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Abstract: In this paper, we mainly establish Liouville-type theorems for the elliptic semi-linear
equations involving the fractional Laplacian on the upper half of Euclidean space. We employ a direct
approach by studying an equivalent integral equation instead of using the conventional extension
method. Applying the method of moving planes in integral forms, we prove the non-existence of
positive solutions under very weak conditions. We also extend the results to a more general equation.
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1. Introduction

The fractional Laplacian in Rn is defined by

(−∆)α/2u(x) = Cn,αPV
∫
Rn

u(x)− u(z)
|x− y|n+α

dz, (1)

where 0 < α < 2 is any real number, Cn,α = (
∫
Rn

1−cos(2πζ1)
|ζ|n+α )−1dζ is a constant and PV

stands for the Cauchy principle value. For the detailed definition about (−∆)α/2 and Cn,α,
we refer to [1]. From (1), one can see that it is a nonlocal operator.

In recent years, the fractional Laplacian has been frequently used to model diverse
phenomena, for example, anomalous diffusion and quasi-geostrophic flows, turbulence
and water waves, advection-diffusion, relativistic quantum mechanics of stars, molecular
dynamics and other problems (see [2–13] and the references therein).

Let
Rn
+ = {x = (x1, · · · , xn)|xn > 0}

be the upper half of Euclidean space.
In this paper, we mainly establish Liouville-type theorems, the non-existence of posi-

tive solutions to the Dirichlet problem for elliptic semi-linear equations{
(−∆)α/2u(x) = xγ

n up(x), u(x) > 0, x ∈ Rn
+,

u(x) ≡ 0, x /∈ Rn
+,

(2)

where 0 < α < 2, γ ≥ 0 is any real number. And then we generalize the results to some
more complicated cases.

Obviously, the operator in (1) is well defined in the Schwartz space S of rapidly
decreasing C∞ functions in Rn. In this space, it can also be equivalently defined by the
Fourier transform:

̂(−∆)α/2u(ξ) = |ξ|αû(ξ),

where û is the Fourier transform of u. This definition can be extended to the distributions
in the space:

Lα/2 = {u|
∫
Rn

|u(x)|
1 + |x|n+α

dx < ∞}
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by

< (−∆)α/2u, φ >=
∫
Rn

u(−∆)α/2φdx, for all φ ∈ C∞
0 (Rn

+).

Given any f ∈ L1
loc(R

n
+), we say u ∈ Lα/2 solves the problem

(−∆)α/2u = f (x), x ∈ Rn
+,

if and only if ∫
Rn

u(−∆)α/2φdx =
∫
Rn

f (x)φ(x)dx, for all φ ∈ C∞
0 (Rn

+). (3)

In this paper, we will consider the distributional solutions in the sense of (3).
To apply the method of moving planes in integral forms, we first establish the equiva-

lence between problem (2) and the integral equation:

u(x) =
∫
Rn
+

G∞(x, y)yγ
n up(y)dy, (4)

where

G∞(x, y) =
An,α

s(n−α)/2

[
1− Bn,α

(s + t)(n−2)/2

∫ s
t

0

(s− tb)(n−2)/2

bα/2(1 + b)
db

]
, x, y ∈ Rn

+, (5)

is the Green function in Rn
+ with the same Dirichlet condition. Here

s = |x− y|2 while t = 4xnyn.

We prove

Theorem 1. Assume that u is a locally bounded positive solution of Equation (2). Then u is also a
solution of integral Equation (4), and vice versa. Here we only require γ > −α.

Next, we establish the Liouville-type theorem for the integral equation.

Theorem 2. Assume p > n
n−α . If u ∈ L

n(p−1)
α (Rn

+) and u is a non-negative solution of integral
Equation (4), then u(x) ≡ 0 .

By Theorem 1, one can immediately derive the following corollary on Equation (2).

Corollary 1. Assume p > n
n−α . If u ∈ L

n(p−1)
α (Rn

+) and u is a non-negative solution of Equa-
tion (2), then u(x) ≡ 0.

Remark 1. Note that here the exponent p can be any number greater than n
n−α under the global

integrability condition. Hence this non-existence result also includes the supercritical case p = n+α
n−α .

To prove Theorem 2, we apply the method of moving planes in integral forms. We
move the plane along the xn direction and derive that the solution must be monotone

increasing in xn. Further this is in contradiction with u ∈ L
n(p−1)

α (Rn
+). For more arti-

cles concerning applications of the method of moving planes in integral forms, we refer
to [14–20] and the references therein.

We next weaken the global integrability condition in Theorem 2 and exploit a Kelvin-
type transform. To ensure that the half-space Rn

+ is invariant under such a transform, we
need to place the centers on the boundary ∂Rn

+.
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We consider

ūz0(x) =
1

|x− z0|n−α
u(

x− z0

|x− z0|2 + z0),

which is the Kelvin type transform of u(x) centered at z0. Some new ideas are involved.

In the case of n+α
n−α ≤ p ≤ n+2γ+α

n−α , we only need to assume u ∈ L
n(p−1)

α
loc (Rn

+), and here
we consider two possibilities:

(i) There is a point z0 ∈ ∂Rn
+, such that ūz0(x) is bounded near z0. In this case, we can

derive u ∈ L
n(p−1)

α (Rn
+), then we can move the planes on u just as we did in the proof

of Theorem 2.
(ii) For all z0 ∈ ∂Rn

+, ūz0(x) is unbounded near z0. In this case, we move the planes in
x1, · · · , xn−1 directions to show that, for every z0, ūz0(x) is axially symmetric about
the line that is parallel to xn-axis and passing through z0. This implies that u depends
only on xn.

In the case of 1 < p < n+α
n−α , we only need to suppose that u is locally bounded and

only need to work on ūz0(x). Then similar to the above possibility (ii), we show that for
every z0, ūz0(x) is axially symmetric about the line that is parallel to xn-axis and passing
through z0, which again implies that u depends only on xn.

In both cases, we will be able to derive a contraction and prove the following Theorem.

Theorem 3. Assume 1 < p ≤ n+2γ+α
n−α and γ ≥ 0. If u is a locally bounded non-negative solution

of (4), then u(x) ≡ 0. In particular, when n+α
n−α ≤ p ≤ n+2γ+α

n−α , we only require u ∈ L
n(p−1)

α
loc (Rn

+).

Corollary 2. Assume 1 < p ≤ n+2γ+α
n−α and γ ≥ 0. If u is a locally bounded non-negative solution

of (2), then u(x) ≡ 0. In particular, when n+α
n−α ≤ p ≤ n+2γ+α

n−α , we only require u ∈ L
n(p−1)

α
loc (Rn

+).

Next, we generalize the results to the case γ > −α under weaker conditions, that is:

Theorem 4. Assume 1 < p < n+2γ+α
n−α , γ > −α, and yγ

n up−1(y) ∈ L
n
α
loc(R

n
+). If u is a locally

bounded non-negative solution of

u(x) =
∫
Rn
+

G∞(x, y)yγ
n up(y)dy, (6)

then u(x) ≡ 0 .

