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1. Introduction

Around 1822, a renowned overseeing state of an improvement in viscid liquid stream
was found, known as the Navier–Stokes (NS) condition—this condition was feasibly named
as Newton’s second law of fluid, and is a blend of congruity and strength conditions. These
conditions are useful in depicting the actual study of various consistent and planned char-
acteristics of interest. It distinguishes a few things around the wings of the airplane, for
example, the fluid stream in pipes, bloodstream and wind current. The Navier–Stokes
condition makes the connection between strain and liquid act as outer powers to the liquid
stream reaction. These conditions [1,2] and traditional liquid elements have been very
successful in acquiring quantitative information on shock waves, disturbances and solu-
tions. Numerous critical peculiarities, such as their thermodynamics, aeronautical sciences,
geophysics, the petrol business, plasma physical science, etc., provide a characteristic de-
piction of the association of a thick liquid with a rigid body. They are considered significant
computational devices for a more superior comprehension of various genuine issues [3,4].

A halfway examination is a general improvement of the investigation regarding the
total number of solicitations to whimsical solicitation—it was portrayed in advance during
correspondence between Leibniz and L’Hospital in 1695. Considering its particular ability
to sort out odd ways to deal with acting and memory influences, which are the funda-
mental elements of tangled idiosyncrasies, an incomplete assessment has been persistently
arranged to chip away at current numerical models [5–7]. The numerical legitimization
behind fragmentary solicitation assistants was settled by the joint endeavors of specialists
such as Caputo, Riemann, Liouville, Ross and Miller, Podlubny and others. Incomplete so-
licitation math speculation has been related with practical applications and has claimed the
speculation of tumult, electrodynamics, signal care, thermodynamics, monetary viewpoints
and various sectors [8].

In fragmentary math, we habitually modeled various real characteristics slightly
complicatedly, such as differences with regular examinations. The ongoing strategy relies
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upon the prompt execution of the normal change on the Caputo-portrayed fragmentary
solicitation subordinates. Around the completion of the proposed estimation, we obtained
a game plan of the fragmentary solicitation of the Navier–Stokes condition regarding the
provided fractional solicitation. Hence, we can get different courses of action at other
fragmentary solicitations of these conditions. The responsibility of the ongoing systems is
that we can separate other components of these conditions by including various fractional
solicitation subordinates in a system; we might pick an ideal fragmentary, requesting to
find an answer which is as per the specific arrangement of the issue.

In the current paper, we suppose a period fragmentary Navier–Stokes condition for
an incompressible liquid [9–11] progression of density ρ and kinematic consistency υ = φ

ρ .
It is shown as 

Dµ
βV + (V.∇)V = ρ∇2V − 1

ρ∇g,
∇.V = 0,
V = 0, on Ω× (0, T).

Here, V = (µ, ν, w), q, and µ address liquid vector, tension and time, separately. (β, θ, δ)
addresses the spatial parts in Ω. The above conditions can likewise be characterized as

Dµ
ξ(φ) + φ

∂φ
∂β + ψ

∂φ
∂θ + Θ ∂φ

∂δ = ρ
[

∂2φ
∂β2 +

∂2φ
∂θ2 + ∂2φ

∂δ2

]
− 1

ρ
∂g
∂β

Dµ
ξ(ψ) + φ

∂ψ
∂β + ψ

∂ψ
∂θ + Θ ∂ψ

∂δ = ρ
[

∂2ψ

∂β2 + ∂2ψ

∂θ2 + ∂2ψ

∂δ2

]
− 1

ρ
∂g
∂θ

Dµ
ξ(Θ) + φ ∂Θ

∂β + ψ ∂Θ
∂θ + Θ ∂Θ

∂δ = ρ
[

∂2Θ
∂β2 + ∂2Θ

∂θ2 + ∂2Θ
∂δ2

]
− 1

ρ
∂g
∂δ .

