the stable parameter family.

3.1. Fixed Points and Their Stability

By applying any quadratic polynomial f (z) = (z− a)(z− b), a 6= b to (1), it can be
obtained that

S(z; r, a, b) =
C(z; r, a, b)
D(z; r, a, b)

,

where C and D are related to a, b, r, z, and then through the Möbius transformation

t(z) =
z− a
z− b

and its inverse map t−1(z) =
zb− a
z− 1

, it can be obtained that the fixed point
operator

M(z; r) = (t ◦ S ◦ t−1)(z) =
z8((1 + z)2 + r(2 + z))2

(1 + (2 + r)z + (1 + 2r)z2)2 (5)

where M(z; r) is only related to r and z.

Lemma 2. Relation M(z; r) ·M( 1
z ; r) = 1 holds, ∀r ∈ C, ∀z ∈ C̃.
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Proof. This Lemma is proved by Theorem 1(a). Under the conjugate mapping h(z) =
1
z

,

M(z; r) is isomorphic to itself, that is to say, ∀z ∈ C̃, ∀r ∈ C,

M(z; r) ◦ h(z) = M(
1
z

; r) = h(z) ◦M(z; r) =
1

M(z; r)

holds. Therefore, M(
1
z

; r) =
1

M(z; r)
, namely, M(

1
z

; r) ·M(z; r) = 1.

Lemma 2 plays an important role in discussing fixed points and critical points. Next,
we analyze the fixed points of M(z; r). Firstly, according to the definition of fixed point and
(5), we have

M(z; r)− z =
z(z− 1) · N(z; r)

Q(z; r)2 , (6)

where N(z; r) = 1 + (5 + 2r)z + (11 + 10r + r2)z2 + 5(3 + 4r + r2)z3 + (4 + 3r)2z4 + (4 +
3r)2z5 + (4+ 3r)2z6 + 5(3+ 4r + r2)z7 + (11+ 10r + r2)z8 + (5+ 2r)z9 + z10 and Q(z; r) =
1 + (2 + r)z + (1 + 2r)z2.

Obviously, no matter what value the parameter r takes, z = 0, z = ∞ are fixed points of
M(z; r). z = 0, z = ∞ correspond to the two roots a, b of f (z) = (z− a)(z− b), respectively.
In fact, the orbits of such fixed points are close to themselves, and it is of little significance
to study such fixed points. We are always interested in fixed points other than z = 0 and
z = ∞, that is, strange fixed points. By analyzing the strange fixed point and its stability,
we can find in the approximate region of the parameters that the sequence generated by
the initial point does not converge to the strange fixed point during the iteration process.

Lemma 3. Relation N(
1
z

; r) =
N(z; r)

z10 holds, ∀r ∈ C, and ∀z ∈ C̃.

Corollary 1. If z is a fixed point of M(z; r), then so is
1
z

.

Proof. Let X = Y = C̃, F = G = M and conjugate mapping h(z) =
1
z

in Theorem 1(a), the
conclusion obviously holds.

It can be seen from (6) that the strange fixed points of M(z; r) are ten roots of poly-
nomial N(z; r) = 0 and z = 1, and there are at most eleven strange fixed points. These
strange fixed points are denoted by Exi (i = 1, 2, · · · , 11), where Ex1 = 1 denotes z = 1
and Exi (i = 2, 3, · · · , 11) denote the ten roots of N(z; r) = 0 in turn. By Corollary 1, our
study of the ten roots of the polynomial N(z; r) = 0 can be reduced to half for stability
studies. Then, we analyze the existence of common factors in N(z; r) and Q(z; r) in (6). The
following theorem describes this conclusion well.

Theorem 2. For N(z; r) and Q(z; r), we can obtain the following conclusions:

(a) When r = −4
3

, N(z; r) and Q(z; r) have a common factor (z− 1);

(b) When r = 0, N(z; r) and Q(z; r) have a common factor (1 + z)2;

(c) When r = −28
13

, N(z; r) has a factor (z− 1);

(d) When r(4 + 3r)(28 + 13r) 6= 0, the strange fixed points are z = 1 and the roots of
N(z; r) = 0, ∀r ∈ C.