Corollary 3. Assume 1 < p < n+2γ+α
n−α , γ > −α, and yγ

n up−1(y) ∈ L
n
α
loc(R

n
+). If u is a locally

bounded non-negative solution of{
(−∆)α/2u(x) = xγ

n up(x), x ∈ Rn
+,

u(x) ≡ 0, x /∈ Rn
+,

(7)

then u(x) ≡ 0 .

Furthermore, we can also generalize the results of this problem to a more complicated
case. In the following equation, we substitute f (xn) for xγ

n ,{
(−∆)α/2u(x) = f (xn)up(x), u(x) > 0, x ∈ Rn

+,
u(x) ≡ 0, x /∈ Rn

+,
(8)

where f (xn) is a positive real-valued function in Rn
+ and is monotone nondecreasing with

respect to the variable xn. Obviously, compared with xγ
n , f (xn) stands for a much wider
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family of functions, such as f (xn) = x2
n + xn + 1, f (xn) = ln(xn + 1), f (xn) = exn + 3, and

so on. Then we can establish a series of entirely similar conclusions of this equation.
Firstly, we also establish the equivalence between Equation (8) and the integral equa-

tion:
u(x) =

∫
Rn
+

G∞(x, y) f (yn)up(y)dy. (9)

We prove that

Theorem 5. Assume that u is a locally bounded positive solution of problem (8). Then u is also a
solution of integral Equation (9), and vice versa.

Next, we establish the Liouville type theorem for the integral Equation (9).

Theorem 6. Assume p > n
n−α . If u ∈ L

n(p−1)
α (Rn

+) is a non-negative solution of Equation (9) ,
then u(x) ≡ 0.

By Theorem 6, we can immediately derive that

Corollary 4. Assume p > n
n−α . If u ∈ L

n(p−1)
α (Rn

+) is a non-negative solution of problem (8),
then u(x) ≡ 0.

Similar to the above, under much weaker conditions, we can also exploit the same
type of Kelvin transform to establish the following theorem.

Theorem 7. Assume 1 < p ≤ n+α
n−α . If u is a locally bounded non-negative solution of (9), then

u(x) ≡ 0. In particular, when p = n+α
n−α , we only require u ∈ L

2n
n−α

loc (Rn
+).

Corollary 5. Assume 1 < p ≤ n+α
n−α . If u is a locally bounded non-negative solution of (8),

then u(x) ≡ 0. In particular, when p = n+α
n−α , we only require u ∈ L

2n
n−α

loc (Rn
+).

Remark 2.

(i) In [21], the author considered a similar problem. They required that u ∈ Dα/2,2 ⋂C(Rn) and
established the non-existence of positive solutions for (2) via the extension method.

(ii) In [22] and [23], the author considered a similar problem for a slightly different fractional
operator, which is defined by the eigenvalues of the Laplacian, and showed that there exist no
bounded positive solutions under the restriction that 1 ≤ α < 2.

Here, in this paper, we impose no decay conditions on u besides the natural condition
u ∈ Lα/2, and also we allow 0 < α < 2. It is well-known that these kinds of Liouville theo-
rems play an important role in establishing a priori estimates for the solutions of a family
of corresponding boundary value problems in either bounded domains or Riemannian
manifolds with boundary.

The structure of the paper is the following. In Section 2, we show the equivalence
between problem (2) and integral Equation (4). In Section 3, we prove non-existence of
positive solutions in the half space Rn

+ for the integral Equation (4) and thus establish
Theorems 2–4. In Section 4, we point out that the non-existence of positive solutions is also
true for the Equation (8), and prove Theorems 5–7 briefly.

2. Equivalence between the Two Equations on Rn
+

In this section, we establish the equivalence between problem (2) and integral
Equation (4). To prove Theorem 1, we need the following Harnack inequality for α-
harmonic functions on a domain with boundary, its consequences on half-spaces, and the
uniqueness of α-harmonic functions on half-spaces.
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Proposition 1 ([24]). Let f , g : Rn → R be two nonnegative functions such that (−∆)s f =
(−∆)sg = 0 in a domain Ω. Suppose that x0 ∈ ∂Ω, f (x) = g(x) = 0 for any x ∈ B1(x0)\Ω,
and ∂Ω

⋂
B1(x0) is a Lipschitz graph in the direction of x1 with Lipschitz constant less than 1.

Then there is a constant C depending only on dimension such that

sup
x∈B 1

2
(x0)

⋂
Ω

f (x)
g(x)

≤ C inf
x∈B 1

2
(x0)

⋂
Ω

f (x)
g(x)

.

Based on this Harnack inequality, we derive the uniqueness of α-harmonic functions
on half-spaces.

Lemma 1 ([25]). Assume that w is a nonnegative solution of{
(−∆)

α
2 w = 0, x ∈ Rn

+,
w ≡ 0, x /∈ Rn

+.

Then there is a constants c0 > 0 such that for any two points x = (x1, · · · , xn) and
y = (y1, · · · , yn) in Rn

+, we have

w(y)
(yn)α/2 ≥ c0

w(x)
(xn)α/2 .

Consequently, we have either

w(x) ≡ 0, x ∈ Rn,

or there exists a constant a0 > 0, such that

w(x) ≥ a0(xn)
α/2, ∀x ∈ Rn

+.

Furthermore, we need the following maximum principle in the proof of Theorem 1.

Proposition 2 ([1]). Let Ω be a bounded open set in Rn, and assume that f is a lower semi-
continuous function on Ω satisfying{

(−∆)
α
2 f ≥ 0, in Ω,

f ≥ 0, on Rn\Ω,

then f ≥ 0 in Rn.

We also need another result of Silvestre, to ensure that f is lower semi-continuous.

Proposition 3 ([1]). If f ∈ Lα/2 and (−∆)
α
2 f ≥ 0 in an open set Ω, then f is lower semi-

continuous in Ω.

For the Green function G∞(x, y) in (5), it has the following properties.

Proposition 4 ([25]). If t
s is sufficiently small, then ∀x = (x′, xn),y = (y′, yn) ∈ Rn

+, one can
derive that

cn,α

s(n−α)/2
tα/2

sα/2 ≤ G∞(x, y) ≤ Cn,α

s(n−α)/2
tα/2

sα/2 ,

that is

G∞(x, y) ∼ tα/2

sn/2 , (10)
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where
t = 4xnyn, s = |x− y|2,

cn,α and Cn,α stand for different positive constants and only depend on n and α.

Now, it is sufficient to prove Theorem 1.

Proof of Theorem 1. Assume that u is a positive solution of (2). We first show that∫
Rn
+

G∞(x, y)yγ
n up(y)dy < ∞. (11)

Set xR = (0, · · · , 0, R), BR(xR) = {x| |x− xR| < R}. And let

vR(x) =
∫

BR(xR)
GR(x, y)yγ

n up(y)dy,

where

GR(x, y) =
An,α

|x− y|n−α

1− Bn,α(
1 + tR

sR

) n−2
2

∫ sR
tR

0

(
1− tR

sR
b
) n−2

2

bα/2(1 + b)
db

 (12)

is the Green’s function on BR(xR), and

sR =
|x− y|2

R2 , tR =

(
2xn

R
− |x|

2

R2

)(
2yn

R
− |y|

2

R2

)
.