Here, some essential obligations from the specialists are discussed; assume, for instance,
Herrmann and Hilfer outline that fragmentary partial differential circumstances, for ex-
ample, the time-partial Navier–Stokes conditions, are not altogether firmly established
by applications in different areas of science and arranging. El-Shahed and Salem carried
out an incomplete appearance of these conditions in 2005. Producers utilized the Laplace
change, limited the Hankel change and limited the Fourier Sine change, adding obsolete
Navier–Stokes conditions. Kumar et al. logically took care of the nonlinear halfway model
of these conditions by joining HPM and LTA. Ganji et al. and Ragab et al. had settled
the non-straight time fragmentary NS condition by executing a homotopy assessment
system. Odibat, Momani and Birajdar presented ADM for mathematical assessments of
the time-partial Navier–Stokes condition. The watchful arrangement of the time-fractional
Navier–Stokes condition is accomplished by Kumar et al., using a blend of ADM and the
Laplace change, while Chaurasia and Kumar kept an eye on a near-condition by joining
the restricted Hankel change and Laplace change.

M. Rawashdeh and S. Maitama introduced NDM in 2014 to handle immediate and
nonlinear ODEs and PDEs. A colossal amount of genuine issues had been concentrated by
using NDM—for instance, the examination of the partial message condition, partial-order
Whitham–Broer–Kaup conditions, partial-order heat and wave conditions, fragmentary
actual models, fractional order PDEs with relative deferment and fragmentary-order dis-
semination conditions [12–15].

The ongoing creation is stressed over the fractional solicitation smart plan of the
Navier–Stokes conditions. An arrangement of conventional conditions has been the subject
for examiners over a long period. The smart plans of the fractional-ordered condition are the
major point of convergence for researchers and mathematicians; this was the moving work
to grow or cultivate the ongoing systems for the incomplete solicitation courses of action
regarding the Navier–Stokes conditions. An impressive part of them has accomplished
and formulated creative techniques to handle the fragmentary-order Navier–Stokes system.
In such a way, a stream investigation is a shrewd responsibility to the logical plan of the
partial-order Navier–Stokes conditions. In this article, we did not simply execute two logical
procedures—specifically, the Sumudu change and predictor–corrector strategy—however,
in such a manner, their evaluation stated the importance of the proposed calculations. The
continuous evaluation work is driven in an especially major and direct way to accomplish
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the clever plans of the doled-out issues with a limited measure of mathematical appraisals.
The mix of the proposed methods is irrelevant. With everything taken into account, the
proposed methodologies are seen as a mind-boggling responsibility towards the logical
course of action regarding fragmentary-order fractional differential circumstances, which
constantly arise in science and planning.

In recent studies, Chu et al. [16] solved the system by using the Caputo derivative and
Laplace transform with the variation iteration transform method. Singh and Kumar [17]
found the approximate solution of the system by using the fractional reduced differential
transform method, while Kavvas and Ercan [18] found the solution of the Navier–Stokes
system with a different approach, using the system of momentum equations.

In this article, first, we use the existence and uniqueness theorem to verify the existence
and uniqueness of the system’s solution. Further, we will apply the Sumudu transform
with an iterative technique to solve the system. This work strives to find an approximate
solution to the NS system with a new methodology and approach.

2. Pre-Requisites
2.1. Caputo Fractional Differential Operator

The Caputo derivative [19] is helpful for modeling phenomena that consider past
interactions and issues with non-local features. The equation can be regarded as having
“memory” in this sense. This contrasts with parabolic equations such as the heat operator,
which does not account for the past, and the groundwater flow equations in confined,
unconfined and leaky aquifers, as well as other diffusion issues.

The partial-ordered Caputo derivative of g(β) is defined below:

Dξ g(β) =
1

Γ(k− ξ)

β∫
0

(β− τ)k−ξ−1g(k)(τ)dτ, (1)

for k− 1 < ξ < k, k ∈ N, β > 0.

2.2. Caputo Fractional Integral Operator

The Caputo fractional integral operator of order α is explained below:

C Iαg(t) =
1

Γα

t∫
0

(t− υ)α−1g(υ)dυ. (2)

2.3. Sumudu Transform

Suppose f (x,t) is a function, then the Sumudu transform of the Caputo–Fabrizio [19]
fractional differential coefficient of f (x,t) is defined below:

ST(CF
0 Dξ

t )( f (x, t)) = M(ξ)

[
ST( f (x, t))− f (x, 0)

1− ξ + θu

]
. (3)

2.4. Sumudu Transform of the Caputo Fractional Derivative

The Sumudu transform of the Caputo fractional derivative is explained below:

ST
[

cDξ f (x, t) : s
]
= s−ξST{ f (x, t)} − s−ξ

m−1

∑
k=0

sk f k(x, 0). (4)

The current article is divided into seven pieces; Segment 1 deals with the paper’s intro-
duction, while Segment 2 lists prerequisites for the article. The iteration method process is
discussed in Section 3. The system’s existence is discussed in Section 4 and the system’s
uniqueness is discussed in Section 5. By using the Sumudu transform approach, we arrive
at the model’s solution in Section 6, and in Section 7, we explain the results. We have given
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due credit to the writers and academics whose articles and research contributed to our
conclusions. Thus, the references are in the last part.

