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Abstract: In this article, starting from a benchmark represented by a Direct Current-to-Direct Current
(DC-DC) three-phase power electronic converter used as an interface and interconnection between
the grid and a DC microgrid, we compare the performances of a series of control structures—starting
with the classical proportional integrator (PI) type and continuing with more advanced ones, such
as sliding mode control (SMC), integer-order synergetic, and fractional-order (FO) controllers—in
terms of maintaining the constant DC voltage of the DC microgrid. We present the topology and the
mathematical modeling using differential equations and transfer functions of the DC-DC three-phase
power electronic converter that provides the interface between the grid and a DC microgrid. The
main task of the presented control systems is to maintain the DC voltage supplied to the microgrid at
an imposed constant value, regardless of the total value of the current absorbed by the consumers
connected to the DC microgrid. We present the elements of fractional calculus that were used to
synthesize a first set of FO PI, FO tilt-integral-derivative (TID), and FO lead-lag controllers with
Matlab R2021b and the Fractional-order Modeling and Control (FOMCON) toolbox, and these
controllers significantly improved the control system performance of the DC-DC three-phase power
electronic converter compared to classical PI controllers. The next set of proposed and synthesized
controllers were based on SMC, together with its more general and flexible synergetic control variant,
and both integer-order and FO controllers were developed. The proposed control structures are
cascade control structures combining the SMC properties of robustness and control over nonlinear
systems for the outer voltage control loop with the use of properly tuned synergetic controllers to
obtain faster response time for the inner current control loop. To achieve superior performance,
this type of cascade control also used a properly trained reinforcement learning-twin delayed deep
deterministic policy gradient (RL-TD3) agent, which provides correction signals overlapping with
the command signals of the current and voltage controllers. We present the Matlab/Simulink R2021b
implementations of the synthesized controllers and the RL-TD3 agent, along with the results of
numerical simulations performed for the comparison of the performance of the control structures.

Keywords: power electronic converter; fractional order; sliding mode control; synergetic control;
reinforcement learning

1. Introduction

Due to the expansion and improvement of technologies for the construction of re-
newable energy power generation systems, there are growing numbers of both AC and
DC microgrids. Although each of these microgrids has its own particularities, the types
of topologies used can represent a significant number of the variants in the construction
of microgrids, and we can identify some elements of great importance in the microgrid
architecture, one of them being, of course, the DC-AC or DC-DC converter [1–10].

A remarkable type of DC-DC converter is the multi-phase interleaved converter, and
one of its basic characteristics is that the failure of components in one phase does not affect
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the operation of the rest of the converter phases. Thus, this type of DC-DC converter is
highly reliable and can be successfully used as an interconnection interface between a main
grid (which also contains an AC-DC converter) and a DC microgrid [11–15].

As far as the control system of such a DC-DC power electronic converter is concerned,
we can say that it is usually built using classic PI controllers [16–19]. The controllers
synthesized using SMC theory have a special role in this class of controllers, since they
are robust and suitable for the control of nonlinear systems [20,21]. A generalization of
SMC controllers—namely, synergetic controllers [22,23]—has also been developed. They
retain the robustness of SMC controllers but, with an additional degree of freedom, they
can provide superior response time performance. Thus, for a cascade control system, it is
necessary to use an SMC controller for outer loop control and a synergetic controller for
inner loop control.

In this article, we start from a benchmark used in [18,19] consisting of a DC-DC three-
phase power electronic converter, which allows the comparison of the performance of the
control systems of this type of converter when their main task is to maintain the constant
voltage supplied to a DC microgrid under the conditions of variable consumption required
by it. We propose and synthesize a series of controllers with which superior performance
can be obtained for the benchmark presented.

In order to improve the performance of the control systems used with the mentioned
benchmark, in this article, starting from the definitions and particular structures of fractional
calculus, we propose and synthesize a series of fractional and integer controllers, as well
as combined controllers to be used in voltage outer loop control and current inner loop
control [24,25]. A properly trained RL-TD3 agent combined with a cascade control structure
is also used to improve this performance [26,27]. The main performance indicators covered
in the comparison of the power electronic converter control systems are: steady-state error,
overshoot, response time, and the ripple in the DC voltage supplied to the DC microgrid.

Among the main contributions of this article, we can mention:

• Mathematical modeling using differential equations and transfer functions of the
power electronic converter that provides the interface and interconnection between
the grid and a DC microgrid, a system that is used as a benchmark;

• Synthesis of fractional controllers using Matlab R2021b and the FOMCON
toolbox [28–30]—i.e., FO PI, FO TID, and FO lead-lag—for the presented benchmark;

• Synthesis of both integer and fractional SMC and synergetic controllers for the pre-
sented benchmark;

• Implementation in Matlab/Simulink R2021b of a control structure proposed by the
authors consisting of FO SMC controllers for voltage outer loop control and FO
synergetic controllers for current inner loop control operating in tandem with an
RL-TD3 agent to achieve superior control performance with the presented benchmark;

• Implementation in Matlab/Simulink of the synthesized controllers in order to compare
the performance of the control system with the presented benchmark.

The rest of the paper is structured as follows: the mathematical modeling of the power
electronic converter between two DC microgrids is presented in Section 2. The FO PI, FO
TID, and FO lead-lag controllers for the voltage outer loop control are presented in Section 3,
while the SMC and synergetic controller—both integer-order and FO—combined with the
RL-TD3 agent are presented in Section 4. In Section 5, the implementation of these control
structures using the Matlab/Simulink R2021b environment and the comparison of their
performances through numerical simulations are described for the benchmark presented.
Conclusions and clarifications about future approaches are presented in the final section.