From the locally bounded assumption on u, one can see that for each R > 0, vR(x) is
well-defined and continuous. Moreover{

(−∆)α/2vR(x) = xγ
n up(x), vR(x) > 0, x ∈ BR(xR),

vR(x) ≡ 0, x /∈ BR(xR).

Let wR(x) = u(x)− vR(x). Then wR satisfies{
(−∆)α/2wR(x) = 0, x ∈ BR(xR),
wR(x) ≥ 0, x /∈ BR(xR).

Now from Proposition 2, we have

wR(x) ≥ 0, ∀x ∈ BR(xR).

Set w(x) = u(x)− v(x), where

v(x) = lim
R→∞

vR(x) =
∫
Rn
+

G∞(x, y)yγ
n up(y)dy.

Then, we derive{
(−∆)α/2v(x) = xγ

n up(x), v(x) ≥ 0, x ∈ Rn
+,

v(x) ≡ 0, x /∈ Rn
+,

and {
(−∆)α/2w(x) = 0, w(x) ≥ 0, x ∈ Rn

+,
w(x) ≡ 0, x /∈ Rn

+.

By Lemma 1, we have either

w(x) ≡ 0, ∀x ∈ Rn,
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or there is a constant a0 > 0, such that

w(x) ≥ a0(xn)
α/2, ∀x ∈ Rn

+.

If w(x) ≥ a0(xn)α/2, we have

u(x) = w(x) + v(x) ≥ v(x) + a0(xn)
α/2 ≥ a0(xn)

α/2.

And therefore,

u(x) ≥ v(x) ≥
∫
Rn
+

G∞(x, y)yγ
n ap

0 yαp/2
n dy ≥ C

∫
Rn
+\BR(0)

G∞(x, y)yαp/2+γ
n dy.

Denote x = (x′, xn), y = (y′, yn) ∈ Rn−1 × (0,+∞), r2 = |x′ − y′|2 and a2 = |xn −
yn|2. When R sufficiently large, for each fixed x ∈ BR(0), one can derive that t

s is sufficiently
small. Then, from (2) and (10), for each fixed x ∈ BR(0) and for sufficiently large R,
we derive

u(x) ≥ C
∫
Rn
+\BR(0)

tα/2

sn/2 yαp/2+γ
n dy

≥ C
∫
Rn
+\BR(0)

y
α(p+1)

2 +γ
n
|x− y|n dy

≥ C
∫ +∞

R
y

α(p+1)
2 +γ

n

∫ +∞

R

rn−2

(r2 + a2)n/2 drdyn

= C
∫ +∞

R
y

α(p+1)
2 +γ

n
1
a

∫ +∞

R
a

τn−2

(1 + τ2)n/2 dτdyn (13)

≥ C
∫ +∞

R
y

α(p+1)
2 +γ−1

n dyn = ∞. (14)

One can derive (13) by letting τ = r
a , and our assumption γ > −α verifies (14).

Obviously, (14) contradicts the locally bounded assumption on u. Therefore, we must
have w(x) ≡ 0, that is

u(x) = v(x) =
∫
Rn
+

G∞(x, y)yγ
n up(y)dy < ∞.

Next, we prove that if u(x) solves the integral equation, it also solves the differential
equation. For any φ ∈ C∞

0 (Rn
+), we have

< (−∆)α/2u, φ > = <
∫
Rn
+

G∞(x, y)yγ
n up(y)dy, (−∆)α/2φ(x) >

=
∫
Rn
+

{∫
Rn
+

G∞(x, y)yγ
n up(y)dy

}
(−∆)α/2φ(x)dx

=
∫
Rn
+

{∫
Rn
+

G∞(x, y)(−∆)α/2φ(x)dx
}

yγ
n up(y)dy

=
∫
Rn
+

{∫
Rn
+

δ(x− y)φ(x)dx
}

yγ
n up(y)dy

=
∫
Rn
+

yγ
n up(y)φ(y)dy

= < yγ
n up(y), φ(y) > .

This shows that u(x) satisfies (2). Hence Theorem 1 is proved.
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3. Liouville Theorems for Equations (2) and (4)

In this section, we prove the non-existence of positive solutions under global and local
integrability (or local boundness) assumptions respectively and thus establish
Theorems 2–4.

Let λ be a positive real number and let the moving plane be

Tλ = {x ∈ Rn
+| xn = λ}.

We denote Σλ the region between the plane xn = 0 and the plane xn = λ, that is

Σλ = {x = (x1, · · · , xn−1, xn) ∈ Rn
+|0 < xn < λ}.

Let
xλ = (x1, · · · , xn−1, 2λ− xn)

be the reflection of the point x = (x1, · · · , xn−1, xn) about the plane Tλ.
Set

ΣC
λ = Rn

+\Σλ,

which is the complement of Σλ, and write

uλ(x) = u(xλ),

and
wλ(x) = uλ(x)− u(x).

From [25], one can express the Green’s function of the operator (−∆)α/2 with Dirichlet
conditions on the upper Euclidean space as

G∞(x, y) =
An,α

s(n−α)/2

[
1− Bn,α

(s + t)(n−2)/2

∫ s
t

0

(s− tb)(n−2)/2

bα/2(1 + b)
db

]
, x, y ∈ Rn

+,

where
s = |x− y|2 while t = 4xnyn,

and have the following lemma which establishes some properties of this Green’s function.

Lemma 2.

(i) For any x, y ∈ Σλ, x 6= y, we have

G∞(xλ, yλ) > max{G∞(xλ, y), G∞(x, yλ)}, (15)

and
G∞(xλ, yλ)− G∞(x, y) >

∣∣∣G∞(xλ, y)− G∞(x, yλ)
∣∣∣. (16)

(ii) or any x ∈ Σλ, y ∈ ΣC
λ , it holds

G∞(xλ, y) > G∞(x, y). (17)

(iii) For any x, y ∈ Rn
+, it holds

∂G∞

∂s
< 0,

∂G∞

∂t
> 0, (18)

where s = |x− y|2 while t = 4xnyn.

The following lemma is a key ingredient in our integral estimate.
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Lemma 3. For any x ∈ Σλ, it holds

u(x)− uλ(x) ≤
∫

Σλ

[
G∞(xλ, yλ)− G∞(x, yλ)

][
yγ

n up(y)− (yλ
n)

γup
λ(y)

]
dy, (19)

where yλ
n = 2λ− yn.

Proof. Let Σ̃λ be the reflection of Σλ about the plane Tλ. Obviously, we have

u(x) =
∫

Σλ

G∞(x, y)yγ
n up(y)dy

+
∫

Σλ

G∞(x, yλ)(yλ
n)

γup
λ(y)dy +

∫
ΣC

λ\Σ̃λ

G∞(x, y)yγ
n up(y)dy,

and

u(xλ) =
∫

Σλ

G∞(xλ, y)yγ
n up(y)dy

+
∫

Σλ

G∞(xλ, yλ)(yλ
n)

γup
λ(y)dy +

∫
ΣC

λ\Σ̃λ

G∞(xλ, y)yγ
n up(y)dy.