Proof. By supposing that N(z; r) = 0 and Q(z; r) = 0 for some values of z and eliminating
r in N(z; r) = 0 and Q(z; r) = 0, we obtain (z− 1)(1 + z)6 = 0. Therefore, (z− 1), (1 + z)
and (1 + z)2 may be common factors.
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Considering N(1; r) = 39r2 + 136r + 112 = (4 + 3r)(28 + 13r) = 0 and Q(1; r) =

4 + 3r = 0, then when r = −4
3

, (z− 1) is a common factor of N(z;−4
3
) and Q(z;−4

3
). And

if r = −28
13

, N(z;−28
13

) has a factor (z− 1), while Q(z;−28
13

) =
1
13

(13− 2z− 43z2). When

r = 0, Q(z; 0) = (1 + z)2, N(z; 0) = (1 + z)4(1 + z + z2 + z3 + z4 + z5 + z6). That is, when
r = 0, (1 + z)2 is a common factor of N(z; 0) and Q(z; 0).

(a) If r = −4
3

, M(z;−4
3
)− z =

z(z− 1)(9 + 39z + 64z2 + 64z3 + 64z4 + 64z5 + 64z6 + 39z7 + 9z8)

(3 + 5z)2 .

Additionally, the strange fixed points are (b) If r = 0, M(z; 0)− z = z(z7 − 1). At the same time, the
strange fixed points are z = 1,
−900969± 0.433884i, 0.62349± 0.781831i,−0.222521± 0.974928i.

(c) If r = −28
13

, M(z;−28
13

)− z =

z(z− 1)3(169 + 455z− 256z2 − 1792z3 − 2304z4 − 1792z5 − 256z6 + 455z7 + 169z8)

(−13 + 2z + 43z2)2 . Then, the strange

fixed points are z = 1(triple), 0.464249, 2.15402,−1.83183 ± 0.299321i,−0.531707 ± 0.0868811i,
−0.291754± 0.956493i.
(d) The result is obvious.

Before analyzing the stability of fixed points, it is tremendously necessary to solve the
first derivative of M(z; r), that is,

M′(z; r) =
4z7(1 + z)2 · P(z; r)

Q(z; r)3 , (7)

where P(z; r) = 2(1 + z)4 + 3r3z(2 + z) + 4r(1 + z)2(2 + z + z2) + r2(8 + 11z + 16z2 + 7z3).
Like the above analysis of fixed points, we are only interested in the behavior of the strange
fixed points. The following lemma can be obtained directly by calculation:

Lemma 4. Relation P(
1
z

; r) =
P(z; r)

z4 holds, ∀r ∈ C and ∀z ∈ C̃.

Checking whether P(z; r) and Q(z; r) have common factors, the following theorem
describes this property well.

Theorem 3. For P(z; r) and Q(z; r), we can obtain the following conclusions:

(a) If r = −4
3

, P(z; r) and Q(z; r) have a common factor (z− 1);

(b) If r = 0, (1 + z)2 is a common factor of P(z; r) and Q(z; r);
(c) If r = 4, P(z; r) and Q(z; r) all have a factor (z− 1);
(d) If r = −2, P(z; r) has a factor (z− 1)2;
(e) If r = 2, P(z; r) has a factor (1 + z)2;

( f ) If r = −2
9

or r = − 4
15

, P(z; r) has a factor (1 + 3z);

(g) If r(4+ 3r)(r− 4)(r+ 2)(r− 2)(2+ 9r)(4+ 15r) 6= 0, according to Theorem 5, the stability
of z can be shown graphically by changing the parameter r.

Proof. For some value of z, suppose that P(z; r) = 0 and Q(z; r) = 0. Then, we obtain
(z− 1)2(1+ z)5(1+ 3z) = 0 by eliminating r from P(z; r) = 0 and Q(z; r) = 0. Additionally,
(z − 1), (z − 1)2, (1 + z), (1 + z)2, (1 + 3z) are options for common factors. Checking

P(1; r) = (2 + r)(4 + 3r)2 = 0 and Q(1; r) = 4 + 3r = 0, we obtain r = −4
3

; (z − 1)

is a common factor of P(z;−4
3
) and Q(z;−4

3
). Additionally, if r = −2, P(z;−2) has a factor

(z− 1) while Q(z;−2) = 1− 3z2. By the same treatment, (b)− ( f ) can be obtained. (g)
Using Theorem 5, it is easy to express the stability of z by images.
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Corollary 2. Relation M′(z; r) = M′(
1
z

; r) holds, ∀r ∈ C and z ∈ C̃ is any fixed point of M(z; r).

Proof. Let X = Y = C̃, F = G = M, and conjugate mapping h(z) =
1
z

in Theorem 1(b),
the conclusion obviously holds.

We now begin to discuss the stability of strange fixed points in two parts. One part is
about the stability of Ex1 = 1, and the other part is about the stability of Exi, i = 2, 3, · · · , 11.

