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Abstract: The focus on renewable energy is increasing globally to lessen reliance on conventional
sources and fossil fuels. For renewable energy systems to work at their best and produce the desired
results, precise feedback control is required. Microbial electrochemical cells (MEC) are a relatively
new technology for renewable energy. In this study, we design and implement a model-based robust
controller for a continuous MEC reactor. We compare its performance with those of traditional
methods involving a proportional integral derivative (PID), H-infinity (H∞) controller and PID
controller tuned by intelligent genetic algorithms. Recently, a dynamic model of a MEC continuous
reactor was proposed, which describes the complex dynamics of MEC through a set of nonlinear
differential equations. Until now, no model-based control approaches for MEC have been proposed.
For optimal and robust output control of a continuous-reactor MEC system, we linearize the model to
state a linear time-invariant (LTI) state-space representation at the nominal operating point. The LTI
model is used to design four different types of controllers. The designed controllers and systems are
simulated, and their performances are evaluated and compared for various operating conditions. Our
findings show that a structured linear fractional transformation (LFT)-based H∞ control approach is
much better than the other approaches against various performance parameters. The study provides
numerous possibilities for control applications of continuous MEC reactor processes.

Keywords: biological hydrogen; continuous microbial electrolysis cell reactor; fractional transfor-
mations; genetic algorithm; H∞ control theory; non-smooth H∞ optimization; proportional integral
derivative; renewable energies; system of differential equations

1. Introduction

The study of renewable energy is now a worldwide priority [1,2]. Wind, biomass,
and solar-based domains are the most common and offer viable sources of renewable
energy [3]. Even though wind and solar energies are reliable and promising renewable
sources, they depend heavily on weather conditions. Microbial electrochemical cells
(MEC) are a technology related to microbial fuel cells (MFC) [4] and a new biomass-based
source of renewable energy. While MFC produces an electric current from the microbial
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decomposition of organic compounds, MEC partially reverse the process to obtain hydrogen
or methane from organic material by applying such a current [4].

Global warming is a serious issue worldwide, and fossil fuel consumption is one of its
major contributors. Therefore, it is essential to minimize reliance on this type of fuel [5,6]
and adopt alternatives with fewer emissions. The greenhouse effects are also reduced by
using clean energy. The hydrogen or methane obtained from MEC may be employed to
generate electricity throughout an internal combustion engine as an alternative to fossil
fuels [7]. Presently, hydrogen is regarded as the most energetic element per unit weight
and a clean, renewable energy source with negligible emissions [8,9].

The MEC systems are based on two parts: (i) microorganisms, which adhere to the
anode; and (ii) materials—that is, the anode in MEC can be the same as in MFC and
often related to carbon and graphite. Platinum may be utilized as a catalyst to reduce the
overpotential needed for hydrogen production. However, the high cost of platinum is
driving research into biocathodes as an alternative [10].

The generation of renewable energy in MEC processes employs wastewater, food
scraps, and synthetic industrial effluent as substrates [11,12], which are the input to the
anodic chamber of the continuous MEC. The organic elements in the input substrate are
oxidized using low external voltage and an anaerobic microbial population in the anodic
compartment of MEC [13]. Microorganisms produce electrons and protons while digesting
the organic contents in wastewater in the anodic compartment. To create renewable
hydrogen using a reduction process of electrons and protons, the electrons go through an
external circuit, and protons move through the membrane to the cathodic chamber [14,15].
Note that current and hydrogen directly connect the MEC process and then the hydrogen
production is regulated by adjusting the MEC current.

The research on MEC systems is divided into two areas: (a) material-based analysis for
hydrogen generation, and (b) mathematical modeling and process control of such systems.
One of the main challenges in designing MEC systems is to control the system inputs and
parameters to obtain a constant hydrogen generation rate. When creating systems in real
time, modeling, process control, stabilization, and simulations are crucial factors [16–18].

The primary role of feedback control [19] in biochemical MEC processes is to create the
desired output. The MFC technology received much attention recently, with many dynamic
models being proposed [20–23]. Researchers developed control-oriented models for process
implementations in MFC [24,25]. Nonetheless, there is a dearth of research on mathematical
modeling and control of relatively new MEC systems. Our critical bibliographical review
and a recent study on MEC modeling demonstrate the lack of control-oriented formulation
and model-based standard controls for MEC systems [26,27].

The feedback control of MEC systems for regulated hydrogen production has received
very little research [26]. Optimal control methods and traditional proportional integral
derivative (PID) control strategies for fed-batch MEC systems were discussed [28,29].
Nevertheless, to the best of our knowledge, advanced control methods of model-based
robust optimal design for continuous MEC systems have never been studied until now.
A minimal amount of literature is available on conventional control of continuous MEC
systems based on algebraic manipulations of nonlinear dynamics in continuous MEC
processes [30]. Model-based feedback-robust control is necessary for the optimal output of
this recently developed renewable energy MEC system.