3. Iteration Method in the Caputo Derivative by Using the Sumudu Transformation

This section explains the iteration transform method [15] of the fractional partial
differential system:

Dµ
ξ φ(β, µ) + H1(φ, ψ) + M1(φ, ψ)− q1(β, µ) = 0, (5)

and
Dµ

ξ ψ(β, µ) + H2(φ, ψ) + M2(φ, ψ)− q2(β, µ) = 0, m− 1 < ξ ≤ m (6)

where starting constraints are,

φ(β, 0) = g1(β), ψ(β, 0) = g2(β). (7)

where Dµ
ξ is the Caputo fractional derivative of order ξ. H1, H2 & M1, M2 are linear and

nonlinear functions and q1, q2 are source operators. Now, we apply the Sumudu transform:

ST
[

Dµ
ξ φ(β, µ) + H1(φ, ψ) + M1(φ, ψ)− q1(β, µ)

]
= 0, (8)

and
ST
[

Dµ
ξ ψ(β, µ) + H2(φ, ψ) + M2(φ, ψ)− q2(β, µ)

]
= 0, (9)

or
ST
[

Dµ
ξ φ(β, µ)

]
+ ST[H1(φ, ψ) + M1(φ, ψ)− q1(β, µ)] = 0, (10)

and
ST
[

Dµ
ξ ψ(β, µ)

]
+ ST[H2(φ, ψ) + M2(φ, ψ)− q2(β, µ)] = 0, (11)

or

sξST{φ(β, µ)} − s−ξ
m−1

∑
k=0

skφk(β, 0) = −ST[H1(φ, ψ) + M1(φ, ψ)− q1(β, µ)], (12)

and

sξST{ψ(β, µ)} − s−ξ
m−1

∑
k=0

skψk(β, 0) = −ST[H2(φ, ψ) + M2(φ, ψ)− q2(β, µ)]. (13)

Using the repetitive strategy, we find

ST{φm+1(β, µ)} = ST{φm(β, µ)}+ λ(s)
[

sξ φm(β, µ)−
m−1
∑

k=0
sξ−k−1φk(β, 0)

]
−ST[q1(β, µ)]− ST[H1(φ, ψ) + M1(φ, ψ)],
and

ST{ψm+1(β, µ)} = ST{ψm(β, µ)}+ λ(s)
[

sξ ψm(β, µ)−
m−1
∑

k=0
sξ−k−1ψk(β, 0)

]
−ST[q2(β, µ)]− ST[H2(φ, ψ) + M2(φ, ψ)].

(14)

Setting the Lagrange multiplier as λ(s) = − 1
sξ and taking the inverse Sumudu transform

on both sides, we have
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φm+1(β, µ) = φm(β, µ)− ST−1
[

1
sξ

{
m−1
∑

k=0
sξ−k−1φk(β, 0)

}]
−q1(β, µ)− {H1(φ, ψ) + M1(φ, ψ)},
and

ψm+1(β, µ) = ψm(β, µ)− ST−1
[

1
sξ

{
m−1
∑

k=0
sξ−k−1ψk(β, 0)

}]
−q2(β, µ)− {H2(φ, ψ) + M2(φ, ψ)}.

4. Existence of Solution in Caputo Case

We have the mechanism described below:

Dξ
t (φ) + φ

∂φ
∂β + ψ

∂φ
∂θ + Θ ∂φ

∂δ = ρ
[

∂2φ

∂β2 +
∂2φ

∂θ2 + ∂2φ

∂δ2

]
,

Dξ
t (ψ) + φ

∂ψ
∂β + ψ

∂ψ
∂θ + Θ ∂ψ

∂δ = ρ
[

∂2ψ

∂β2 + ∂2ψ

∂θ2 + ∂2ψ

∂δ2

]
,

Dξ
t (Θ) + φ ∂Θ

∂β + ψ ∂Θ
∂θ + Θ ∂Θ

∂δ = ρ
[

∂2Θ
∂β2 + ∂2Θ

∂θ2 + ∂2Θ
∂δ2

]
.