2. Mathematical Modeling of the Power Electronic Converter between Two
DC Microgrids

Starting from the topology of the two-way power electronic converter described
in [18,19] and shown in Figure 1, this section presents the equations and transfer func-
tions needed to model the operation of the three-phase converter in order to obtain a
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common benchmark to compare the control methods and types proposed in [18,19] with
the controllers proposed in this paper, which are based on fractional calculus, as well
as improvements using the RL-TD3 agent; these controllers are described gradually in
Sections 3 and 4. Therefore, the main task of the control system for the power electronic
converter with this benchmark is to maintain the constant VDC voltage for the supply of the
DC microgrid (on DC bus 2) under conditions where the current absorbed by the consumers
connected to this microgrid, represented by the current i0, can have significant variations.
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Figure 1. Block diagram of the three-phase power electronic converter.

In Figure 1, the DC voltage on DC bus 1 is denoted VG, and the modulation indices of
the control signals Sk (k = 1, 2, 3) of the active switching elements are denoted mk (k = 1, 2, 3).
Accordingly, Figure 2 shows an equivalent circuit for the power electronic converter. We
used the typical notations for the modelling of the inductances, resistances, and capacitances
in the diagram shown.
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By applying Kirchhoff’s laws to the system in Figure 2, the following equations can
be obtained:

−mkVG + Lk
diLk
dt

+ RkiLk + VDC = 0 (1)

3

∑
k=1

iLk − i0 − C
dVDC

dt
= 0 (2)
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If the above equations are written in the time domain to achieve the modeling using
transfer functions, the Laplace transform can be applied, and the following equations
are obtained:

−mk(s)VG + (Lk + Rk)ILk(s) + VDC(s) = 0 (3)

3

∑
k=1

ILk(s)− I0(s)− CsVDC(s) = 0 (4)

Without compromising the generality and simply for ease of writing and schematic rep-
resentation, we consider that the circuit elements in each phase are equal; i.e., L1 = L2 = L3 = L
and R1 = R2 = R3 = R. Accordingly, the following equation is obtained by summation from
the last equations:

−
3

∑
k=1

mk(s)VG + (Ls + R)
3

∑
k=1

ILk(s) + 3VDC(s) = 0 (5)

First, we assume that the value of current i0 is equal to 0. From the point of view of
the modeling using transfer functions, this current can be represented as a disturbance for
the control systems of the microgrid VDC voltage. For phase k and for non-zero mk, the
following relation can be written:

−mk(s)VG + (Ls + R)
3

∑
k=1

ILk(s) + 3VDC(s) = 0 (6)

By rewriting Equation (4), we obtain:

3

∑
k=1

ILk(s) = CsVDC(s) (7)

By substituting Equation (6) into Equation (7), we obtain the following equation:

−mk(s)VG +
(

CLs2 + CRs + 3
)

VDC(s) = 0 (8)

By using Equation (3), the following relation can be written:

VDC(s) = mk(s)VG − (Ls + R)ILk(s) (9)

As a result, we obtain the transfer function shown in Figure 3 in the following form:

ILk(s)
mk(s)

=
VG

(Ls + R)

(
CLs2 + CRs + 2

)
(CLs2 + CRs + 3)

(10)
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By using Equation (4), we obtain the following relation:

3ILk(s)− I0(s)− CsVDC(s) = 0 (11)

and, hence, the transfer function from the last block in Figure 3 as:

VDC(s)
ILk(s)

=
3

Cs
(12)

It can be seen from Figure 3 that, to equate the control system of the power electronic
converter for each phase by means of transfer functions, we use a cascade control system
with an inner regulating loop of iLref current prescribed by the controller of the outer
regulating loop of VDC voltage.

The notations are the usual ones for the representation of the transformation of cur-
rent and voltage quantities by means of sensors—the transformation factors Ibase and
Vbase—and PI-type current and voltage controllers with proportionality factors Kpv and
Kpc. The integration factors are denoted Kiv and Kiv for the voltage and current control
loops, respectively.

Simplifying the last term in Equation (10) by equating it with the unit from [18,19], we
obtain the equivalent diagram using the transfer functions of the inner current control loop
shown in Figure 4.
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current regulation.

To compare the various control structures using the benchmark from [18,19], for the
two types of PI controllers mentioned, we use as prompts the methods proposed in [18,19];
namely, tuning with the Gao method described in [17] and its improvement described
in [18]. Thus, considering the bandwidth ωc (for the inner current control loop), the authors
of [18] proposed tuning relations as follows:

Kpc =
ωcLIbase

VG
(13)

Kic =
ωcRIbase

VG
(14)

Accordingly, the approximation of the current control system (the inner loop) is
obtained as follows:

ILk
ILre f

=
ωc

s + ωc
(15)
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By tuning the PI-type voltage controller using Gao’s method described in [18,19],
we can, under the condition that a bandwidth ωv (for the outer voltage control loop) is
required, use the following relations:

Kpv =
ωvCVbase

3Ibase
(16)

Kiv =
ωvVbase
3Rc Ibase

(17)

Further, as we have drawn on [18] for the tuning of the PI-type current and voltage
controllers proposed using Equations (14)–(17), we name them PI-Gao controllers for short.
For the improvement of the performance, we tune the controllers according to a relation in
the form shown in Equation (18), and we name them PI-Gamma controllers for short (γ):