A dynamic model for MEC systems was proposed in [31]. However, no control
schemes have been stated for this model until now. Note that feedback control of these
systems can produce the desired output. The linear model-based controllers are helpful
because they are easy to be implemented. A model in the state-space form to be linearized
at nominal operating conditions can be used for designing linear and robust controllers.

Four control schemes can be designed for continuous-reactor MEC process. Two
schemes are conventional and frequently used in the literature. These schemes are con-
ventional PID and unstructured LFT-based H-infinity (often denoted as H∞) controllers.
Another developed intelligent MEC process control is the PID controller tuned by ge-
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netic algorithms (GA). A fourth controller for the continuous-reactor MEC process is a
fixed-structured, LFT-based H∞ controller. Therefore, new linear, time-invariant (LTI)
model-based controllers of a continuous reactor based on MEC systems can be proposed.

Frequency domain-based H∞ control techniques are often utilized to synthesize con-
trollers and reach stabilization for a guaranteed performance; some works published on the
thematic are presented in [32–36]. Although these robust control systems beat traditional
PID controllers in terms of performance, they are limited by the complexity of their archi-
tecture. Modifying the loop/complementary sensitivities and calibrating the weight-based
high-order synthesis make the conventional H∞ controllers complex.

The real-time usages of conventional robust H∞ controllers in the industry have
diminished due to their expensive and sophisticated hardware structures. In addition, PID
controllers based on evolutionary algorithms have outstanding performance, but they are
computationally expensive [37]. These limitations are relaxed by employing fixed-structure
robust control [38].

We suggest an approach that optimizes its controller parameters via fractional trans-
formation-based non-smooth H∞ optimization. One can use a fixed-structure LFT-based
H∞ controller to eliminate nonlinearity-related fluctuations in the performance metrics,
such as overshoot, steady-state error, and settling time in the transient response. Consider-
ing the advantages mentioned above, researchers have used fixed-structure H∞ controllers
for several systems [32,39,40].

In summary, to the best of our knowledge, advanced H∞ control methods of model-
based robust optimal design for continuous MEC systems are unavailable in the literature.
Therefore, the objective of the present investigation is to design and implement a control
method for an emerging renewable MEC system. We implement our methodology in the
MATLAB software with the help of SIMULINK and the robust control toolbox (RCT), a fast and
reliable approach that is used to compute the optimal values of the tunable parameters of
the proposed controller. This approach minimizes the H∞ norm to produce a robust and
quick transient response of the system [41].

The remainder of this article is structured as follows. The mathematical modeling
of the continuous MEC process is introduced in Section 2. This section also includes
the dynamic study of the open-loop system and the LTI model created by the system
identification toolbox in MATLAB. The proposed fixed-structure H∞, traditional H∞, GA-PID,
and traditional PID controllers are discussed in Section 3. Section 4 presents the simulation
results with a discussion and comparison with other methods, clearly demonstrating the
suggested strategy viability. The conclusions are also presented in this section.

2. Mathematical Modeling
2.1. Description of a Continuous MEC Process

The model suggested in [31] comprises a series of nonlinear ordinary differential
equations to describe the dynamical behavior of a continuous MEC process. The foundation
of each ordinary differential equation is linked to the steady-state mass balances of the
parts of the continuous MEC system. To give the flow of electrons through an external path,
the anode is connected to the positive terminal of the direct current (DC) source via an
external resistance (Rexternal) to be used when measuring MEC current across it and when
the system is implemented in real-time. In addition, the cathode is linked to the negative
end of the DC source. The model considers the presence of two microbiological occupants
in the anode chamber:

(i) Acetolactic methanogenic;
(ii) Anodophilic microorganisms.

In Table 1, we can see the assumptions are made in order to model the system’s dynamics.
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Table 1. Model’s assumptions.

Assumptions Description

1 Anodophilic microorganisms make up the uniform distribution of the biofilm
and are largely adhered to the anode electrode.

2 Despite being equally distributed throughout the bulk solution, very little of the
acetoclastic methanogenic species are in contact with the anode. Additionally,
there can be an excessive number of unattached anodophilic bacteria.

3 Multiplying monod kinetics is used to describe the growth of anodophilic bac-
teria, whereas simple monod kinetics is employed to model the growth of
acetoclastic methanogenic bacteria.

4 The cathodic chamber is devoid of biomass.
5 Acetoclastic methanogenic and anodophili bacteria groups compete with each

another for a shared substrate.
6 Anodic chamber has the ideal mixture.
7 Gradient of concentration of substrate in the biofilm is disregarded.
8 Bacteria always have the same amount of the internal electron transfer

mediator [42].
9 Gas transmission across the membrane is disregarded.

10 pH, temperature, and pressure remain unchanged.

A continuous MEC system with two chambers—anodic and cathodic—separated by a
conductive membrane is shown in Figure 1.

H! 2H!+ 2e"

H#

$

CO# + H!+ e"

e"e"

external

control signal '())

computer controller

organic matter

membrane

cathodeanode

biofilm
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power supply
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error signal    +())

measured output current Y$())

Figure 1. Diagram of a continuous MEC process.