(15)

or
Dξ

t (φ) = ρ
[

∂2φ

∂β2 +
∂2φ

∂θ2 + ∂2φ

∂δ2

]
−
[
φ

∂φ
∂β + ψ

∂φ
∂θ + Θ ∂φ

∂δ

]
,

Dξ
t (ψ) = ρ

[
∂2ψ

∂β2 + ∂2ψ

∂θ2 + ∂2ψ

∂δ2

]
−
[
φ

∂ψ
∂β + ψ

∂ψ
∂θ + Θ ∂ψ

∂δ

]
,

Dξ
t (Θ) = ρ

[
∂2Θ
∂β2 + ∂2Θ

∂θ2 + ∂2Θ
∂δ2

]
−
[
φ ∂Θ

∂β + ψ ∂Θ
∂θ + Θ ∂Θ

∂δ

]
.

(16)

The derivatives have now been changed to the Caputo fractional derivative, and now
we have

CDξ
t (φ) = ρ

[
∂2φ

∂β2 +
∂2φ

∂θ2 + ∂2φ

∂δ2

]
−
[
φ

∂φ
∂β + ψ

∂φ
∂θ + Θ ∂φ

∂δ

]
,

CDξ
t (ψ) = ρ

[
∂2ψ

∂β2 + ∂2ψ

∂θ2 + ∂2ψ

∂δ2

]
−
[
φ

∂ψ
∂β + ψ

∂ψ
∂θ + Θ ∂ψ

∂δ

]
,

CDξ
t (Θ) = ρ

[
∂2Θ
∂β2 + ∂2Θ

∂θ2 + ∂2Θ
∂δ2

]
−
[
φ ∂Θ

∂β + ψ ∂Θ
∂θ + Θ ∂Θ

∂δ

]
.

(17)

Assume for a moment that the function f
(

β, θ, δ, t, φ, φ′β, φ′θ , φ′δ, φ”
β, φ”

θ , φ”
δ

)
meets the Lips-

chitz condition [20–26],∥∥∥ f
(

β, θ, δ, t, φ, φ′β, φ′θ , φ′δ, φ”
β, φ”

θ , φ”
δ

)
− f

(
β, θ, δ, t, φ1, φ

′
1β, φ

′
1θ , φ

′
1δ, φ”

1β, φ”
1θ , φ”

1δ

)∥∥∥
≤ M|φ− φ1|+ K1

∣∣∣φ′β − φ
′
1β

∣∣∣+ K2

∣∣∣φ′θ − φ
′
1θ

∣∣∣+ K3

∣∣∣φ′δ − φ
′
1δ

∣∣∣+ L1

∣∣∣φ”
β − φ”

1β

∣∣∣
+L2

∣∣φ”
θ − φ”

1θ

∣∣+ L3
∣∣φ”

δ − φ”
1δ

∣∣.
Now, assume that∥∥∥φ′β − φ

′
1β

∥∥∥ ≤ ϑ1‖φ− φ1‖,
∥∥∥φ′θ − φ

′
1θ

∥∥∥ ≤ ϑ2‖φ− φ1‖,
∥∥∥φ′δ − φ

′
1δ

∥∥∥ ≤ ϑ3‖φ− φ1‖,∥∥∥φ”
β − φ”

1β

∥∥∥ ≤ ϑ4‖φ− φ1‖,
∥∥φ”

θ − φ”
1θ

∥∥ ≤ ϑ5‖φ− φ1‖,
∥∥φ”

δ − φ”
1δ

∥∥ ≤ ϑ6‖φ− φ1‖,

where ϑ1, ϑ2, ϑ3, ϑ4, ϑ5 and ϑ6 ∈ R+ such that M + K1ϑ1 + K2ϑ2 + K3ϑ3 + L1ϑ4 + L2ϑ5 +
L3ϑ6 ≤ 1; then, the system has a solution if we can determine tmax, such that:

tξ
max < Γξ

Proof. Using the fundamental hypothesis of fractional math, we get:

φ(β, θ, δ, t)− φ(β, θ, δ, 0) = 1
Γξ

t∫
0
(t− y)ξ−1 f

(
β, θ, δ, t, φ, φ′β, φ′θ , φ′δ, φ”

β, φ”
θ , φ”