Kivγ =
γωvCVbase

3Ibase
(18)

where γ is a tuning parameter that depends on ωc.
With these, it is possible to model the influence of the current i0 on the voltage VDC

using the following transfer function:

VDC(s)
I0(s)

=
1

Cs

1 + 3Ibase
Vbase

Y(s)
Cs

(19)

where we can note:

Y(s) =
(

Kpv +
Kivγ

s

)
ωc

s + ωc
(20)

In the following section, based on the general block diagram shown in Figure 5, we
develop FO-type controllers—i.e., FO PI, FO TID, and FO lead-lag controllers—for the
performance comparison. It can be seen in Figure 5 that, for these controllers, the inner
current control structure is approximated as described above with a transfer function of the
first order.
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The basic parameters of the power electronic converter based on which the compar-
isons and numerical simulations of the control systems were performed are presented in
Table 1. It can be noted that, in accordance with the choice of the bandwidths of the two
control loops, the response time of the inner current control loop is ten times shorter than
the response time of the inner VDC voltage control loop.
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Table 1. Nominal parameters for the power electronic converter.

Parameter Value Unit

Input voltage from the DC grid VG (DC bus 1) 360 V
Output DC microgrid voltage VDC (DC bus 2) 400 V

Inductance L 2.5 mH
Capacitor C 1.175 mF

Resistance Rc 0 Ω
Voltage sensor constant transform parameters Vbase 200 V
Current sensor constant transform parameters Ibase 28 A
Bandwidth of the outer voltage loop regulation ωv 100·π rad/s
Bandwidth of the inner current loop regulation ωc 1000·π rad/s

We should specify that, for the parameters of the PI-Gao and PI-gamma controllers
in the comparisons of the performance of the control systems, we use the parameters
obtained from the above relations and presented in detail in [18,19]; i.e., for PI-Gao, we
obtain Kpv = 0.8789 and Kiv = 0.0159; for PI-gamma with γ = ωc/100, we obtain Kpv = 0.8789
and Kiv = 27.6114.

3. Fractional-Order Controllers for Voltage Outer Loop Control

In accordance with [28–30], we here present elements of differential and integral
fractional-order calculus in which a central role is played by operator aDα

t , as described by
the following relation:

aDα
t =


dα

dtα Re(α) > 0

1 Re(α) = 0∫ t
a (dt)−α Re(α) < 0

(21)

We should specify that the notations used in Equation (21) have the following sig-
nificance: a and t represent the limits of the range to which the operator is applied,
while the term α represents the fractional order. The Riemann–Liouville definition, which
should be useful in the numerical implementation of the results obtained, is presented in
Equation (22):

aDα
t f (t) =

1
Γ(m− α)

(
d
dt

)m t∫
α

f (τ)

(t− τ)α−m+1 dτ (22)

where m− 1 < α < m; m ∈ N; and Γ(·) is the notation for the Euler gamma function.

3.1. FO PI-Type Controller

The authors of [28–30] present a gradual introduction to the Laplace transform and
fractional-order transfer functions, which we draw from in Equation (23) to show the
general form of a fractional PID controller, denoted PIλDµ, while u(t) and e(t) are the output
and input of the controller:

u(t) = Kpe(t) + KiD−λe(t) + KdDµe(t) (23)

Accordingly, the general form expressed by a transfer function of the fractional-order
PI controller denoted FO PI is given in Equation (24):

HFO−PI(s) = Kp +
Ki

sλ
(24)

where Kp denotes the proportional factor, Ki denotes the integral factor, λ (positive) denotes
the order of the integrator, Kd denotes the differential coefficient, and µ denotes the order
of the differentiator. It can be noted that, when λ = µ = 1, we obtain the usual integer-order
PID controller.
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To work with fractional-order transfer functions, we used the FOMCON toolbox
for Matlab R2021b [29,30]. The integer transfer function for the fixed part of the power
electronic converter control system is given in Equation (25):

H f ixed_part(s) =
2.639 · 105

0.001175 · s2 + 3.691 · s (25)

The transfer function given in Equation (24), following an integral absolute error (IAE)
criterion optimization process performed with the FOMCON toolbox, takes the form given
in Equation (26), where the FO PI controller parameters have the following values: Kp = 3,
Ki = 1.8, and λ = 4.48.

HF0−PI(s) =
3 · s4.48 + 1.8

s4.48 (26)

In the closed loop, when using an FO PI controller, the transfer function takes the form
given in Equation (27):

HCL_FO−PI =
3 · s4.48 + 1.8

0.001175 · s6.49 + 3.691 · s5.49 + 3 · s4.48 + 1.8
(27)

Obviously, in order to implement the transfer function of the fractional-order controller
in an embedded system, an integer approximation of this transfer function must be obtained.
Thus, in accordance with [28–30], we can define the approximation of a fractional transfer
function for a frequency range (ωb, ωh), an order N, and sβ (0 < β < 1) by using Oustaloup
recursive filters in the form of Equations (28) and (29):

G f (s) = K
N

∏
k=−N

s + ω′k
s + ωk

(28)

where, for the values of ω′k, ωk, and K, the following relations can be written:

ω′k = ωb

(
ωh
ωb

) k+N+ 1
2 (1−β)

2N+1
; ωk = ωb

(
ωh
ωb

) k+N+ 1
2 (1+β)

2N+1
; k = ω

β
h (29)

A refined version of the Oustaloup recursive filters is given by the following rela-
tions [28–30]:

sα ≈
(

dωh
b

)α( ds2 + bωhs
d(1− α)s2 + bωhs + dα

)
Gp (30)

Gp = K
N

∏
k=−N

s + ω′k
s + ωk

; ωk =

(
bωh

d

) α+2k
2N+1

; ω′k =

(
dωb

b

) α−2k
2N+1

(31)

Note that, in Equations (30) and (31), the usual values are: b = 10 and d = 9.