Considering a molecule of acetic acid for the carbon source [42], the chemical processes
at a node are stated as

CH3COOH + 2H2O + 4Mox → 4Mred + 2CO2

4Mred → 4Mox + 8e− + 8H+

CH3COOH → CH4 + CO2,

where Mox is an oxidized intracellular mediator, Mred is a reduced intracellular mediator,
and e− is an electron.
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The reaction at the cathode is given by

2H2O + 2e− → 2OH− + H2S.

The dynamic mass balance equations for the substrate (S), anodophilic bacteria (Xa),
and acetoclastic methanogenic bacteria (Xm) concentrations in the continuous MEC reactor
process are presented as

dS(t)
dt

= −kaµa(t)Xa(t)− kmµm(t)Xm(t) + D(t)(Sin − S(t)) (1)

dXa(t)
dt

= µa(t)Xa(t)− kd,aXa(t)− αaD(t)Xa(t) (2)

dXm(t)
dt

= µm(t)Xm(t)− kd,mXm(t)− αmD(t)Xm(t), (3)

where, for the time t, S(t) is the substrate concentration [mgSL−1]; Xa(t) is the anodophilic
bacteria concentration [mgXL−1]; Xm(t) is the acetoclastic methanogenic bacteria concentra-
tion [mgXL−1]; D(t) = FinVreac

−1 is the dilution rate [d−1]; Fin is the substrate (wastewater)
input flow [Ld−1]; Vreac is the reactor volume [L]; µa is the growth rate for anodophilic bac-
teria [d−1]; µm is the growth rate for acetoclastic methanogenic bacteria [d−1]; ka is the yield
factor for substrate utilization by anodophilic microorganisms in the anode [mgSmgX−1];
km is the yield factor for substrate utilization by acetoclastic methanogenic bacteria in the
anode [mgSmgX−1]; kd,a is the anodophilic decay rate [d−1]; and kd,m is the acetoclastic
methanogenic decay rate [d−1]. The kinetic growth rates are defined as [21]

µa(t) = µmax,a
S(t)

(KS,a + S(t))
1

(1 + exp(−Fη/(RT)))
(4)

µm(t) = µmax,m
S(t)

KS,m + S(t)
, (5)

where µmax is the maximum growth rate [d−1]; KS is the monod half-rate constant; F is the
Faraday constant [Cmole−1]; R is the gas constant [J molK−1]; T is the temperature; and η
is the potential difference between anode and cathode [V].

The MEC current density and hydrogen/methane production rates [21,42] are given,
respectively, by

Imec(t) = (γSkaµa(t)Xa(t)L f

(
1− f 0

S

)
+ γXbXa(t)L f ) Vreac

QH2(t) = YH2 Aa
Imec(t)

mF
RT
P

(6)

QCH4(t) = YCH4 kmµm(t)Xm(t)Vreac,

where the yield coefficients, γX [mF/MWX] and γS [mF/MWS], are correlated with the
number of coulombs that can be extracted from the biomass and substrate, respectively; f 0

S
is the electron dimensionless fraction; b is the endogenous decay factor; L f is the biofilm
thickness [m]; YH2 is the cathode efficiency; and YCH4 is the methane yield.

2.2. State-Space Model
From the expressions given in (1)–(6), the system is represented into state-space form as

ẋ1(t) = −kaµmax,a
x1(t)

KS,a + x1(t)
1

1 + exp(− F
RT η)

x2(t)− kmµmax,m
x1(t)

KS,m + x1(t)
x3(t)

+u(t)(Sin − x1(t))
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ẋ2(t) = µmax,a
x1(t)

KS,a + x1(t)
1

1 + exp(− F
RT η)

x2(t)− kd,ax2(t)− αa u(t) x2(t) (7)

ẋ3(t) = µmax,m
x1(t)

KS,m + x1(t)
x3(t)− kd,mx3(t)− αmu(t)x3(t)

y(t) =

(
γSkaµmax,a

x1(t)
KS,a + x1(t)

1
1 + exp(− F

RT η)
x2(t)L f

(
1− f 0

S

)
+ γXbx2(t)L f

)
Vreac.

In Table 2, we can see the dependent variables of (7). The state-space model considers
the nominal parameter values [31,42]. The complete description and nominal values
of parameters are given in Table 3. Figure 2 shows the SIMULINK block diagram of the
state-space model stated in (7).

Table 2. Mathematical model variables.

Variable Description

u(t) Dilution rate: D(t)
x1(t) Substrate bacteria concentration: S(t)
x2(t) Anodophilic bacteria concentration: Xa(t)
x3(t) Acetoclastic methanogenic bacteria concentration: Xm(t)
y(t) MEC current density: Imec(t)

Table 3. Process parameters and their nominal values.