Theorem 4. Let r 6= −4
3

, the following results hold:

(a) | 2 + r
4 + 3r

| > 1, Ex1 = 1 is a repulsive point;

(b) | 2 + r
4 + 3r

| = 1, Ex1 = 1 is a neutral point;

(c) | 2 + r
4 + 3r

| < 1, Ex1 = 1 is an attractive point;

(d) r = −2, Ex1 = 1 is a superattacting point.

Proof. By taking z = 1 into (7), the above conclusion can be obtained by simple calculation.

Theorem 5. Relation M′(z; r) = M′(
1
z

; r) holds, ∀r ∈ C and ∀z ∈ C̃ is a strange fixed point.

Figures 1 and 2 give the stability surfaces of the strange fixed points and local diagrams.
In the six local graphs, we note that the gray region represents the range of parameter values
that can make the sequence generated by the initial point not converge to the corresponding
strange fixed point during the iteration process. Selecting the parameter values in this
region, the corresponding iterative method is more stable.

What follows is the process of finding the superattracting points. By simultaneously
solving N(z; r) = 0 and P(z; r) = 0, and then eliminating the parameter r in the two
polynomials, the following relation exists:

(z− 1)3(z + 1)8 · T(z) = 0.

We notice that z = 1 is a superrattracting point when r = −2 and z = −1 is a superrattract-
ing point when r = 2. Considering T(z) = 0, according to the content of Theorem 5, we can
divide fourteen roots into seven pairs of roots to solve. Then, the following Lemma holds.

(a) Ex1 (b) Part of (a)

Figure 1. Stability surfaces of Ex1 = 1.
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(a) Ex2 and Ex3 (b) Part of (a)

(c) Ex4 and Ex5 (d) Part of (c) (e) Ex6 and Ex7

(f) Part of (e) (g) Ex8 and Ex9 (h) Part of (g)

(i) Ex10 and Ex11 (j) Part of (i)

Figure 2. Stability surfaces of the other ten strange fixed points.
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Lemma 5. Let z1 = 0.734097, z2 = −3.29007 − 0.912873i, z3 = −0.960116 − 0.279602i,
z4 = −0.72815 − 0.685417i, z5 = −0.282218 − 0.0783053i, z6 = 0.0426856 − 0.499703i,
z7 = 0.169707− 1.98669i, Then, seven pairs of superattracting points of conjugated map M(z; r)

are given by (zj,
1
zj
), (j = 1, 2, · · · , 7), respectively, for seven values of r ∈ {−2.24571,−0.25661−

0.0587542i, 0.028512 − 1.27233 × 10−9i, 0.118851 + 0.357058i,−0.298721 + 0.0518231i,
−0.504595+ 0.386706i,−0.491563− 0.502788i} or {−1.21604, 3.80659+ 0.547376i, 0.0633056
+0.0384693i, 0.427812 + 2.2512 × 10−6i,−0.25661 + 0.0587543i,−0.491563 + 0.502788i,
−0.458294+ 2.48544i} or {−1.09985, 4.35299+ 1.17151i, 1.86513+ 5.69377× 10−9i, 0.847256
−3.26892× 10−6i, 4.35299− 1.17151i,−0.458294− 2.48544i,−0.420408 + 1.75714i}.

3.2. Analysis of Critical Points

The critical points of M(z; r) can be obtained according to M′(z; r) = 0 in (7). z = 0
and z = ∞ are obviously the critical points related to the roots of f (z) = (z− a)(z− b).
The critical point unrelated to roots a, b is called the free critical point, and the free critical
points are represented by Cri, respectively.

Corollary 3. If z is a critical point of M(z; r), then so is
1
z

.

Proof. By Lemma 2, for a given r ∈ C and ∀z ∈ C̃, we obtain

M′(z; r) ·M(
1
z

; r)− 1
z2 M(z; r) ·M′(1

z
; r) = 0.

Hence, if M′(z; r) = 0, then M′(
1
z

; r) = 0.

Theorem 6. The free critical points of M(z; r) are:

• Cr1 = −1;

• Cr2 =
1
2
(−2−

√
−4 + r

√
r− r);

• Cr3 =
1
2
(−2 +

√
−4 + r

√
r− r)=

1
Cr2

;

• Cr4 =
−4− 2r− 3r2 −

√
3
√
−16r− 12r2 + 4r3 + 3r4

4(1 + 2r)
;

• Cr5 =
−4− 2r− 3r2 +

√
3
√
−16r− 12r2 + 4r3 + 3r4

4(1 + 2r)
=

1
Cr4

.