3.2. FO TID Controller

Another type of fractional-order controller used in process-control applications is the
TID controller, the general form of which, expressed by the transfer function, is given in
Equation (32):

HFO−TID(s) =
Kt

s1/n +
Ki
s
+ Kds (32)

where Kt denotes the tilt gain, n denotes the order of integration of the term tilt, Ki denotes
the amplification factor of the integrator term, and Kd denotes the amplification factor of
the derivation term.

The transfer function of the FO TID controller has the following form:

HFO−TID(s) =
1.2 · s0.91 + 12

s
(33)
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When using the FOMCON toolbox with a closed loop, the transfer function in the case
of an FO TID controller takes the form given by Equation (34):

HCL−FO−TID(s) =
316, 800 · s0.91 + 3, 166, 800

0.001175 · s3.01 + 3.691 · s2.01 + 316, 800 · s0.91 + 3, 166, 800
(34)

3.3. FO Lead-Lag Controller

The next fractional-order controller proposed to improve the performance of the power
electronic converter control system is the FO lead-lag controller. The general form of the
transfer function for an FO lead-lag controller is given by Equation (35):

HFO−Lead−Lag(s) = Kc

(
s + 1

λ

s + 1
xλ

)α

= Kcxα

(
λs + 1

xλs + 1

)α

, 0 < x < 1 (35)

where λ denotes the fractional order of the FO lead-lag controller.
From the form of the transfer function for the FO lead-lag controller, it can be noted

that a lead effect is obtained when α > 0, while a lag effect is obtained when α < 0.
With k′ = Kcxα, we obtain the usual form of this controller:

HFO−Lead−Lag(s) = k′
(

λs + 1
xλs + 1

)α

(36)

It can be noted that, for k′ = α = 1, λ =
Kp
Ki

, and a very large value of x (for example,
x > 10,000), the transfer function of the FO lead-lag controller becomes the transfer function
of the FO PI controller. It can, therefore, be concluded that the use of the FO lead-lag
controller in a control loop has great flexibility.

The transfer function of the FO lead-lag controller is given in the following form:

HFO−Lead−Lag(s) =
1.8023 · s2.2 + 1.4201 · s1.1 + 7.024

s2.2 + 2.196 · s1.1 + 1
(37)

In a closed loop, the transfer function in the case of an FO lead-lag controller takes the
form given by Equation (38):

HCL_FO−Lead−Leag(s) =
475,630·s2.2+374,760·s1.1+1,853,600

0.00117·s4.21+3.691·s3.21+0.002583·s3.11+47,563·s2.2+8.1054·s2.11+0.00117·s2.01+374,760·s1.1+3.691·s1.01+1,853,600

(38)

Figure 6 shows the stability test for the closed-loop control system for the power
electronic converter based on the FO lead-lag controller for the control of voltage VDC. It
can be noted that the system is stable. Figure 7 shows the Bode diagram of the closed-loop
control system. The system is stable because the following condition is fulfilled: ωt < ωπ,
where the notations are the usual ones; i.e., ωt represents the zero-crossing frequency of
the logarithmic amplitude frequency characteristic, while ωπ represents the frequency for
which the phase response is equal to –π rad/s.

In Appendix A is presented the modality to obtain the integer transfer functions for
the FO PI, FO TID, and FO lead-lag controllers in continuous and discrete form.
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4. Fractional-Order SMC and Synergetic Controllers Combined with RL-TD3 Agent

Starting from Equation (11), where i0 represents the current absorbed by the consumers
connected to the DC microgrid (on DC bus 2), it can be seen that, in order to implement
this in the VDC voltage control system (the outer loop in Figure 3), there must be an inner
loop for the control of the current absorbed by the consumers. This can be achieved by
adding the variable iLref supplied by the voltage controller through the imposition of the
condition i0 = iLref, based on which we can write the following equation:

C
dVDC

dt
=

3

∑
k=1

iLk − iLre f (39)
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Next, we synthesize an SMC controller and then an FO SMC controller for which the
iLref output is the reference for the inner current control loop. In Section 4.1, we describe the
approximation employed in Sections 2 and 3 in terms of the approximation of the inner
current control loop by means of a transfer function of the first order.

4.1. Fractional-Order SMC Controller for Voltage Outer Loop Control

For the synthesis of the SMC controller, we define the state variable x1 as follows:

x1 = VDCre f − VDC (40)

We also define the switching surface S:{
S = c1x1 + x2.
S = c1x2 +

.
x2

(41)

where we define the state variable x2 as follows:

x2 =
.
x1 = −

.
VDC (42)

By choosing a Lyapunov function V = S2

2 , according to the condition that
.