By Lemma 2, we have

u(x)− u(xλ) =
∫

Σλ

[
G∞(x, y)− G∞(xλ, y)

]
yγ

n up(y)dy

+
∫

Σλ

[
G∞(x, yλ)− G∞(xλ, yλ)

]
(yλ

n)
γup

λ(y)dy

+
∫

ΣC
λ\Σ̃λ

[
G∞(x, y)− G∞(xλ, y)

]
yγ

n up(y)dy

≤
∫

Σλ

[
G∞(xλ, yλ)− G∞(x, yλ)

]
yγ

n up(y)dy

+
∫

Σλ

[
G∞(x, yλ)− G∞(xλ, yλ)

]
(yλ

n)
γup

λ(y)dy

=
∫

Σλ

[
G∞(xλ, yλ)− G∞(x, yλ)

][
yγ

n up(y)− (yλ
n)

γup
λ(y)

]
dy.

This completes the proof of Lemma 3.

We also need the following key lemma, which states an equivalent form of the Hardy-
Littlewood-Sobolev inequality.

Lemma 4 ([26,27]). Assume 0 < α < n and Ω ∈ Rn. Let g ∈ L
np

n+αp (Ω) for n
n−α < p < ∞.

Define

Tg(x) :=
∫

Ω

1
|x− y|n−α

g(y)dy.

Then
‖Tg‖Lp(Ω) ≤ C(n, p, α)‖g‖

L
np

n+αp (Ω)
. (20)

From the following lemma, one can see that a nonnegative solution u of a super-
harmonic function is either strictly positive or identically zero in Rn.

Lemma 5 ([1]). Let Ω be a bounded open set in Rn, and assume that f is a lower semi-continuous
function on Ω satisfying {

(−∆)
α
2 f ≥ 0, in Ω,

f ≥ 0, on Rn\Ω,
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then f ≥ 0 in Rn. Moreover, if f (x) = 0 for some point inside Ω, then f ≡ 0 in all Rn.

By virtue of this lemma, without loss of generality, we may assume that u > 0 in Rn
+

and get a contradiction.

Proof of Theorem 2. We carry out the proof in two steps. Firstly, we start from the very
low end of our region Rn

+, i.e., near xn = 0. We show that for λ sufficiently small,

wλ(x) = uλ(x)− u(x) ≥ 0, a.e. ∀ x ∈ Σλ. (21)

In the second step, we will move our plane Tλ up in the positive xn direction as long
as the inequality (21) holds to show that u(x) is monotone increasing in xn and thus derive
a contraction.

Step 1. Define
Σ−λ = {x ∈ Σλ|wλ(x) < 0}.

We show that for λ sufficiently small, Σ−λ must be measure zero. In fact, for any
x ∈ Σ−λ , by the Mean Value Theorem and Lemma 3, we have

0 < u(x)− uλ(x)

≤
∫

Σλ

[
G∞(xλ, yλ)− G∞(x, yλ)

][
yγ

n up(y)− (yλ
n)

γup
λ(y)

]
dy

≤
∫

Σ−λ

[
G∞(xλ, yλ)− G∞(x, yλ)

][
yγ

n up(y)− (yλ
n)

γup
λ(y)

]
dy

≤
∫

Σ−λ
G∞(xλ, yλ)

[
yγ

n up(y)− yγ
n up

λ(y)
]
dy

= p
∫

Σ−λ
G∞(xλ, yλ)ψ

p−1
λ (y)yγ

n [u(y)− uλ(y)]dy

≤ p
∫

Σ−λ
G∞(xλ, yλ)up−1(y)yγ

n [u(y)− uλ(y)]dy, (22)

where ψλ(y) is a value between u(y) and uλ(y). Hence on Σ−λ , we have

0 ≤ uλ(y) ≤ ψλ(y) ≤ u(y).

By the expression of G∞(x, y), it is easy to see that

G∞(x, y) ≤ An,α

|x− y|n−α
.

Now (22) implies

0 < u(x)− uλ(x) ≤ C
∫

Σ−λ

1
|x− y|n−α

∣∣∣up−1(y)yγ
n

∣∣∣|u(y)− uλ(y)|dy (23)

≤ C
∫

Σ−λ

1
|x− y|n−α

∣∣∣up−1(y)
∣∣∣|u(y)− uλ(y)|dy. (24)

Notice that now λ is only a little larger than 0, so within Σ−λ , yn is bounded, i.e., there
exists a positive number C such that 0 < yn ≤ C. And since γ ≥ 0, we get |yγ

n | ≤ C, hence
we derive (24).

We apply the Hardy-Littlewood-Sobolev inequality (20) and Hölder inequality for (24)
to derive, for any q > n

n−α ,

‖wλ‖Lq(Σ−λ ) ≤ C‖up−1wλ‖
L

nq
n+αq (Σ−λ )

≤ C‖up−1‖
L

n
α (Σ−λ )

‖wλ‖Lq(Σ−λ ). (25)
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Note here we can choose q = n(p−1)
α , then by our assumption p > n

n−α , we have
q > n

n−α and wλ ∈ Lq(Rn).

Since u ∈ L
n(p−1)

α (Rn
+), we can choose sufficiently small positive λ such that

C‖up−1‖
L

n
α (Σ−λ )

= C

{∫
Σ−λ

u
n(p−1)

α (y)

} α
n

≤ 1
2

. (26)

By (25) and (26), we derive
‖wλ‖Lq(Σ−λ ) = 0,

and hence Σ−λ must be measure zero. Then

wλ(x) ≥ 0, a.e. x ∈ Σλ. (27)

This provides us with a starting point for moving the plane.
Step 2. Now we start from such small λ and move the plane Tλ up as long as (27)

holds.
Define

λ0 = sup
{

λ|wρ(x) ≥ 0, ρ ≤ λ, ∀ x ∈ Σρ

}
.

We will prove
λ0 = +∞. (28)

Suppose in the contrary that λ0 < +∞, we will show that u(x) is symmetric about the
plane Tλ0 , i.e.,

wλ0 ≡ 0, a.e. ∀ x ∈ Σλ0 . (29)

This will contradict the strict positivity of u.
Suppose (29) does not hold, then for such a λ0, we have wλ0 ≥ 0, but wλ0 6≡ 0 a.e. on

Σλ0 . We show that the plane can be moved further up. More precisely, there exists an ε > 0
such that for all λ ∈ [λ0, λ0 + ε),

wλ ≥ 0, a.e. on Σλ. (30)

To verify this, we will again resort to inequality (25). If one can prove that for ε
sufficiently small such that for all λ in [λ0, λ0 + ε),

C

{∫
Σ−λ

u
n(p−1)

α (y)

} α
n

≤ 1
2

, (31)

then by (24) and (31), we derive ‖wλ‖Lq(Σ−λ ) = 0, and therefore Σ−λ must be measure
zero. Hence for this values of λ > λ0, we have (30). This contradicts the definition of λ0.
Therefore (29) must hold. Here, we also need to verify that we can get (24) from (23). Notice
that λ0 < +∞, λ ∈ [λ0, λ0 + ε), and obviously we have 0 < yn < λ, then there exist a
positive constants C0 such that |yγ

n | < C0. And hence we can derive (24) from (23) .
We postpone the proof of (31) for a moment.
By (29), we obtain that u(x) = 0 on the plane xn = 2λ0, the symmetric image of the

boundary ∂Rn
+ with respect to the plane Tλ0 . This contradicts our assumption u(x) > 0 in

Rn
+. Therefore (28) must be valid.