Figure 3 shows the bifurcation diagram of the critical point when r is real. From the
image, the following conclusions are directly established:

Remark 1. For the critical point Cri, 1 ≤ i ≤ 5, the following relationships hold:

• Relation Cr2 = Cr3 holds when r = 0 or r = 4;

• Relation Cr4 = Cr5 holds when r = −2, r = −4
3

, r = 0 or r = 2;

• Relation Cr2 = Cr4 holds when r = −4
3

, r = 0 or r = 4;

• Relation Cr3 = Cr5 holds when r = 0;
• Relation Cr1 = Cr2 = Cr3 = −1 holds when r = 0;
• Relation Cr1 = Cr4 = Cr5 = −1 holds when r = 0 or r = 2;
• Relation Cr2 = Cr3 = Cr4 = Cr5 holds when r = 0.
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Figure 3. Bifurcation diagram of critical points.

3.3. Parameter Spaces and Dynamical Planes

In this part, in order to describe the iterative mapping M(z; r), we use the parameter
space P and the dynamical plane D. We draw the parameter space generated by the
critical point as the initial point. By observing the parameter space, we can choose a stable
parameter set; thus, we can avoid the selection of these unstable parameters. In addition,
according to the determined parameters, the dynamical plane is drawn to observe the
convergence of the iterative method (1). Finally, we determine the most stable parameters
for an efficient solution to practical problems.

P = {r ∈ C : an orbit o f a f ree critical point z(r) tends to a number εp ∈ C̃ under the action o f M(z; r)},

D = {z ∈ C : an orbit o f z(r) f or a given r ∈ P tends to a number εd ∈ C̃ under the action o f M(z; r)}.

3.3.1. Parameter Spaces

We select a 1000× 1000 plane point with a critical point as the starting point after
a maximum of 80 iterations to generate parameter space. If the sequence converges to
0 during the iteration, it is represented in pink; if the sequence converges to ∞, it is
represented in green; and black represents other cases, including nonconvergence. Figure 4
shows the parameter space corresponding to the iteration sequence generated from the free
critical point Cr1 = −1, mostly black.

A similar process can be performed for the free critical points Cr2,3 and Cr4,5, and the
corresponding parameter spaces P1 and P2 can be obtained, as shown in Figures 5 and 6.
In Figure 5, there are only pink and green regions, indicating that the sequence generated
from Cr2,3 always converges to the roots regardless of the parameter r. This situation is
exactly what we expect, indicating that the corresponding iterative method is stable with
Cr2,3 as the initial point. In Figure 6, the black area appears. By zooming the local areas,
we observed a black pattern that has some similarity to the known Mandelbrot set [26]. In
addition, the iterative method corresponding to the r value in the black region is unstable,
for example, r = −2.2,−1.8,−0.45 + 2.5i,−0.5 + 2.5i, 0.73 + 1.7i, because the sequence
generated by the critical points Cr4,5 does not converge to the roots a and b. So, in the
selection of r in (1), we try to avoid the values in the black area as much as possible and
instead select the values in the green and pink areas.



Fractal Fract. 2022, 6, 749 11 of 18

-3 -2 -1 0 1 2 3

Re{r}

-3

-2

-1

0

1

2

3

Im
{r

}

(a) Parameter plane with z = Cr1(r)

-0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0

Re{r}

-0.1

-0.05

0

0.05

0.1

Im
{r

}

(b) Zoom parameter plane

Figure 4. Parameter spaces for free critical points Cr1 = −1.
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Figure 5. P1 for Cr2,3.
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Figure 6. P2 for Cr4,5.
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3.3.2. Dynamical Planes

By giving the parameter r, we perform up to 50 iterations on the grid points of
800× 800 to draw a dynamical plane. If the iteration converges to 0, it is drawn yellow; if it
converges to ∞, it is represented in ivory. Peak green indicates that the iterative sequence
converges to 1, and black indicates that it does not converge. We are interested in the
parameter values without black regions. In addition, the white asterisk "∗" represents the
attractive point, the blue square "�" represents the periodic point, the orbit of the periodic
point is represented by blue, the red circle "◦" represents the additional fixed point and the
convergence orbit is represented by red.

According to the above drawing specification, combined with the theorems and
conclusions of the previous sections, we draw the dynamical plane of the iterative method
(1) by the given parameter r, observe its dynamic behavior and analyze its stability.