V = S ·
.
S < 0,

it is obvious that, to ensure convergence, the following relation is required:

.
S = −εsgn(S)− kS (43)

where ε and k are positive constants.
From the calculations, we obtain:

..
x1 =

.
x2 = −

..
VDC =

1
C

.
iLre f −

1
C

3

∑
k=1

.
iLk (44)

From Equation (41), (43), and (44), we obtain iLref, the SMC controller output, in the
following form:

iLre f = C
t∫

0

[
−(c1x2 + kS + εh(S)) +

1
C

3

∑
k=1

.
iLk

]
dt (45)

Figure 8 presents a concise block diagram modeled using the transfer function for the
control system of the power electronic converter using an SMC controller for the voltage
outer control loop. For the inner current control loop, we use the approximation with a
transfer function of the first order.
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For the fractional case, for the synthesis of an FO SMC controller, the switching surface
is defined as follows:

S = c1x1 + c2Dµx1 = c1x1 + c2Dµ−1x2 (46)
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where the fractional differential operator D is defined by Equation (21).
By calculating the derivative of this surface

.
S, we obtain the following relation:

.
S = c1

.
x1 + c2Dµ+1x1 = c1x2 + c2Dµ−1 .

x2, (47)

which can be rewritten using Equation (44) as follows:

.
S = c1x2 + c2Dµ−1

(
1
C

.
iLre f −

1
C

3

∑
k=1

.
iLk

)
(48)

Using a Lyapunov function, as in the case of the integer-order SMC controller, and
Equation (43), we obtain the following relation:

− εh(S)− kS− c1x2 = c2Dµ−1

(
1
C

.
iLre f −

1
C

3

∑
k=1

.
iLk

)
(49)

By applying the operator D1−µ, according to the definition, to the previous equation,
we obtain the following relation:

D1−µ(−εh(S)− kS− c1x2) = c2

(
1
C

.
iLre f −

1
C

3

∑
k=1

.
iLk

)
(50)

From this, we derive the output iLref of the FO SMC controller as follows:

iLre f =
C
c2

t∫
0

[
c2

1
C

3

∑
k=1

.
iLk + D1−µ(−εh(S)− kS− c1x2)

]
dt (51)

Figure 9 presents the concise block diagram modeled using the transfer function for
the control system of the power electronic converter using an FO SMC controller for the
voltage outer control loop. For the inner current control loop, we use the approximation
with a transfer function of the first order.
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Due to the fact that, in Figures 8 and 9, the approximation of the inner current con-
trol loop with a transfer function of the first order is achieved by using PI-type con-
trollers for the current control loops and the approximation relations of the type shown
in Equations (13) and (14), in order to compare the performance of these control structures
with those from Figures 6 and 7, they will be named the SMC controller and PI controller
and the FO SMC controller and PI controller, respectively, for short.
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4.2. Fractional-Order Synergetic Controller for Current Inner Loop Control

Since, in the case of the cascade control, the inner control loop must be faster than the
outer control loop, in this section we consider SMC and FO SMC controllers for the outer
voltage control loop. For the inner current control loop, we synthesize synergetic and FO
synergetic controllers. This is because these types of controllers are also part of the sliding
control category but, due to the particular way they are described, they have an additional
design parameter that gives them better flexibility and response time compared to SMC
type controllers.

The general form of a synergetic controller can be written as:

.
x = f (x, u, t) (52)

where x denotes the state vector and x ∈ <n, f (.) denotes the continuous nonlinear
description function, and u denotes the control vector and u ∈ <m with m < n.

In the synergetic controller synthesis algorithm, for each control input, we choose a
macro-variable Ψ(x,t), which is dependent on the states of the system.

The synthesis algorithm entails the evolution of the system to a differential manifold
Ψ = 0 according to the following equation:

T
.
ψ + ψ = 0 (53)

where T > 0 denotes a parameter that dictates the rate of convergence to the differential
manifold Ψ(x,t).

By deriving the macro-variable Ψ, we can write the following relation:

.
ψ =

∂ψ

∂x
.
x (54)

By substituting Equation (54) into Equation (53), we obtain the following relation:

T
∂ψ

∂x
.
x + ψ = 0 (55)

In order to obtain the control law, we must include the explicit forms of the state
variables

.
x deduced from the mathematical model formulated for the controlled system,

which can be written in the following general form:

u = u(x, ψ(x, t), T, t) (56)

Next, we apply the synergetic integer- and fractional-order control procedure to
replace the PI-type controller in the inner current control loop, and the outputs of each
inner current control loop corresponding to each phase are applied to the mk modulation
indices. The Sk (k = 1, 2, 3) pulses are obtained from these by means of PWM blocks and act
on the IGBT-type active element controls for the DC-DC converter shown in Figure 1.

Next, for k∗ > 0, we choose a macro-variable Ψ with the following form:

ψ =
(

VDCre f −VDC

)
+ k∗

(
iLre f −

3

∑
k=1

iLk

)
(57)

In addition to the state variable x1 defined in Equation (40) for the synthesis of the
SMC controller, a state variable x2 can be defined as in the following relation:

x1 = VDCre f −VDC

x2 = iLre f −
3
∑

k=1
iLk

(58)
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It can be noted that, in Equation (58), for a quasi-steady-state regime or for slow
variations in the reference quantities, we can consider their derivative as null and, thus,
Equation (58) becomes: 

.
x1 = −

.
VDC

.
x2 = −

3
∑

k=1

.
iLk

(59)

By using Equation (59) for the calculation of the derivative of the macro-variable Ψ,
we obtain the following relation:

.
ψ =

.
x1 + k∗

.
x2 = −

.
VDC − k∗

3

∑
k=1

.
iLk (60)

By adapting Equation (55) for the elements of the presented system, we obtain:

T

(
−

.
VDC − k∗

3

∑
k=1

.
iLk

)
+
(

VDCre f −VDC

)
+ k∗

(
iLre f −

3

∑
k=1

iLk

)
= 0 (61)

Next, we can use Equation (1), in which, for ease of writing, we denote the control
inputs as:

uk = −mkVG, k = 1, 2, 3 (62)

Accordingly, we obtain the following relation:

Lk
diLk
dt

= uk − RkiLk −VDC (63)

Furthermore, the following notations are used for ease of writing:

u3k = −RkiLk −VDC, k = 1, 2, 3 (64)

Accordingly, we obtain the relations in Equation (65):

Lk
diLk
dt

= uk + u3k, k = 1, 2, 3 (65)

By substituting this equation into Equation (61), we can write:

− T
.