Now we have proved that the positive solution of (4) is monotone increasing with

respect to xn, and this contradicts u ∈ L
n(p−1)

α (Rn
+) . Therefore the positive solutions of (4)

do not exist.
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Now we verify inequality (31). For any small η > 0, we can choose R sufficiently large
so that

C
{∫

Rn
+\BR

u
n(p−1)

α (y)
} α

n
< η. (32)

We fix this R and then show that the measure of Σ−λ
⋂

BR is sufficiently small for λ
close to λ0. Firstly, we have

wλ0(x) > 0 (33)

in the interior of Σλ0 .
Actually, we can immediately derive (33) by the following fact:

uλ0(x)− u(x)

≥
∫

Σλ0

[
G∞(xλ0 , yλ0)− G∞(x, yλ0)

][
(yλ0

n )γup
λ0
(y)− yγ

n up(y)
]
dy

+
∫

ΣC
λ0
\Σ̃λ0

[
G∞(xλ0 , y)− G∞(x, y)

]
yγ

n up(y)dy

≥
∫

ΣC
λ0
\Σ̃λ0

[
G∞(xλ0 , y)− G∞(x, y)

]
yγ

n up(y)dy (34)

> 0. (35)

We can easily get (35) by (34), Lemma 2 (ii) and our assumption u > 0 ∈ Rn
+.

By the well-known Lusin Theorem, for any δ > 0, there exists a closed subset Fδ ⊂
(Σλ0

⋂
BR) satisfies µ((Σλ0

⋂
BR)\Fδ) < δ such that wλ0 | Fδ

is continuous about x. Therefore,
when λ is sufficiently close to λ0, wλ| Fδ

is continuous about λ. By (33), there exists a ε > 0
such that for any λ ∈ [λ0, λ0 + ε) we have

wλ(x) ≥ 0, ∀ x ∈ Fδ.

And therefore, for such λ we have

µ(Σ−λ
⋂

BR) ≤ µ((Σλ0\Fδ)
⋂

BR) + µ((Σλ\Σλ0)
⋂

BR) ≤ δ + ε.

Similar to Step 1, we can choose δ, ε sufficiently small such that

C

{∫
Σ−λ

⋂
BR

u
n(p−1)

α (y)

} α
n

< η. (36)

Then, from (32) and (36), set η sufficiently small (smaller than 1
4 ), we derive (31). Hence

completes the proof of Theorem 2.
Next, we will use proper Kelvin-type transforms and obtain the non-existence of

positive solutions in Rn
+ under much weaker conditions, i.e., the solution u is only locally

bounded or, in the critical case and a part of the subcritical case, only locally integrable.
Without global integrability assumption on u, we are not able to employ the method

of moving planes straight forward. To circumvent this difficulty, we apply the Kelvin
type transforms.

For z0 ∈ ∂Rn
+, let

ūz0(x) =
1

|x− z0|n−α
u
(

x− z0

|x− z0|2 + z0
)

(37)

be the Kelvin type transforms of u centered at z0.
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Through an elementary calculation, we get

ūz0(x) =
1

|x− z0|n−α

∫
Rn
+

G∞

(
x− z0

|x− z0|2 + z0, y
)

yγ
n up(y)dy

=
∫
Rn
+

G∞(x, y)
yγ

n ūp
z0(y)

|y− z0|β
dy, ∀ x ∈ Rn

+\Bε(z0), ε > 0, (38)

where p ≤ τ, τ = n+2γ+α
n−α , β = 2n + 2γ− (n− α)(p + 1) ≥ 0.

Proof of Theorem 3. We consider the case 1 < p < n+α
n−α and the case n+α

n−α ≤ p ≤ n+2γ+α
n−α

separately.
(i) We first consider the case of n+α

n−α ≤ p ≤ n+2γ+α
n−α . In this case we assume u ∈

L
n(p−1)

α
loc (Rn

+) only.
If u(x) is a solution of

u(x) =
∫
Rn
+

G∞(x, y)yγ
n up(y)dy, (39)

then ūz0(x) is a solution of (38). Since u ∈ L
n(p−1)

α
loc (Rn

+), for any domain Ω that is a positive
distance away from z0, we have

∫
Ω

ū
n(p−1)

α

z0 (y)

|y− z0|2n− n(p−1)(n−α)
α

dy < ∞. (40)

Here, we consider two possibilities.
Possibility 1. There is a z0 = (z0

1, · · · , z0
n−1, 0) ∈ ∂Rn

+ such that ūz0(x) is bounded near
z0. Then by (37), we obtain

u(y) =
1

|y− z0|n−α
ūz0

(
y− z0

|y− z0|2 + z0
)

. (41)

And we further have

u(y) = O
(

1
|y|n−α

)
, as |y| → ∞. (42)

Since p ≥ n+α
n−α > n

n−α and u ∈ L
n(p−1)

α
loc (Rn

+), together with (42), we have

∫
Rn
+

u
n(p−1)

α (y)dy ≤ C
∫
Rn
+

1

|y|
n(p−1)(n−α)

α

dy < ∞. (43)

In this situation, we still carry on the moving planes on u. By exactly the same
argument as in the proof of Theorem 2, we obtain the non-existence of positive solutions
for (4).

Possibility 2. For all z0 = (z0
1, · · · , z0

n−1, 0) ∈ ∂Rn
+, ūz0(x) are unbounded near z0.

Then for each z0, we will carry on the moving planes on ūz0(x) in Rn−1 to prove that it
is rotationally symmetric about the line passing through z0 and parallel to the xn-axis.
From this, we will deduce that u is independent of the first n− 1 variables x1, · · · , xn−1.
That is u = u(xn), which as we will show, contradicts the finiteness of the integral∫

Rn
+

G∞(x, y)yγ
n up(y)dy. (44)
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In this situation, since we only need to deal with ūz0 , for simplicity, we denote it by ū.
For a given real number λ, we define

Σ̂λ = {x = (x1, · · · , xn) ∈ Rn
+| x1 < λ}, (45)

and in the following of this section, we let

xλ = (2λ− x1, x2, · · · , xn).

For x, y ∈ Σ̂λ, x 6= y, by (18), it is easy to see that

G∞(x, y) = G∞(xλ, yλ) > G∞(xλ, y) = G∞(x, yλ). (46)

By (38), obviously we have

ū(x) =
∫

Σ̂λ

G∞(x, y)
yγ

n ūp(y)
|y− z0|β

dy +
∫

Σ̂λ

G∞(x, yλ)
yγ

n ūp
λ(y)

|yλ − z0|β
dy,

and

ū(xλ) =
∫

Σ̂λ

G∞(xλ, y)
yγ

n ūp(y)
|y− z0|β

dy +
∫

Σ̂λ

G∞(xλ, yλ)
yγ

n ūp
λ(y)

|yλ − z0|β
dy.