δ

)
dy, (18)
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or

φ(β, θ, δ, t) = φ0 +
1

Γξ

t∫
0
(t− y)ξ−1 f

(
β, θ, δ, t, φ, φ′β, φ′θ , φ′δ, φ”

β, φ”
θ , φ”

δ

)
dy (19)

Now by iteration,

φn(β, θ, δ, t) = φ0+

1
Γξ

t∫
0
(t− y)ξ−1 f

(
β, θ, δ, t, φn−1, φ

′
β,n−1, φ

′
θ,n−1, φ

′
δ,n−1, φ”

β,n−1, φ”
θ,n−1, φ”

δ,n−1

)
dy.

(20)

Let γn = φn − φn−1.
So,

γn = 1
Γξ

t∫
0
(t− y)ξ−1

[
f
(

β, θ, δ, t, φn−1, φ
′
β,n−1, φ

′
θ,n−1, φ

′
δ,n−1, φ”

β,n−1, φ”
θ,n−1, φ”

δ,n−1

)
− f
(

β, θ, δ, t, φn−2, φ
′
β,n−2, φ

′
θ,n−2, φ

′
δ,n−2, φ”

β,n−2, φ”
θ,n−2, φ”

δ,n−2

)]
dy.

(21)

Here, we see that

φn =
n

∑
i=1

γn

Now, taking norm both sides, we have:

‖γn‖ = ‖φn − φn−1‖

≤ 1
Γξ

∥∥∥∥∥ t∫
0
(t− y)ξ−1

[
f
(

β, θ, δ, t, φn−1, φ
′
β,n−1, φ

′
θ,n−1, φ

′
δ,n−1, φ”

β,n−1, φ”
θ,n−1, φ”

δ,n−1

)
− f
(

β, θ, δ, t, φn−2, φ
′
β,n−2, φ

′
θ,n−2, φ

′
δ,n−2, φ”

β,n−2, φ”
θ,n−2, φ”

δ,n−2

)]
dy
∥∥∥,

(22)

So,

‖γn‖ ≤ 1
Γξ

[
M‖φn−1 − φn−2‖+ K1

∥∥∥φ
′
β,n−1 − φ

′
β,n−2

∥∥∥+ K2

∥∥∥φ
′
θ,n−1 − φ

′
θ,n−2

∥∥∥
+K3

∥∥∥φ
′
δ,n−1 − φ

′
δ,n−2

∥∥∥+ L1

∥∥∥φ
′′
β,n−1 − φ

′′
β,n−2

∥∥∥+ L2

∥∥∥φ
′′
θ,n−1 − φ

′′
θ,n−2

∥∥∥
+L3

∥∥∥φ
′′
δ,n−1 − φ

′′
δ,n−2

∥∥∥] t∫
0
(t− y)ξ−1dy

(23)

It gives,

≤
[

M‖φn−1 − φn−2‖+ K1

∥∥∥φ
′
β,n−1 − φ

′
β,n−2

∥∥∥+ K2

∥∥∥φ
′
θ,n−1 − φ

′
θ,n−2

∥∥∥+ K3

∥∥∥φ
′
δ,n−1 − φ

′
δ,n−2

∥∥∥
+L1

∥∥∥φ”
β,n−1 − φ”

β,n−2

∥∥∥+ L2

∥∥∥φ”
θ,n−1 − φ”

θ,n−2

∥∥∥+ L3

∥∥∥φ”
δ,n−1 − φ”

δ,n−2

∥∥∥][
1

Γξ

t∫
0
(t− y)ξ−1dy

]
,

(24)

Let
∥∥∥γ
′
n−1

∥∥∥ ≤ ϑ1‖γn−1‖ and
∥∥γ”

n−1

∥∥ ≤ ϑ2‖γn−1‖, hence,

‖γn‖ ≤ [M‖γn−1‖+ K1ϑ1‖γn−1‖+ K2ϑ2‖γn−1‖+ K3ϑ3‖γn−1‖+ L1ϑ4‖γn−1‖+ L2ϑ5‖γn−1‖

+L3ϑ6‖γn−1‖]
[

1
Γξ

t∫
0
(t− y)ξ−1dy

]
,

(25)

or

‖γn‖ ≤ ‖γn−1‖[M + K1ϑ1 + K2ϑ2 + K3ϑ3 + L1ϑ4 + L2ϑ5 + L3ϑ6]