VDC − Tk∗
1
Lk

(u3k + uk) +
(

VDCre f −VDC

)
+ k∗

(
iLre f −

3

∑
k=1

iLk

)
= 0 (66)

After rearranging the terms in Equation (66), we obtain:

Tk∗
1
Lk

uk = −T
.

VDC − Tk∗
1
Lk

u3k +
(

VDCre f −VDC

)
+ k∗

(
iLre f −

3

∑
k=1

iLk

)
(67)

The control law uk for k = 1, 2, 3 can be obtained from Equation (67) as follows:

uk =
Lk

Tk∗

[
−T

.
VDC − Tk∗

1
Lk

u3k +
(

VDCre f −VDC

)
+ k∗

(
iLre f −

3

∑
k=1

iLk

)]
(68)

Figure 10 presents the concise block diagram modeled using the transfer function for
the control system of the power electronic converter using an SMC controller for the outer
voltage control loop and a synergetic controller for the inner current control loop.
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controller for the current inner control loop.

For the synthesis of a fractional synergetic controller using the algorithm presented
above, we choose a macro-variable Ψ with the following form:

ψ = Dµx1 + kx2 (69)

By deriving the macro-variable Ψ, we obtain the following relation:

.
ψ = Dµ .

x1 + k∗
.
x2 = −Dµ

.
VDC − k∗

3

∑
k=1

.
iLk (70)

Accordingly, by adapting Equation (55) for the synthesis of the FO synergetic controller,
we obtain the following relation:

T
(
−Dµ

.
VDC − k∗

.
iL

)
+ Dµ

(
VDCre f −VDC

)
+ k∗

(
iLre f −

3

∑
k=1

iLk

)
= 0 (71)

Using Equation (65), Equation (71) becomes:

− TDµ+1VDC − Tk∗
1
Lk

(u3k + uk) + Dµ
(

VDCre f −VDC

)
+ k∗

(
iLre f −

3

∑
k=1

iLk

)
= 0 (72)

After rearranging the terms in Equation (72), we can write:

Tk∗
1
Lk

uk = −TDµ+1VDC − Tk∗
1
Lk

u3k + Dµ
(

VDCre f −VDC

)
+ k∗

(
iLre f −

3

∑
k=1

iLk

)
(73)

The control law uk for k = 1, 2, 3, in the case of the FO synergetic controller, can be
written as:

uk =
Lk

Tk∗

[
−TDµ+1VDC − Tk∗

1
Lk

u3k + Dµ
(

VDCre f −VDC

)
+ k∗

(
iLre f −

3

∑
k=1

iLk

)]
(74)

Figure 11 presents the concise block diagram modeled using the transfer function for
the control system of the power electronic converter using an FO SMC controller for the
outer voltage control loop and an FO synergetic controller for the inner current control loop.
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Figure 11. Block diagram modeled using the transfer function for the control system of the power
electronic converter using an FO SMC controller for the voltage outer control loop and an FO
synergetic controller for the current inner control loop.

To compare the performance of the control structures shown in Figures 8 and 9, they
are named the SMC controller and synergetic controller and FO SMC controller and FO
synergetic controller, respectively, for short.

4.3. RL-TD3 Agent for Adjustment of the Command Signals of the FO SMC and FO
Synergetic Controllers

Among the types of machine learning, RL—in particular, the RL-TD3 agent—is the
best suited for training for the control of an industrial process. Roughly speaking, the role
of the RL-TD3 agent is to learn how to execute a task under the conditions of interacting
with an unknown process, without requiring the explicit programming of the learning
mode but only based on observations of the system and the performance of actions affecting
the system in such a way as to maximize the cumulative reward. In the learning process
of the RL-TD3 agent, an analogy with the control system of an industrial process can
be made in the sense that observations are analogous to the reading of input quantities,
actions are analogous to the provision of output quantities, and the cumulative reward can
be associated with an integral optimization criterion. Among the components of the RL-
TD3 agent, we can mention the policy component and the learning algorithm component.
Figure 12 shows a block diagram of the components of an RL-TD3 agent.
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The policy component can be described in terms of the way it associates actions
with observations of the process and, in the case of the RL-TD3 agent, it is similar to the
description of the functionality of a controller. The main goal of the learning algorithm is to
find an optimal policy, which is achieved through iterative adaption of all the parameters
of the policy component in such a way as to maximize the cumulative reward.

The main stages of the RL process include:

• Problem formulation—definition of the learning agent and how it interacts with the
controlled process;

• Process creation— definition of the dynamic model and the interface associated with
the controlled process;

• Reward creation— definition of the mathematical expression of the cumulative reward;
• Agent training—training of the agent according to the policy based on cumulative

reward and definition of the learning algorithm;
• Agent validation—evaluation of the performance following the training stage;
• Policy implementation—implementation of the trained agent in a control system (e.g.,

by generating executable code for programming an embedded system).