By (46), we get

ū(x)− ū(xλ)

=
∫

Σ̂λ

[
G∞(x, y)− G∞(xλ, y)

] yγ
n ūp(y)
|y− z0|β

dy

+
∫

Σ̂λ

[
G∞(x, yλ)− G∞(xλ, yλ)

] yγ
n ūp

λ(y)
|yλ − z0|β

dy

=
∫

Σ̂λ

[
G∞(x, y)− G∞(xλ, y)

]
yγ

n

[
ūp(y)
|y− z0|β

−
ūp

λ(y)
|yλ − z0|β

]
dy. (47)

Then, we continue in two steps. In step 1, we will show that for λ sufficiently negative,

wλ(x) = ūλ(x)− ū(x) ≥ 0, a.e. ∀ x ∈ Σ̂λ. (48)

In step 2, we deduce that T̂ can be a move to the right all the way to z0. And furthermore,
we obtain wz0

1
≡ 0, ∀ x ∈ Σ̂z0

1
.

Step 1. For any ε > 0, define

Σ̂−λ =
{

x ∈ Σ̂λ\Bε((z0)λ)|wλ(x) < 0
}

, (49)

where (z0)λ is the reflection of z0 about the plane T̂λ =
{

x ∈ Rn
+| x1 = λ

}
.
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We prove that for λ sufficiently negative, Σ̂−λ must be measure zero. In fact, by (46),
(47) and Mean Value Theorem, we derive, for x ∈ Σ̂−λ ,

0 < ū(x)− ūλ(x)

≤
∫

Σ̂−λ

[
G∞(x, y)− G∞(xλ, y)

]
yγ

n

[
ūp(y)
|y− z0|β

−
ūp

λ(y)
|yλ − z0|β

]
dy

≤
∫

Σ̂−λ
G∞(x, y)

yγ
n

|y− z0|β
[
ūp(y)− ūp

λ(y)
]
dy

= p
∫

Σ̂−λ
G∞(x, y)

ψ
p−1
λ (y)yγ

n

|y− z0|β
[ū(y)− ūλ(y)]dy

≤ p
∫

Σ̂−λ
G∞(x, y)

yγ
n ūp−1(y)
|y− z0|β

[ū(y)− ūλ(y)]dy

≤ C
∫

Σ̂−λ

1
|x− y|n−α

∣∣∣∣yγ
n ūp−1(y)
|y− z0|β

∣∣∣∣|ū(y)− ūλ(y)|dy. (50)

On the one hand, by our assumption p ≥ n+α
n−α , we have

2n− n(p− 1)(n− α)

α
≤ 0.

Then by (40) we get

∫
Ω

ū
n(p−1)

α (y)dy ≤ C
∫

Ω

ū
n(p−1)

α (y)

|y− z0|2n− n(p−1)(n−α)
α

dy < ∞ (51)

for any domain Ω which is a positive distance away from z0.
On the other hand, since γ ≥ 0, we can easily obtain that yγ

n is bounded in each

bounded domain Ω ⊂ Rn
+. Therefore, by our assumption u ∈ L

n(p−1)
α

loc (Rn
+), i.e., up−1 ∈

L
n
α
loc(R

n
+), we get

yγ
n up−1 ∈ L

n
α
loc(R

n
+). (52)

Hence, we obtain

∫
Ω

[
yγ

n ūp−1(y)
|y− z0|2γ−(p−1)(n−α)

] n
α 1
|y− z0|2n dy =

∫
Ω

[
yγ

n ūp−1(y)
|y− z0|β

] n
α

dy < ∞ (53)

for any domain Ω which is a positive distance away from z0.
From (51) and (53), we are able to apply the Hardy-Littlewood-Sobolev inequality (20)

and Hölder inequality for (50) to obtain, for any q > n
n−α ,

‖wλ‖Lq(Σ̂−λ ) ≤ C‖yγ
n ūp−1(y)
|y− z0|β

wλ‖
L

nq
n+αq (Σ̂−λ )

≤ C‖yγ
n ūp−1(y)
|y− z0|β

‖
L

n
α (Σ̂−λ )

‖wλ‖Lq(Σ̂−λ ). (54)

Notice that we can choose q = n(p−1)
α , then our assumption p ≥ n+α

n−α ensures that
q ≥ 2n

n−α > n
n−α .

By (53), we can choose N sufficiently large, such that for λ ≤ −N,

C

{∫
Σ̂−λ

[
yγ

n ūp−1(y)
|y− z0|β

] n
α

dy

} α
n

≤ 1
2

. (55)
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Now inequality (54) and (55) imply

‖wλ‖Lq(Σ̂−λ ) = 0,

and hence Σ̂−λ must be measure zero. Then we get

wλ(x) ≥ 0, a.e. x ∈ Σ̂λ. (56)

Step 2. (Move the plane to the limiting position to derive symmetry.)
Inequality (56) provides a starting point to move the plane T̂λ. Now we start from the

neighbourhood of x1 = −∞ and move the plane to the right as long as (56) holds to the
limiting position.

Define
λ0 = sup

{
λ ≤ z0

1|wρ(x) ≥ 0, ρ ≤ λ, ∀ x ∈ Σ̂ρ

}
. (57)

We prove that λ0 ≥ z0
1 − ε. If not, suppose that λ0 < z0

1 − ε. We will show that ū(x) is
symmetric about the plane T̂λ0 , i.e.,

wλ0(x) ≡ 0, a.e. ∀ x ∈ Σ̂λ0\Bε((z0)λ0). (58)

Suppose (58) is not true, then for such λ0 < z0
1 − ε , we have

wλ0(x) ≥ 0, but wλ0(x) 6≡ 0 a.e. on Σ̂λ0\Bε((z0)λ0).

We show that the plane can be moved further to the right. More rigorously, there exists
a ζ > 0 such that for all λ ∈ [λ0, λ0 + ζ),

wλ(x) ≥ 0, a.e. on Σ̂λ\Bε((z0)λ).

This will contradict the definition of λ0.
By inequality (54), we have

‖wλ‖Lq(Σ̂−λ ) ≤ C

{∫
Σ̂−λ

[
yγ

n ūp−1(y)
|y− z0|β

] n
α

dy

} α
n

‖wλ‖Lq(Σ̂−λ ). (59)

Similar to the proof of (31), we can choose ζ sufficiently small so that for all λ ∈
[λ0, λ0 + ζ),

C

{∫
Σ̂−λ

[
yγ

n ūp−1(y)
|y− z0|β

] n
α

dy

} α
n

≤ 1
2

. (60)

We postpone the proof of this inequality for a moment.
Now by (59) and (60), we have ‖wλ‖Lq(Σ̂−λ ) = 0. Therefore Σ̂−λ must measure zero.

Hence, for these values of λ > λ0, we have

wλ(x) ≥ 0, a.e. ∀ x ∈ Σ̂λ\Bε((z0)λ), ∀ ε > 0.

This contradicts the definition of λ0. Therefore (58) must hold. That is, if λ0 < z0
1 − ε,

for any ε > 0, then we must have

ū(x) = ūλ0(x), a.e. ∀ x ∈ Σ̂λ0\Bε((z0)λ0).