Symbol Description Value

Aa Anode area 1 m2

f 0
S Dimensionless fraction 0.3

b Endogenous decay rate 0.05 d−1

F Faraday constant 1.1167 Ad/mole−

ka Yield factor for anodophilic 0.667 mgS/mgX
km Yield factor for acetoclastic methanogenic 0.667 mgS/mgX
kd,a Decay rate 0.04 d−1

kd,m Decay rate 0.006 d−1

KS,a Half-rate constant 20 M S L−1

KS,m Half-rate constant 80 M S L−1

L f Biofilm thickness 25× 10−6m
m Electrons per mole 2 mole−/mol M
P Pressure 1 atm
R Ideal gas constant 8.314 J/mol K
Sin Inlet concentration 400 mg/L
T Temperature 298.15 K
Vreac Reactor volume 1 L
x2(0) Initial concentration 1000 MXL−1

x3(0) Initial concentration 100 MXL−1

x1(0) Initial concentration 100 MSL−1

YH2 Cathode efficiency 0.8
YCH4 Methane yield mL CH4/mg S
αa, αm Dimensionless biofilm retention coefficients 0.5
γX Number of coulombs from biomass 0.0033 mF/MWX
γS Number of coulombs from substrate 37.22 mF/MWS
η Voltage 0.5 V
µmax,m Maximal growth rate 0.3 d−1

µmax,a Maximal growth rate 1.97 d−1
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Figure 2. Diagram of the SIMULINK nonlinear state-space model of the continuous-reactor MEC process, where “*” means the multiplication symbol, as usual in
programming codes.
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All state variables in the continuous MEC reactor process are considered in the open-
loop dynamic behavior. The open-loop dynamic response of state variables x1(t), x2(t),
and x3(t) is shown in Figure 3 for the step input (dilution rate) with a magnitude of
0.5. This figure shows that the substrate concentration x1(t) varies for the first ten days
before becoming constant. During the first 20 days, the concentration of anodophilic
bacteria x2(t) increased and then stabilized. For the first two days, the concentration of
acetoclastic methanogenic bacteria x3(t) increased, and then it started to decrease for the
next 20 days. After 20 days, this concentration was reduced to almost zero. The acetoclastic
growth rate µm(t) was greater than the androphilic growth rate µa(t). After 10 days of
the continuous MEC reactor process, both growth rates stabilized and exhibited the same
pattern. Note that Imec(t) is the output considered for the design of the control schemes.
This output is the quantity that causes the production of renewable hydrogen energy. As
QCH4(t) is directly related to Imec(t), the control of the output is the control of hydrogen
production. The primary prerequisite for feedback control is the continual measurement of
the output variable. Since the MEC current is directly related to the creation of hydrogen
and measuring the MEC current continuously is a simple process, in our case, the output
of MEC processes that results in hydrogen production is the MEC current. Therefore, the
hydrogen production rate can be adjusted using this current. Figure 4 shows the open-loop
dynamic response of output current for step input (dilution rate) of 0.5 magnitude and
sinusoidal dilution rate input at a 3 Hz frequency. The dilution rate is the ratio of input
flow to the total volume of the reactor. We defined the sinusoidal dilution rate to generate a
sinusoidal data set, and it varies in magnitude between zero and one at a 3 Hz frequency.
That sinusoidal data set is then used for linear model identification. The LTI model is
detailed in the next section.

Figure 3. Plots of the dynamic behavior of state variables and microorganisms’ growth rates.
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Figure 4. Plots of open loop step (first panel) and open loop sinusoidal (second panel) responses of
the continuous MEC process.

2.3. LTI Model Estimation for a Continuous MEC Reactor Process

The suggested fixed-structure H∞ controller is a linear and designed using non-smooth
H∞ optimization. The LTI process model is required to optimize the parameters of this
robust H∞ controller while keeping its desired structure. To create the conventional H∞
synthesis, GA-PID, and traditional PID, the LTI model must also be determined.

Figure 4 shows the input and output sinusoidal waveform data, which were gathered
for linear model estimation. Note that the sinusoidal input–output data are helpful for
system identification. Thus, based on the sinusoidal data gathered, an acceptable LTI model
was discovered using the MATLAB system identification toolbox. This toolbox works in four
steps. The system’s input–output data collection and the model’s structural determination
are necessary for the first and second steps, respectively. The defined structure’s parameter
estimate is obtained in the third stage, and the model validation and accuracy calculation
are done in the final step. The accuracy of this estimation is calculated by comparing it
with the nonlinear model’s data. The MATLAB identification toolbox calculates the mean
square error to define this accuracy. In Figure 5, the nonlinear and estimated LTI models
are compared. Two structures were estimated: (i) second-order model; and (ii) third-order
linear model. Based on the expression given by

G1(s) =
32.07s + 18

s2 + 15.1s + 7.109
,

we provide an approximation of the second transfer function with a 74.9% accuracy. From
the formulation stated as

G2(s) =
1.672s2 + 1.664s + 2.717

s3 + 0.7187s2 + 4.584s + 1.058
,

we obtained an approximation of the third-order transfer function with an accuracy of
only 94.08%. The third-order LTI model was considered for the design of conventional and
advanced robust control schemes.
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Figure 5 shows that the chosen model closely matches plant behavior. The linear
traditional PID, conventional H∞, GA-PID, and fixed-structure H∞ controllers are designed
in the following section using the LTI model.

Figure 5. Plot of generated model results that were validated for sinusoidal input.