Based on the operating mode of the RL-TD3 agent, we can specify that, after the
training stage, it is capable of providing correction signals that overlap with the control
signals provided by the FO SMC controller or FO synergetic controller, respectively, thus
achieving superior performance in the control of the power electronic converter.

Figure 13 shows the proposed block diagram for the global control system of the power
electronic converter using an FO SMC controller for the voltage outer control loop and an
FO synergetic controller for the current inner control loop combined with the RL-TD3 agent.
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5. Numerical Simulations

In this section, based on the Matlab/Simulink R2021b development–simulation envi-
ronment, we describe the comparison of the performance of the control systems of the power
electronic converter considered as a benchmark, the parameters and the mathematical and
transfer-function modeling of which are presented in Table 1 and in Section 2, respectively.
The types of controllers and their parametrizations are presented in Sections 3 and 4, and
details on the parameterizations are presented below. We should specify that the main task
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of the power electronic converter control system is to maintain a constant DC voltage on
DC bus 2 from the DC microgrid VDCref = 400 V.

The performances were compared in terms of the response time, steady-state error,
overshoot, and error ripple in the DC voltage VDCerror = VDCref − VDC. Table 2 summarizes
the results obtained from the comparison of the control systems in relation to the benchmark
presented. The calculation relation for the DC voltage VDC ripple is as follows [19]:

VDCripple =

√√√√ 1
N

N

∑
i=1

(
VDC(i)−VDCre f (i)

)2
(75)

where N denotes the number of samples, VDC denotes the DC voltage for DC bus 2, and
VDCref = 400 V.

Table 2. Performance indices for the power electronic converter control systems based on the
proposed controllers.

Controllers of the Power Electronic Converter
Stationary
Error (%)

Response
Time (ms) Overshoot (%) VDC Ripple (V)Controller for Voltage

Outer Control Loop
Controller for Current

Inner Control Loop

PI-Gao PI-Gao 0.1 11.8 0.1 48.79
PI-Gamma PI-Gao 0.01 7.4 10 50.75

FO PI PI-Gao 0.01 2.56 0.1 43.24
FO TID PI-Gao 0.01 2.53 0.1 43.01

FO lead-lag PI-Gao 0.01 2.48 0.1 42.92
SMC PI-Gao 0.01 2.40 0.01 40.25

FO SMC PI-Gao 0.01 2.27 0.01 40.07
SMC Synergetic 0.01 2.08 0.01 39.94

FO SMC FO synergetic 0.01 2.04 0.01 39.81

FO SMC FO synergetic
0.01 2.02 0.01 39.59Combined with RL-TD3 agent

Figure 14 shows the schematic Matlab/Simulink R2021b implementation for the
comparison of the performance of the control systems of the power electronic converters
based on the PI-Gao, PI-gamma, FO PI, FO TID, and FO lead-lag voltage controllers. We
specify that these controllers are for the outer voltage control loop, while for the inner
current control loop, we use the parameterizations from Equations (13) and (14) for PI-type
controllers, the inner current loop thus being approximated with a transfer function of the
first order.

We can note that the PI-Gao, PI-gamma, and FO PI controllers have been previously
used for comparisons with the same benchmark [18,19], and in this article the rest of the
controllers presented are additionally synthesized for comparison with the same bench-
mark. The parameter values for the PI-Gao-, PI-Gamma-, and FO PI-type controllers are
presented in detail in [18,19]. Matlab R2021b and the FOMCON toolbox were used to set
the controller parameters for the FO TID and FO lead-lag controllers. The tuning of PI
controllers using Ziegler–Nichols methods is a well-known technique. In the fractional
case, the FOMCON toolbox for the Matlab R2021b utility program was used for the tuning
of the FO PI controllers.

The results of the numerical simulations performed in Matlab/Simulink R2021b of
the time evolution of the VDC voltage in the comparison of the PI-Gao, PI-gamma, FO PI,
FO TID, and FO lead-lag voltage controllers for the control system of the power electronic
converter are presented in Figure 15. Significant improvements can be noted for the FO PI,
FO TID, and FO lead-lag controllers compared to the PI-Gao and PI-gamma controllers in
terms of the performance of the power electronic converter control.
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Next, we present the comparative results for the control systems of the power electronic
converters based on the controllers synthesized in Section 4 (i.e., the SMC and synergetic
controllers of integer or fractional orders) and indicate the possibility of improving the
control system by using an RL-TD3 agent. Figure 16 shows the schematic Matlab/Simulink
R2021b implementation for the most complex control structures proposed in this article; i.e.,
the FO SMC controller for the voltage outer control loop and the FO synergetic controller
for the current inner control loop combined with a RL-TD3 agent.
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Figure 16. Matlab/Simulink R2021b implementation for the control systems of the power electronic
converter using the FO SMC controller for the voltage outer control loop and the FO synergetic
controller for the current inner control loop combined with the RL-TD3 agent.

For the RL-TD3 agent described in Section 4, the cumulative reward used is given in
Equation (76), and Figure 17 summarizes the results for the RL-TD3 agent training stage.
Once the RL-TD3 agent is trained, it can provide correction signals for the control signals
of the FO SMC voltage controller and FO synergetic current controller in order to achieve
superior control performance with the presented benchmark.