Since ū is singular at z0, ū must also be singular at (z0)λ. This is impossible because
z0 is the only singularity of ū. Hence we must have λ0 ≥ z0

1 − ε. Since ε is an arbitrary
positive number, we have actually derived that

wz0
1
(x) ≥ 0, a.e. ∀ x ∈ Σ̂z0

1.
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Entirely similarly, we can move the plane from near x1 = ∞ to the left and derive that
wz0

1
(x) ≤ 0. Therefore we have

wz0
1
(x) ≡ 0, a.e. ∀ x ∈ Σ̂z0

1.

Now we prove inequality (60). For any small η > 0, ∀ ε > 0, we can choose R
sufficiently large so that

C

{∫
(Rn

+\Bε(z0))\BR

[
yγ

n ūp−1(y)
|y− z0|β

] n
α

dy

} α
n

≤ η. (61)

We fix this R and then show that the measure of Σ̂−λ
⋂

BR is sufficiently small for λ
close to λ0. By (47), we have

wλ0(x) > 0 (62)

in the interior of Σ̂λ0\Bε((z0)λ0).
The rest of the proof is similar to the proof of (31). We only need to use Σ̂λ\Bε((z0)λ)

instead of Σλ and Σ̂λ0\Bε((z0)λ0) instead of Σλ0 .
(ii) Now we consider the case of 1 < p < n+α

n−α . In this case, we assume u is locally
bounded in Rn

+ only, and we only need to carry the method of moving planes on ū ≡ ūz0

to show that it must be axially symmetric about the line passing through z0 and parallel to
xn axis.

On the one hand, since u is locally bounded in Rn
+, and yγ

n , γ ≥ 0 is also locally
bounded in Rn

+, similar to (52) and (53), for any domain Ω which is a positive distance
away from z0, we have ∫

Ω

[
yγ

n ūp−1(y)
|y− z0|β

] n
α

dy < ∞. (63)

On the other hand, by (38) and u is locally bounded, one can deduce

ū(y) = O
(

1
|y|n−α

)
, as |y| → ∞. (64)

Then, for any domain Ω which is a positive distance away from z0, we have∫
Ω

ūq(y)dy < ∞, (65)

as long as q > n
n−α .

From (38) and (46), similar to (47), we can derive that

ū(x)− ū(xλ) =
∫

Σ̂λ

[
G∞(x, y)− G∞(xλ, y)

]
yγ

n

[
ūp(y)
|y− z0|β

−
ūp

λ(y)
|yλ − z0|β

]
dy. (66)

The proof of Theorem 3 in this case also consists of two steps.
Step 1. For any ε > 0, define Σ̂−λ as (49). We show that for λ sufficiently negative, Σ̂−λ

must be measure zero.
Similar to (50), by (46), (66) and the Mean Value Theorem, we obtain sufficiently

negative values of λ and x ∈ Σ̂−λ ,

0 < ū(x)− ūλ(x) ≤ C
∫

Σ̂−λ

1
|x− y|n−α

∣∣∣∣yγ
n ūp−1(y)
|y− z0|β

∣∣∣∣|ū(y)− ūλ(y)|dy. (67)

By (63) and (65), for any q > n
n−α , we can apply the Hardy-Littlewood-Sobolev

inequality (20) and Hölder inequality for (67) to obtain (54).
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Then, similar to the previous argument, we can also derive that Σ̂−λ must be measured
zero, and hence obtain

wλ(x) ≥ 0, a.e. ∀ x ∈ Σλ. (68)

Step 2. (Move the plane to the limiting position to derive symmetry.)
Inequality (68) provides a starting point to move the plane T̂λ. Now we start from

the neighbourhood of x1 = −∞ and move the plane to the right as long as (68) holds
to the limiting position. Define λ0 as (57), the rest is entirely similar to the case when
n+α
n−α ≤ p ≤ n+2γ+α

n−α . We can also conclude

wλ0(x) ≡ 0, a.e. ∀ x ∈ Σ̂λ0 , λ0 = z0
1.

This implies that ū is symmetric about the plane T̂z0 .
Since we can choose any direction that is perpendicular to the xn-axis as the x1 direc-

tion, we have actually shown that the Kelvin transform of the solution ū(x) is rotationally
symmetric about the line parallel to xn-axis and passing through z0 either in Possibility 2
of the case when n+α

n−α ≤ p ≤ n+2γ+α
n−α or in the case when 1 < p < n+α

n−α . Now for any two
points X1 and X2, with Xi = (x′i, xn) ∈ Rn−1 × [0, ∞), i = 1, 2, let z0 be the projection
of X̄ = X1+X2

2 on ∂Rn
+. Set Yi = Xi−z0

|Xi−z0|2 + z0, i = 1, 2. From the above arguments, it

is easy to see ū(Y1) = ū(Y1), hence u(X1) = u(X2). This implies that u is independent
of x′ = (x1, · · · , xn−1). That is u = u(xn). Then we show that this will contradict the
finiteness of the integral ∫

Rn
+

G∞(x, y)yγ
n up(y)dy.

Recall the Proposition 4 which provide the estimate of G∞(x, y) while t
s is sufficiently

small, again set x = (x′, xn), y = (y′, yn) ∈ Rn−1 × (0,+∞), r2 = |x′ − y′|2 and a2 =
|xn − yn|2. If u(x) = u(xn) is a solution of

u(x) =
∫
Rn
+

G∞(x, y)yγ
n up(y)dy, (69)

then for each fixed x ∈ Rn
+, letting R be large enough, by Proposition 4, we have

+∞ > u(xn) =
∫ ∞

0
yγ

n up(yn)
∫
Rn−1

G∞(x, y)dy′dyn

≥ C
∫ ∞

R
yγ

n up(yn)yα/2
n

∫
Rn−1\BR(0)

1
|x− y|n dy′dyn

≥ C
∫ ∞

R
yγ

n up(yn)yα/2
n

∫ ∞

R

rn−2

(r2 + a2)
n
2

drdyn

≥ C
∫ ∞

R
yγ+α/2

n up(yn)
1

|xn − yn|

∫ ∞

R/a

τn−2

(τ2 + 1)
n
2

dτdyn

≥ C
∫ ∞

R
yγ+α/2−1

n up(yn)dyn. (70)

(70) implies that there exists a sequence {yi
n} → ∞ as i→ ∞, such that

up(yi
n)(y

i
n)

α/2+γ → 0. (71)

Similar to (70), for any x = (0, xn) ∈ Rn
+, we derive that

+ ∞ > u(xn) ≥ C0

∫ ∞

0
yγ

n up(yn)yα/2
n

1
|xn − yn|

dynxα/2
n . (72)
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Let xn = 2R be sufficiently large. By (72), we deduce that

+∞ > u(xn) ≥ C0

∫ 1

0
yγ

n up(yn)yα/2
n

1
|xn − yn|

dynxα/2
n

≥ C0

2R
(2R)α/2

∫ 1

0
yγ

n up(yn)yα/2
n dyn

≥ C1(2R)α/2−1

= C1xα/2−1
n . (73)