3. Design of Controllers for a Continuous MEC System
3.1. Statement of the Problem

The problem is solved creating an appropriate controller to precisely track the com-
manded input. Based on the LTI model, estimated in Section 2, four controllers were
designed, and the outputs were analyzed. They are traditional PID, conventional H∞ syn-
thesis, GA-PID, and fixed-structure H∞ controllers, and the output current is the variable
that needs to be controlled. The cornerstone for defining the performance standards for all
control techniques is tracking the commanded signal. However, the performance metrics
used to evaluate the system output include overshoot, settling time, and steady-state error.

3.2. Conventional Design of a PID Controller

PID controllers are widely utilized worldwide because they are low cost and easy
to use. The conventional design of PID controllers is less effective if the nonlinearity
is included in the dynamic model, since it does not offer flawless tracking and exact
performance parameters. PID controllers have been developed over the years using tradi-
tional tuning methods, including the Ziegler–Nichols, pole-zero placement, root locus, and
Skogested-IMC methods [43]. In the MATLAB single-input single-output (SISO) toolbox, a
traditional PID controller utilizing the Skogestad-IMC root locus technique was designed.

An LTI transfer function of continuous MEC process was employed for a conventional
PID design. From the expressions given by

U(s) =

(
Kp + Ki

1
s
+ Kds

)
E(s)

u(t) = Kpe(t) + Ki

∫ t

0
e(τ)dτ + Kd

d
dt

e(t),

we obtain the transfer function and time domain equations, respectively, of the traditional
PID controller, where the tuning parameters of the conventional PID are differential gain
(Kd), proportional gain (Kp), and integral gain (Ki), where U(s) is the signal control at
domain s and u(t) is the signal control at time t; E(s) is the signal error at domain s and
e(t) is the signal error at time t. The results of this conventional design are presented and
discussed in Section 4.
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3.3. Design of a Conventional H∞ Synthesis

The conventional H∞ controller is constructed using smooth H∞ optimization in the
frequency domain [44]. The magnitudes of the closed-loop sensitivity transfer function,
that is, S(s), and the complementary sensitivity transfer function, that is, T(s), are sculpted
by complex weights. Note that T(s) is the closed-loop transfer function between reference
input R(s) and output Y(s), whereas S(s) is the closed-loop transfer function between
reference R(s) and E(s). Note that S(s) = 1/(1 + GC) and T(s) = GC/(1 + GC), where
L = GC is the loop transfer function. For a typical H∞ controller, the H∞ norm, which sym-
bolizes the peak value of weighted frequency domain sensitivity S(s) or its complementary
sensitivity T(s), is reduced. Observe that ‖wSS(s)‖∞ ≤ 1 and ‖wTT(s)‖∞ ≤ 1 contain the
constraints (peak specs) for modifying the controller parameters, where wS and wT are
shaping weights of the closed-loop and complementary sensitivity transfer functions.

Since sensitivity represents the effectiveness of the closed-loop, it should ideally be
very low. The peak requirements show a margin of robustness and avoid high-frequency
noise amplification. The H∞ controller performs better than a traditional PID controller.
The shaping weights and constraints are defined using the MIXSYN MATLAB tool. Based
on the defined weights and constraints, the robust MIXSYN tool of MATLAB optimized
a state-space structure of the H∞ controller to obtain robust performance. However, the
order of this H∞ controller is equal to the order of the process model plus the order of
the weights used to shape closed loops S(s) and T(s), which is a significant shortcoming
of the H∞ controller. This might not be a big deal in typical applications with plenty of
computational resources, but in an industrial process setting, it is often a problem. The
state-space results for the design of the H∞ controller are presented in Section 4.

3.4. Design of the Genetic Algorithm for a PID Controller

The GA is a stochastic search technique that can be utilized to optimize challenging
situations, including the case of both linear and nonlinear systems of equations. Instead of
employing deterministic principles, the GA uses random transition rules and manages a
population of alternative solutions termed individuals. Through an iterative process, a new
generation of individuals is built by altering the chromosomes of the individuals of the
current generation, as we can see in [45]. The fitness of every individual is evaluated using
the objective function. The GA performs mainly three operations: mutation, crossover, and
selection. Suppose that a GA is used to minimize an objective function f . Then, individual
sola is said to be a better solution than individual solb if and only if f (sola) < f (solb).
This is the fundamental criterion in the selection operation of a GA. This optimization has
high efficiency, but with a high computational cost as well.

In Algorithm 1, we can see the basic steps of a GA [46]. We used this simple approach
to carry out our computational experiments. Regarding the GA input, f is the function to
optimize, n is the number of individuals in each generation (population size), and iter
defines the number of iterations—that is, the number of generations to be built. Just before
ending, the GA returns the best solution found bestSol, and the value obtained bestFit,
by evaluating the best solution in the objective function f . The best fitness results for a
GA-PID design for the continuous MEC process are given in Section 4.