[
1

Γξ

t∫
0
(t− y)ξ−1dy

]
, (26)

or
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‖γn‖ ≤ ‖γ0‖[M + K1ϑ1 + K2ϑ2 + K3ϑ3 + L1ϑ4 + L2ϑ5 + L3ϑ6]
n

[
1

Γξ

t∫
0
(t− y)ξ−1dy

]n

. (27)

Now, let M + K1ϑ1 + K2ϑ2 + K3ϑ3 + L1ϑ4 + L2ϑ5 + L3ϑ6 = ϑ7 < 1, hence, we have

‖γn‖ ≤ ‖γ0‖ϑn
7

[
tξ
max
Γξ

]n
. (28)

Thus, the system has a solution if we can find tmax ., such that(
tξ
max

Γξ

)
ϑ7 < 1, (29)

or (
tξ
max

Γξ

)
< 1, (30)

tξ
max < Γξ.

Thus, it implies that the solution of our framework exists.

5. Uniqueness of Solution

In this part, we will prove the uniqueness of the solution of the system.
Suppose that φ and φ1 are two solutions of the first equation of the system (15).

Suppose that

φ(β, θ, δ, t)− φ1(β, θ, δ, t) =
1

Γα

x∫
0

(x− y)α−1φ(y)dy− 1
Γα

x∫
0

(x− y)α−1φ1(y)dy, (31)

Now, applying norm both sides, we get

‖φ(β, θ, δ, t)− φ1(β, θ, δ, t)‖ =

∥∥∥∥∥∥ 1
Γα

x∫
0

(x− y)α−1φ(y)dy− 1
Γα

x∫
0

(x− y)α−1φ1(y)dy

∥∥∥∥∥∥, (32)

or

‖φ(β, θ, δ, t)− φ1(β, θ, δ, t)‖ ≤ 1
Γα

∥∥∥∥∥∥
x∫

0

(x− y)α−1(φ(y)− φ1(y))dy

∥∥∥∥∥∥ (33)

or

‖φ(β, θ, δ, t)− φ1(β, θ, δ, t)‖ ≤ 1
Γα
‖φ(y)− φ1(y)‖

x∫
0

(x− y)α−1dy (34)

We know that F is known as a Lipschitz operator if ‖F( f )− F(g)‖ ≤ σ‖ f − g‖, where σ
is the smallest number that satisfies the given condition, and where f and g belong to
the range set. Thus, using the Lipschitz condition and remembering that the outcome
obtained is bounded, we get φ = φ1. Similarly, we can also find the other results—ψ = ψ1
and Θ = Θ1.
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6. Solution of the Model by Sumudu Transform Method with Caputo
Fractional Derivative

Here, we will address the time-fractional-ordered (2 + 1)-layered NS condition

Dt
ξ(φ) + φ

∂φ
∂β + ψ

∂φ
∂θ + Θ ∂φ

∂δ = ρ
[

∂2φ

∂β2 +
∂2φ

∂θ2 + ∂2φ

∂δ2

]
+ q1,

Dt
ξ(ψ) + φ

∂ψ
∂β + ψ

∂ψ
∂θ + Θ ∂ψ

∂δ = ρ
[

∂2ψ

∂β2 + ∂2ψ

∂θ2 + ∂2ψ

∂δ2

]
+ q2,

Dt
ξ(Θ) + φ ∂Θ

∂β + ψ ∂Θ
∂θ + Θ ∂Θ

∂δ = ρ
[

∂2Θ
∂β2 + ∂2Θ

∂θ2 + ∂2Θ
∂δ2

]
+ q3.

(35)

with initial conditions 
φ(β, θ, δ, 0) = −0.5β + θ + δ,
ψ(β, θ, δ, 0) = β− 0.5θ + δ,
Θ(β, θ, δ, 0) = β + θ − 0.5δ.