Then by (72) and (73), for xn = 2R sufficiently large, we also obtain

u(xn) ≥ C0

∫ R

R/2
yγ

n up(yn)yα/2
n

1
|xn − yn|

dynxα/2
n

≥ C0

∫ R

R/2
yγ

nCp
1 yp(α/2−1)

n yα/2
n

1
|xn − yn|

dynxα/2
n

≥ C0Cp
1 Rp(α/2−1)+γ 2

3R
(2R)α/2

∫ R

R/2
yα/2

n dyn

:= ARp(α/2−1)+α+γ

:= A1xp(α/2−1)+α+γ
n . (74)

Continuing this way m times, for xn = 2R, we have

u(xn) ≥ A(m, p, α, γ)x
pm( α

2−1)+ pm−1
p−1 (α+γ)

n . (75)

For any fixed α and γ in their respective domain, we choose m to be an integer greater

than −α2−αγ+γ+3
α+γ and 1. That is

m ≥ max
{⌈
−α2 − αγ + γ + 3

α + γ

⌋
+ 1, 1

}
, (76)

where dac is the integer part of a.
We claim that for such a choice of m, it holds

τ(p) :=
[

pm(
α

2
− 1) +

pm − 1
p− 1

(α + γ)

]
p +

α

2
+ γ ≥ 0. (77)

We postpone the proof of (77) for a moment. Now by (75) and (77), we derive that

up(xn)xα/2+γ
n ≥ A(m, p, α, γ)xτ(p)

n ≥ A(m, p, α, γ) > 0, (78)

for all xn sufficiently large. This contradicts (71). So there is no positive solution of (69).
Now we are left to verify (77). In fact, if we let

f (p) := τ(p)(p− 1) = pm+2
(α

2
− 1
)
+ pm+1

(α

2
+ γ + 1

)
− α

2
p− α

2
− γ, (79)

then
f ′(p) = pm

[
(m + 2)

(α

2
− 1
)

p + (m + 1)
(α

2
+ γ + 1

)]
− α

2
. (80)

We show that
f ′(p) > 0, for 1 < p ≤ n + α + 2γ

n− α
.

Since p > 1, it suffices to show

(m + 2)
(α

2
− 1
)

p + (m + 1)
(α

2
+ γ + 1

)
≥ α

2
.
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Due to the fact α
2 − 1 < 0, n ≥ 3, and p ≤ n+α+2γ

n−α , we only need to verify that

(m + 2)
(α

2
− 1
)3 + α + 2γ

3− α
+ (m + 1)

(α

2
+ γ + 1

)
≥ α

2
,

which can be derived directly from (76).
Then we complete the proof of Theorem 3.

Proof of Theorem 4. Similar to the previous argument, without the global integrability
assumptions on the solution u, we again apply the Kelvin transform above-mentioned
which is centered at z0 ∈ ∂Rn

+.
The proof is similar to the case when 1 < p < n+α

n−α in the proof of Theorem 3. The only
difference is that in this case, γ may not be non-negative, but it doesn’t matter since our

assumption yγ
n up−1 ∈ L

n
α
loc(R

n
+) ensure that (63) still holds. Hence, we are still able to apply

the Hardy-Littlewood-Sobolev inequality (20) and Hölder inequality and finally derive that
u = u(xn). But this still contradicts the finiteness of the integral∫

Rn
+

G∞(x, y)yγ
n up(y)dy.

And the proof of this contradiction is entirely similar to the corresponding section in the
proof of Theorem 3. Hence, we complete the proof of Theorem 4.

4. Liouville Theorems for More Generalized Equations

In this section, we mainly prove the non-existence of positive solutions for a more gen-
eralized Equation (8) under global and local integrability (or local boundness) assumptions
respectively and thus establish Theorem 6 and 7.

Similar to the above, we will first establish Theorem 5, i.e., the equivalence between
Equation (8) and integral Equation (9). The proof of the equivalence is almost the same as
section 2, we only need to apply the local boundness of f (yn), here we omit the details.

Because f (yn) is positive and monotone nondecreasing, so just as yγ
n , it’s also locally

bounded. And since we only used the monotonicity and local boundness of yγ
n in the proof

of Theorem 3, the proof of Theorem 6 is similar to Section 3, we only need to use f (yn)
instead of yγ

n .
As for the proof of Theorem 7, we need to exploit the same type of Kelvin transform

as (37), and through an elementary calculation we get

ūz0(x) =
∫
Rn
+

G∞(x, y) f (
yn

|y− z0|2 )
ūp

z0(y)

|y− z0|β′
dy, ∀ x ∈ Rn

+\Bε(z0), ε > 0, (81)

where p ≤ τ, τ = n+α
n−α , β′ = 2n− (n− α)(p + 1) ≥ 0.

For simplicity, we denote ūz0 by ū. From (81) and (46), similar to (47), we can also
easily derive

ū(x)− ū(xλ) =
∫

Σ̂λ

[
G∞(x, y)− G∞(xλ, y)

] f ( yn
|y−z0|2 )ū

p(y)

|y− z0|β′
−

f ( yn
|yλ−z0|2 )ū

p
λ(y)

|yλ − z0|β′

dy. (82)

Define Σ̂−λ as (49). Since f (yn) is monotone nondecreasing, then for any y ∈ Σ̂λ, we
have f ( yn

|y−z0|2 ) ≤ f ( yn
|yλ−z0|2 ). Hence by (46), (82) and Mean Value Theorem, similar to (50),

we have, for x ∈ Σ̂−λ ,

0 < ū(x)− ū(xλ) ≤ C
∫

Σ̂−λ

1
|x− y|n−α

∣∣∣∣ f ( yn

|y− z0|2 )
ūp−1(y)
|y− z0|β′

∣∣∣∣|ū(y)− ūλ(y)|dy. (83)
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The rest of the proof is entirely similar to Section 3. By the local boundness of f (yn)
and the conditions in Theorem 7, we can also derive u = u(xn). This will still contradict
the finiteness of the integral ∫

Rn
+

G∞(x, y) f (yn)up(y)dy.

And the proof of this contradiction is entirely similar to Section 3, we only need to use
the local boundness of f (yn), here we omit the details. Hence, we complete the proof of
Theorem 7.

5. Conclusions

In this paper, we obtain Liouville-type theorems for the following Dirichlet problem
involving the fractional Laplacian equation{

(−∆)α/2u(x) = xγ
n up(x), u(x) > 0, x ∈ Rn

+,
u(x) ≡ 0, x /∈ Rn

+,

where γ > −α, 0 < α < 2. We employ a direct method by studying an equivalent integral
equation

u(x) =
∫
Rn
+

G∞(x, y)yγ
n up(y)dy.

Applying the method of moving planes in integral forms, we prove the non-existence
of positive solutions under very weak conditions. Furthermore, we also extend the results
to more general f (xn) instead of xγ

n . This type of equation is also closely related to the
σ−curvature problem in conformal geometry. The Liouville-type theorem is closely related
to the priori estimates of the semi-linear fractional Laplacian equation. We believe that the
method and results in this paper will give some interesting ideas to treat some problems,
for example, the priori estimates of solutions to sign-changing fractional Nirenberg problem.
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