Algorithm 1: General structure of a GA
begin

input : f , n, iter
output :bestSol, bestFit
Step 1: Create an initial population with n individuals randomly.
Step 2: Produce new individuals, from the population, by mutations and crossovers.
Step 3: Build the new generation by applying the selection process.
Step 4: Repeat steps 2 and 3 until the number of generations built is equal to iter.
Step 5: Get the best solution bestSol built during the iterations, and compute
bestFit = f (bestSol).

end
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3.5. Design of the Proposed Fixed Order and Structured H∞ Synthesis

Due to monolithic design and practical restrictions, conventional H∞ controllers have
seen slow industry adoption. The norms of conventional H∞ controllers are further con-
strained by complex structure and design specifications, including response time and
control bandwidth [47]. High-order complex weighting filters may be utilized to improve
the results. By employing non-smooth H∞ optimization in the frequency domain, the
suggested robust optimization adjusts the essential control elements, such as PIDs. How-
ever, this complicates the structure of the ordinary H∞ controller. The constraints of the
conventional H∞ controller are all overcome by fixed-structure H∞ controllers. The fixed-
structure-based controllers have more practical importance and execute well in terms of
response time and quality of the solution [47]. The fixed and non-tunable elements, tunable
control block, and standard formulation of the proposed fixed-structure H∞ synthesis are
all represented in the following paragraph.

Figure 6 displays the standard form of H∞ synthesis, which consists of two key
components: (i) the block P(s), which contains all the non-tunable (fixed) components of
the whole control system, such as an LTI model of the continuous MEC process; and (ii) the
second block, which contains the proposed synthesis required structure and fixed-order
control elements. In the case of sophisticated multi input multi output (MIMO) systems [31],
all these elements are tunable. When it comes to SISO systems, this block contains just
one configurable control element. The customizable diagonal block of tunable control
components allows for decoupling complex MIMO processes, where each control element
Ci(s) has a known structure, which is presumed to be an LTI, and is established from

C(s) =

C1(s) . . . 0
...

. . .
...

0 . . . CN(s)

.

In Figure 6, the tunable elements are placed in block/controller C(s), and the re-
maining elements are placed in block/process P(s). The error signal e(t) is aggregated
in z(t) = y(r)− r(t), with y(t) being the current measurement and r(t) is the reference
input, whereas the external input, including the external disturbance D(s), measurement
noise N(s), and reference inputs, are merged into w(t). The partition of the standard
representation is given by(

z(t)
v(t)

)
= P

(
w(t)
u(t)

)
=

(
P11 P12
P21 P22

)(
w(t)
u(t)

)
,

where u(t) is the signal control. The closed loop objective function formulation from w(t)
to z(t) is represented in linear fraction transformation form [47] as

Tw(t)z(t)(s) = Fl(P, C) = P11 + P12C(I − P22)
−1P21.

P(s)

C1(s) · · · 0
...

. . .
...

0 · · · CN(s)

v(t)u(t)

w(t) z(t)

Figure 6. Diagram of a standard representation for a structured H∞ synthesis.
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Optimizing the parameters of the tunable control elements, such as tunable PIDs, is
another difficult task. Scalars such as Kp, Ki, Kd, and Tf are used as parameters for the
transfer function of the PID controller, which is found by taking the Laplace transform with
its variable s, and obtained as

Cj(s) = Kp +
Ki
s
+

Kds
Tf s + 1

.

Parameters Kp, Ki, Kd, and Tf are tuned by non-smooth H∞ optimization. For the controller
structure to be effective and practical, the derivative control term is made up properly
using coefficient Tf as the time constant of the first-order filter.

Next, we detail how to optimize the suggested fixed-structure H∞ synthesis. The
controller settings are adjusted in the frequency domain to adhere to standard design
criteria. In the case of a SISO system, we must minimize the H∞ norm, which consists
solely of the maximum values of the closed-loop transfer functions S(s) and T(s) across
the entire frequency range. The standard form of the objective function H(s) is provided as

H(s) = Fl(P(s), diag(C1(s), . . . , CN(s)), (8)

whereas from the constraints stated in (8), we can formulate the criteria for resilient design,
such as external and internal disturbance rejection, noise elimination, high stability margins,
improved control bandwidth, and enhanced transient specifications.

The appropriate complex weighting transfer functions wS and wT were selected to
provide the desired forms of the closed-loop transfer functions S(s) and T(s), respec-
tively. The intended forms of S(s) and T(s) follow the design specifications stated as∥∥Wj(s)Tj(s)

∥∥
∞ ≤ 1, for j ∈ {1, . . . , M}, and ‖Wi(s)Si(s)‖∞ ≤ 1, for i ∈ {1, . . . , N}. The

proposed fixed-structure H∞ synthesis is independent of the complex weight order.
The structure of conventional H∞ synthesis is bound by the order of the complex

shaping weights. In the case of a conventional H∞ controller, a more complex structure
arises by using a high order shaping weights to enhance the robustness. For the LTI model
of the MEC process in a continuous reactor, C(s) is a parametrically optimized and tuned
robust PID controller. In MATLAB, the generalized form of the prescribed H∞ synthesis
problem is coded as follows:

• C(s) = ltiblock.pid(‘C’,‘pid’);

• S(s) = feedback(1,G(s)*C(s));

• T(s) = feedback(G(s)*C(s),1);

• H0 = blkdiag(Ws*S(s),WT*T(s));

where S(s) = tf(1/M wb, 1 wb*A) and T(s) = 0.001.
The generalized state-space structure (H(0) formulation) has two outputs, two inputs,

nine states, and a block C(s), which is a robust PID controller to be tuned. The struc-
tured controller must optimize all its parameters by a fast and robust algorithm [41]. The
suggested optimization starts with randomly chosen values of the structured controller
parameter and concludes with required resilient parameter values that adhere to the pre-
determined limitations. To obtain the resilient optimal control parameters through the
non-smooth H∞ optimization, the generalized H(0) formulation is transformed into the
H(s) form—that is, the standard form of the objective function stated in (8). The HINF-
STRUCT tool in MATLAB helped this optimization. The HINFSTRUCT tool employs the
fast optimization and robust algorithm [41] and adjusts the parameters by minimizing the
closed-loop objective function gain between the system’s inputs and outputs. Figure 7
depicts the schematic diagram for the system’s basic feedback loop design, and Section 4
compares the simulation results of the structured H∞ synthesis with those of traditional
and intelligent controllers.
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Figure 7. Diagram of a feedback loop response for the entire continuous MEC control process.

4. Comparison, Discussion, and Conclusions
4.1. Performance Comparison and Discussion

The process dynamics are defined by the state-space representations used to build
intelligent and robust linear controllers. An LTI model is first computed for the continuous
MEC reactor process. Due to their low cost and ease of use, PIDs are widely utilized in
industrial processes. Nevertheless, due to the nonlinear dynamics of the process, traditional
PIDs cannot accurately regulate the dynamic behavior of their parameters. The calculated
parameters (gains) for the Skogestad-IMC PID controller are Kp = 3.5086, Ki = 5.8477, and
Kd = 0.001.

Figure 8 displays the step response for the conventional PID controller, whose response
exhibits the overshoot and takes roughly five days to settle, which is not a good performance.

Figure 8. Plot of the step response for a Skogestad-IMC PID control.

The conventional H∞ controllers get beyond the drawback of traditional PIDs, but
they also have architectural restrictions. These high-order robust controllers have practical
limitations because of the complexity of their structure. It is essential to highlight that
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this investigation considers the same complex shaping weights for the proposed fixed-
structure and conventional H∞ controllers. Thus, we provide an accurate comparison
between these two robust controllers regarding their structures and transient and steady-
state performances. The calculated state-space structure of the conventional H∞ synthesis,
which is a fourth-order controller, is given by

A =


−5× 10−10 0 1.11× 10−16 2.22× 10−16

3.114× 104 −6950 −3459 −5646
0 2 0 0
0 0 1 0



B =


0.08703

0
0
0


C =

[
3.577× 105 −7.984× 104 −3.971× 104 −6.486× 104]

D =
[
0
]
.

(9)

The cost of the controller increases due to its high-level structure. The GA-PID was
created for the continuous MEC reactor process as a helpful structural controller, utilizing
an intelligent optimization technique. The efficiency of this optimization grows with the
population size, albeit at a high computational cost. Figure 9 depicts the convergence of
the GA-PID with 200 generations. The optimized parameters for GA-PID are Kp = 206,
Ki = 5.5× 103, Kd = 32.7, and Tf = 0.5. As mentioned, we designed a fixed-structure
H∞ control synthesis for a continuous MEC system. The accurate tracking of commanded
signals, a significant issue in process industries, is one of the ultimate goals of this de-
sign. Fixed-structure H∞ syntheses are examples of robust optimization-based controllers.
They contain simple, streamlined control parts, making them useful in practice. Precision
tracking is also achievable with fixed-structure controllers, which have large control band-
widths to accommodate parameter uncertainty, measurement noise, and disturbance effects.
Table 4 lists the optimum parameters for the proposed fixed-structure H∞ synthesis.

Figure 9. Plot of values for the genetic algorithm PID optimization fitness.
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Table 4. Parameter optimization results of fixed-structure H∞ synthesis.

Symbols Description Value

Kp Proportional gain 104
Ki Integral gain 2.93
Kd Derivative gain 22.5
Tf First order filter coefficient 2.81× 106

Note that we used a total of four controllers. The first controller was a conventional
PID one (the Skogestad-IMC PID), and its results are presented in Figure 8, whereas the
other three controllers were optimal or robust, and their results are presented in Figure 10,
which illustrates the simulation results for the comparative examination of three optimized
controllers for step reference input. The outcomes of the suggested synthesis are also
relatively better regarding the transient and steady-state responsiveness, as shown by
this figure.

Figure 10. Plot of comparison for controllers with transient specifications.