The r value in Figure 7 is determined by Theorem 2 and Theorem 3. In Figure 7, only the
black region appears in Figure 7c, indicating that the iterative method has nonconvergence
behavior. Green regions appear in Figures 7c,f, suggesting that the corresponding iterative
method converges to the fixed point Ex1 = 1 in addition to 0 and ∞. The previous theorems
and figures also illustrate this result. For example, by calculation, Theorem 4(d) shows that
z = 1 is a superattracting point at r = −2. In Figure 1b, we observe the point at r = −2,
corresponding to the golden region, which means that when r = −2, the iterative method
(1) converges to the fixed point Ex1 = 1 in addition to the roots a and b, that is, the iterative
method is unstable. In Figure 6e, the parameter space P2 also presents a black area when
r = −2. In addition, we also note that the dynamical planes shown in Figure 7g,h are the

same, indicating that the stability of the iterative methods corresponding to r = −2
9

and

r = − 4
15

is not much different, and both are stable. In fact, when considering the stability
of the iterative methods with fixed points and critical points as the initial points, combined
with Figures 1, 2, 4 and 5, we can deduce that most of the iterative methods corresponding
to the real value r in [−0.5, 0]× [−0.1, 0.1] are stable.

Figure 8 shows the dynamical plane by selecting the r value from the black region
in the parameter space P2. The results show that there are indeed unstable behaviors in
these cases. Figure 9 is a partial detail of them. Figure 10 shows the dynamical plane of the
parameter r that makes the fixed point Ex1 = 1 neutral.

In Figures 7–10, we notice that periodic points appear in Figures 7c,e, 8a–c and 10a,b,
where the blue line represents the orbit of the periodic point. Figures 7c,f, 8a and 10a,b all
show the behavior orbit of an extra fixed point with red lines, which come from Ex1 = 1
or the roots of N(z; r) = 0 in (6). In addition, for the dynamic behavior diagrams with
nonconvergence behavior in Figures 7c, 8a–e and 10a,b, in the dynamical plane diagram
with the same range, the larger the black area is, the more unstable the dynamic behavior
of the iterative method is. Based on the above description, it is shown that the parameters
corresponding to these figures belong to the unstable parameter family.

By analyzing the dynamic behavior of (1) with different parameters, we obtain the sta-

ble parameter set r ∈ {0,−4
3

, 4,−2
9

,− 4
15
} and the unstable parameter set

r ∈ {−28
13

, 2,−2,−2.2,−1.8,−0.45 + 2.5i,−0.5 + 2.5i, 0.73 + 1.7i,−468
247

,−532
247
}, which fa-

cilitates the selection of parameters when solving nonlinear equations using the iterative
method (1).
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Figure 7. Dynamical planes of special r-values.
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(e) r = 0.73 + 1.7i

Figure 8. Dynamical planes of special r-values.
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4. Conclusions

In this paper, the fractal behavior of a class of the optimal eighth-order single-parameter
Petković family is studied. By regarding the number of iterations in the iterative method
(1) as a time index, the process of solving the nonlinear equation f (x) = 0 for a given
initial point x0 can be regarded as an image sequence in a dynamic system. Under Möbius
conjugate mapping, the connection between iterative method and rational operator makes
it simple to explore the fractal behavior of the iterative method.

To start with, in the process of solving the fixed point and critical point of (5), some
special parameter r values are found by analyzing the relationship between numerators
and denominators in (6) and (7), respectively. Secondly, by analyzing the fixed points
and critical points in turn, as well as their stability behavior, we also obtain the fixed
point stability surface diagram and parameter space. We find the stability relationship
between the parameter r and the initial point z0, that is, we select a parameter r ∈ C
from the parameter space P , and the critical point related to P is used as the initial
point of the iteration to determine whether the generated sequence converges to the
fixed point, which corresponds to the fixed point stable surface diagram, as shown in
Figures 1, 2 and 4–6. In addition, by drawing the dynamic behavior diagram of the
given parameters, the previous theorems and conclusions are verified; see Figures 7–10.
Conclusively, we attain the member choice with good dynamic behavior in the optimal

eighth-order Petković family (1), that is, r ∈ {0,−4
3

, 4, 2,−2
9

,− 4
15
}. Furthermore, we

conclude from Figure 7a that r = 0 is the most stable parameter.
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20. Geum, Y.H.; Kim, Y.I.; Magreñán, Á.A. A biparametric extension of King’s fourth-order methods and their dynamics. Appl. Math
Comput. 2016, 282, 254–275.
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