(36)

It should be noted that if ρ is known, then q1 = − 1
ρ

∂g
∂β , q2 = − 1

ρ
∂g
∂θ and q3 = − 1

ρ
∂g
∂δ can

be found.
Now, taking the Sumudu transformation [27–29] both sides in Equation (35), we get

ST
[

Dt
ξ(φ)

]
= −ST

[(
φ

∂φ

∂β
+ ψ

∂φ

∂θ
+ Θ

∂φ

∂δ

)
+ ρ

(
∂2φ

∂β2 +
∂2φ

∂θ2 +
∂2φ

∂δ2

)
+ q1

]
, (37)

or

s−ξ

[
ST{φ(β, θ, δ, t)} −

m−1
∑

k=0
skφk(β, θ, δ, 0)

]
= −ST

[(
φ

∂φ
∂β + ψ

∂φ
∂θ + Θ ∂φ

∂δ

)
+ρ
(

∂2φ

∂β2 +
∂2φ

∂θ2 + ∂2φ

∂δ2

)
+ q1

]
,

(38)

or

ST{φ(β, θ, δ, t)} −
m−1
∑

k=0
skφk(β, θ, δ, 0) = − 1

s−ξ ST
[(

φ
∂φ
∂β + ψ

∂φ
∂θ + Θ ∂φ

∂δ

)
+ρ
(

∂2φ

∂β2 +
∂2φ

∂θ2 + ∂2φ

∂δ2

)
+ q1

]
.

(39)

Now, by putting m = 1, we get 0 < ξ < 1, so

ST{φ(β, θ, δ, t)} = φ(β, θ, δ, 0)− 1
s−ξ ST

[(
φ

∂φ
∂β + ψ

∂φ
∂θ + Θ ∂φ

∂δ

)
+ρ
(

∂2φ

∂β2 +
∂2φ

∂θ2 + ∂2φ

∂δ2

)
+ q1

]
,

(40)

or
ST{φ(β, θ, δ, t)} = −0.5β + θ + δ− 1

s−ξ ST
[(

φ
∂φ
∂β + ψ

∂φ
∂θ + Θ ∂φ

∂δ

)
+ρ
(

∂2φ

∂β2 +
∂2φ

∂θ2 + ∂2φ

∂δ2

)
+ q1

]
,

(41)

or
φ(β, θ, δ, t) = −0.5β + θ + δ− ST−1

[
1

s−ξ ST
[(

φ
∂φ
∂β + ψ

∂φ
∂θ + Θ ∂φ

∂δ

)
+ρ
(

∂2φ

∂β2 +
∂2φ

∂θ2 + ∂2φ

∂δ2

)
+ q1

]]
,

(42)

put q1 = 0, then

φ(β, θ, δ, t) = −0.5β + θ + δ− ST−1
[

1
s−ξ ST

[(
φ

∂φ
∂β + ψ

∂φ
∂θ + Θ ∂φ

∂δ

)
+ρ
(

∂2φ

∂β2 +
∂2φ

∂θ2 + ∂2φ

∂δ2

)]]
.

(43)

Further, we get,

φm+1(β, θ, δ, t) = φm − ST−1
[

1
s−ξ ST

[(
φm

∂φm
∂β + ψ

∂φm
∂θ + Θ ∂φm

∂δ

)
+ρ
(

∂2φm
∂β2 + ∂2φm

∂θ2 + ∂2φm
∂δ2

)]]
,

(44)
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Now, put m = 0.

φ1(β, θ, δ, t) = φ0 − ST−1
[

1
s−ξ ST

[(
φ0

∂φ0
∂β + ψ

∂φ0
∂θ + Θ ∂φ0

∂δ

)
+ρ
(

∂2φ0
∂β2 + ∂2φ0

∂θ2 + ∂2φ0
∂δ2

)]]
,

(45)

or
φ1(β, θ, δ, t) = −0.5β + θ + δ− ST−1

[
1

s−ξ ST[(−0.5β + θ + δ)(−0.5 )

+(β− 0.5θ + δ) + (β + θ − 0.5δ) + ρ(0 + 0 + 0)]],
(46)

or
φ1(β, θ, δ, t) = −0.5β + θ + δ− ST−1

[
1

s−ξ ST[(.25β− 0.5θ − 0.5δ)

+(β− 0.5θ + δ) + (β + θ − 0.5δ)]],
(47)

or

φ1(β, θ, δ, t) = −0.5β + θ + δ− ST−1
[

1
s−ξ

ST{2.25β}
]

, (48)

or

φ1(β, θ, δ, t) = −0.5β + θ + δ− 2.25β.
tξ

Γξ + 1
. (49)

Similarly, we can also find the other expressions.