The FO SMC controller parameters used in the numerical simulations in Matlab/Simulink
R2021b, according to the notations in Section 4, are as follows: c1 = 0.1, c2 = 0.1, k = 118,000,
and ε = 110.

The FO synergetic controller parameters used in the numerical simulations in Mat-
lab/Simulink, according to the notations in Section 4, are as follows: k* = 10,000, T = 3, and
µ = 0.55.
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correction control systems of the power electronic converter using the FO SMC controller for the
voltage outer control loop and the FO synergetic controller for the current inner control loop.

The optimization criterion (the reward) used in the training stage for the control system
for the power electronic converter based on the FO SMC and FO synergetic controllers
combined with the RL-TD3 agent is the following:

rFO−SMC&FO−SYNERGETIC = −
(

5i2Lerror + 5V2
DCerror+ 0.1∑

j

(
uj

t−1

)2
)

(76)

where uj
t−1 represents the actions from the previous step.

For the parameterizations shown in Figure 18, in order to note the positive evolution in
terms of the performance of the controllers proposed in Section 4, we present a comparison
of the results of the numerical simulations performed in Matlab/Simulink R2021b of the
time evolution of the VDC voltage for the benchmark presented using the following com-
binations of proposed controllers: FO PI voltage controller and PI-Gao current controller,
SMC voltage controller and PI-Gao current controller, FO SMC voltage controller and
PI-Gao current controller, SMC voltage controller and synergetic current controller, FO
SMC voltage controller and FO synergetic current controller, FO SMC voltage controller
and FO synergetic current controller combined with the RL-TD3 agent, and FO PI voltage
controller and PI-Gao current controller.

As shown in Figure 19, it can be noted that, if the current absorbed by the consumers
connected to DC bus 2 in the DC microgrid has a step change of 100 A, the control system
of the power electronic converter based on the FO SMC and FO synergetic controllers
combined with the RL-TD3 agent has a very good response, and the only difference,
compared to the case where i0 = 0 A, is a slight increase in the overshoot from 0.01% to
0.12%. This proves that the proposed control system, in addition to the top performances
summarized in Table 2, ensures good parametric robustness.
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current for DC bus 2 i0 = 100 A.

The current i0, which represents the current absorbed by the consumers, represents
the main disturbance in the system. Thus, in Figure 19, we can see a very good response
from the control system in the case of a jump of 100 A, which proves the good robustness
of the proposed controller.

This brief analysis of the performance of the control systems of the power electronic
converter presented as a benchmark shows that the performance of the controllers proposed
in this paper significantly improves the performance described in [18,19].

Thus, a first leap in terms of improving the performance of the control system com-
pared to the use of classical PI controllers is provided by the use of FO PI, FO TID, and FO
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lead-lag fractional controllers. A second leap in terms of improving the performance of
the control system—in particular, the response time and VDC ripple—compared to the use
of the FO PI, FO TID, and FO lead-lag fractional controllers is provided by the use of the
controllers synthesized in Section 4, among which the FO SMC voltage controller and FO
synergetic current controller combined with the RL-TD3 agent have the best performance.

6. Conclusions

This article presented the topology and mathematical modeling using differential
equations and transfer functions of a three-phase power electronic converter providing
the interface and interconnection between the grid and a DC microgrid. This system was
used as a benchmark in a series of studies on the performance of the control systems
used, the main task of which was to maintain the DC voltage supplied to the microgrid
at an imposed constant value, regardless of the total value of the current absorbed by the
consumers connected to the DC microgrid. We presented fractional calculus elements
that were used to synthesize a first set of FO PI, FO TID, and FO lead-lag controllers
that significantly improved the performance of the control system of the power electronic
converter compared to classical PI controllers. The next set of proposed and synthesized
controllers were based on SMC, together with its more general and flexible synergetic
control variant, and both integer-order and FO controllers were used. The proposed control
structures were cascade control structures, combining the SMC properties of robustness
and control over nonlinear systems for the outer voltage control loop with properly tuned
synergetic controllers enabling faster response time for the inner current control loop. To
achieve superior performance, this type of cascade control also used a properly trained
RL-TD3 agent, which provided correction signals overlapping with the command signals
of the current and voltage controllers. We presented the Matlab/Simulink R2021b imple-
mentations of the synthesized controllers and RL-TD3 agent, along with the results of
numerical simulations performed for the comparison of the performance of the control
structures. It can be concluded that the structure here proposed by the authors (FO SMC
controller for outer control loop and FO synergetic controller for inner control loop com-
bined with an RL-TD3 agent)—which has also been described in other articles but with
other benchmarks [24,25]—provided top performance in the case of the benchmark used
in this article, and it can be recommended for cases where the control can be cascaded
on two levels. In [25], due to the particularity of the benchmark, the authors also carried
out real-time implementation of the proposed control system in an embedded system.
In future approaches, by using an RT-Opal system, we also intend to carry out real-time
implementation with the benchmark used in this article.
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Appendix A

To obtain the integer transfer functions for the FO PI, FO TID, and FO lead-lag con-
trollers in continuous and discrete form, respectively, we first used the FOMCON toolbox
with ω = [10−2; 103] rad/s and then Tustin substitution. The transfer functions s and,
respectively, the functions in the z-domain are presented in Figures A1–A3.

Based on the form of the transfer function in the z-domain, we can easily obtain a
finite-difference time-domain equation suitable for real-time implementation in an embed-
ded system.
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