The proposed fixed-structure H∞ synthesis for step input tracking has reduced rise
time, overshoot, and settling time, according to evident simulation findings. Figure 10
shows that the proposed fixed-structure H∞ synthesis and the GA-PID both exhibit the
same rising time approximately, and then they are more efficient than the traditional
H∞ synthesis. In addition, both H∞ syntheses eliminate overshoot, whereas the GA-PID
produces a slight overrun. Based on transient step response criteria, Table 5 compares all
controllers. In summary, all three optimized controllers outperform the conventional PID.

Table 5. Comparison of performance for the parameters.

Control Rise Time Settling Time Overshoot Controller Steady-State
Technique (Days) (Days) (%) Order Error

Traditional PID 0.4000 4.4500 7.2500 2nd 0.01%
GA-PID 0.0210 0.0339 1.3994 2nd 0%
Traditional H∞ synthesis 0.2929 0.5218 0 4th 0%
Fixed-structure H∞ controller 0.0125 0.0221 0 2nd 0%
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We linearized the model to create robust controllers. Then, we evaluated the proposed
controller’s resilience on both linear and nonlinear models. Additionally, we used a lin-
earized plant model to acquire reliable characteristics due to the optimal synthesis settings,
which is improved, reliable, and robust. Furthermore, the robustness of the parameters of
these controllers can be assessed on both linear and nonlinear models. Similarly, in our case,
fixed-structure H∞ controllers are linear, durable, and optimized. These controllers work
well for both linear and nonlinear models of the same process. The proposed controller im-
plementation for linear and nonlinear models of a continuous MEC reactor process is shown
in Figure 11, and we can see robustness in both cases. The proposed fixed-structure H∞
controllers have unusual noise and disturbance rejection performance. Figure 12 illustrates
how the suggested fixed-structure H∞ controller eliminates noise. Figure 13 depicts the
proposed controller’s response to the deployment of a step interruption of 0.5 magnitudes.
Step disruption occurred after 0.2 days. The simulation results in Figure 13 show that after
rejecting the step disruption, the recommended controller resumed tracking of the reference
in less than 0.02 days.

Figure 11. Plots of the proposed controller implementation for linear (first panel) and nonlinear
(second panel) MEC process models.

As robust controllers are designed to handle uncertainty, they maintain the correct
response, even in the presence of uncertain parameters which would otherwise cause
instability or an undesirable response. Both traditional H∞ and robust fixed-structure H∞
controllers performed well with about plus or minus 50% variations in nominal parameters
of this continuous-reactor plant model. To show the robustness of the proposed method, a
wide range (plus or minus 40%) of parameter variation has been considered, as shown in
the first graph of Figure 14. The proposed synthesis maintained the desired performance at
low costs to rising time and settling time, as shown in the second graph of Figure 14.
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Figure 12. Plots of randomly generated external noise (first panel) and step tracking of the fixed
structure H∞ controller in presence of external noise (second panel).

Figure 13. Plot of the proposed controller’s response to step-disturbance input.
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Figure 14. Plots of the plant’s open loop response for parameters uncertainty (first panel) and step
input tracking of the fixed structure H∞ controller in presence of parameters uncertainty.

4.2. Conclusions

MEC processes performed in continuous reactors and using organic wastewater di-
lution rate input are growing renewable technologies for treating this type of water and
creating hydrogen. The newly created renewable MEC technology needs feedback control
to produce the best required output. Minimal literature on the mathematical modeling
and regulation of novel MEC processes is available. A dynamic mathematical model of
a continuous MEC system concerning control applications was put forth in [31], but no
control design has yet been proposed. We computed the LTI model for the first time by
linearizing the state-space model at the nominal operating point. Then, four distinct linear
control schemes were designed using the LTI model.

The MATLAB software was utilized for all control strategies in the simulation. The
proposed fixed-structure H∞ approach was compared with three developed controllers,
including the traditional H∞, intelligent GA-PID, and conventional PID controllers. Table
5 reported the effectiveness of the proposed robust control strategy concerning transient
specifications. Regarding disturbance and measurement noise rejection, our fixed-structure
H∞ synthesis performed remarkably well. The proposed controller was created using an
LTI model, and its implementation produced very good results for the nonlinear MEC
model. The proposed fixed-structure H∞ synthesis is simpler and more decentralized
than the traditional H∞ controller, which is a considerable advantage. The efficiency of
the proposed non-smooth H∞ optimization-based controller can even be enhanced by
designing it with high-order shaping weights. Unlike the conventional H∞ controllers, the
order of the proposed approach is independent of the order of the complex weights. In
addition, its optimal control parameters correspond to the fixed-structure control elements.
Compared to the traditional H∞ controller, the intelligent GA-PID controller delivers more
reliable outcomes, but the computational cost is very high.

Note that the proposed robust controllers are more usable because they are made up of
straightforward control components such as gains and PIDs. Their practical applications go
beyond straightforward and solid control. However, it is also possible to build decentralized
controllers of complicated MIMO systems employing the proposed synthesis formulation.
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To the best of our knowledge, the proposed controller is the first one to be developed and
applied for the continuous MEC reactor process. Our method performed better than other
controllers that we investigated. In future works, we will consider other alternatives to the
genetic algorithm, such as particle swarm optimization.
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