φ2(β, θ, δ, t) = −0.5β + θ + δ− 2.25β. tξ

Γξ+1

+2(2.25)β. t2ξ

Γ2ξ+1 (−0.5β + θ + δ),
(50)

φ3(β, θ, δ, t) = −0.5β + θ + δ− 2.25β. tξ

Γξ+1

+2(2.25)β. t2ξ

Γ2ξ+1 (−0.5β + θ + δ)− (2.25)2β[{4(Γξ+1)2}+Γ(2ξ+1)]t3ξ

Γ(2ξ+1){(Γξ+1)}2 ,
(51)

ψ1(β, θ, δ, t) = β− 0.5θ + δ− 2.25θ.
tξ

Γξ + 1
, (52)

ψ2(β, θ, δ, t) = β− 0.5θ + δ− 2.25θ. tξ

Γξ+1

+2(2.25)θ. t2ξ

Γ2ξ+1 (−0.5β + θ + δ),
(53)

ψ3(β, θ, δ, t) = β− 0.5θ + δ− 2.25θ. tξ

Γξ+1

+2(2.25)θ. t2ξ

Γ2ξ+1 (β− 0.5θ + δ)− (2.25)2θ[{4(Γξ+1)2}+Γ(2ξ+1)]t3ξ

Γ(2ξ+1){(Γξ+1)}2 ,
(54)

and

Θ1(β, θ, δ, t) = β + θ − 0.5δ− 2.25δ.
tξ

Γξ + 1
, (55)

Θ2(β, θ, δ, t) = β + θ − 0.5δ− 2.25δ.
tξ

Γξ + 1
+ 2(2.25)δ.

t2ξ

Γ2ξ + 1
(β + θ − 0.5δ), (56)

and

Θ3(β, θ, δ, t) = β + θ − 0.5δ− 2.25δ. tξ

Γξ+1 + 2(2.25)δ. t2ξ

Γ2ξ+1 (β + θ − 0.5δ)

− (2.25)2δ[{4(Γξ+1)2}+Γ(2ξ+1)]t3ξ

Γ(2ξ+1){(Γξ+1)}2 .
(57)

Now, the solutions are given as

φ(β, θ, δ, t) = −0.5β + θ + δ− 2.25β. tξ

Γξ+1 + 2(2.25)β. t2ξ

Γ2ξ+1 (−0.5β + θ + δ)

− (2.25)2β[{4(Γξ+1)2}+Γ(2ξ+1)]t3ξ

Γ(2ξ+1){(Γξ+1)}2 + . . .
(58)
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and
ψ(β, θ, δ, t) = β− 0.5θ + δ− 2.25θ. tξ

Γξ+1 + 2(2.25)θ. t2ξ

Γ2ξ+1 (β− 0.5θ + δ)

− (2.25)2θ[{4(Γξ+1)2}+Γ(2ξ+1)]t3ξ

Γ(2ξ+1){(Γξ+1)}2 + . . .
(59)

and
Θ(β, θ, δ, t) = β + θ − 0.5δ− 2.25δ. tξ

Γξ+1 + 2(2.25)δ. t2ξ

Γ2ξ+1 (β + θ − 0.5δ)

− (2.25)2δ[{4(Γξ+1)2}+Γ(2ξ+1)]t3ξ

Γ(2ξ+1){(Γξ+1)}2 + ...
(60)

which is the required solution of the defined model.
Now, the following are the graphical solutions of the model for various values of ξ.

7. Conclusions

In this paper, we have analyzed the multidimensional Navier–Stokes equation by a
fractional derivative of Caputo. We have solved the system by the Sumudu transform for
the Caputo derivative and obtained their graphical representations as well. We have also
established the validity of the methodology used and found that this new approach also
converges and can be used in various problems of fractional calculus. The graphs show the
changes in the φ component in x-direction (see Figure 1), the ψ component in y-direction
(see Figure 2) and the Θ component in z-direction (see Figure 3) for distinct values of ξ. We
can apply various different approaches to study the rate of change of flow and we can even
find some graphical results to interpret the results and predict the flow for future studies.

(a) For ξ = 0.5

(b) For ξ = 0.7

(c) For ξ = 1

Figure 1. Representation of φ for different values of ξ.
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(a) For ξ = 0.5

(b) For ξ = 0.7

(c) For ξ = 1

Figure 2. Representation of ψ for different values of ξ.

(a) For ξ = 0.5
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(b) For ξ = 0.7

(c) For ξ = 1

Figure 3. Representation of Θ for different values of ξ.
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