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Abstract: The fractal dimension D f has been widely used to describe the structural and morphological
characteristics of aggregates. Box-counting (BC) and power law (PL) are the most common methods
to calculate the fractal dimension of aggregates. However, the prefactor k, as another important
fractal property, has received less attention. Furthermore, there is no relevant research about the
BC prefactor (kBC). This work applied a tunable aggregation model to generate a series of three-
dimensional aggregates with different input parameters (power law fractal properties: D f ,PL and
kPL, and the number of primary particles NP). Then, a projection method is applied to obtain the
2D information of the generated aggregates. The fractal properties (kBC and D f ,BC) of the generated
aggregates are estimated by both, for 2D and 3D BC methods. Next, the relationships between the box-
counting fractal properties and power law fractal properties are investigated. Notably, 2D information
is easier achieved than 3D data in real processes, especially for aggregates made of nanoparticles.
Therefore, correlations between 3D BC and 3D PL fractal properties with 2D BC properties are of
potentially high importance and established in the present work. Finally, a comparison of these
correlations with a previous one (not considering k) is performed, and comparison results show that
the new correlations are more accurate.

Keywords: aggregation; agglomeration; fractal properties; box-counting prefactor; power law
prefactor; structure in 3D; projections in 2D

1. Introduction

Aggregates made of nano-sized spherical primary particles have complex and irregular
structures. Aggregates of this kind occur in many practical applications, such as in colloidal,
aerosol, or combustion systems [1–3]. The irregularity of the aggregates can influence
their chemical and physical properties, by changing, for example, their surface area [4],
light extinction efficiency [5], or aerodynamic behavior [6]. Since the aggregates can be
considered as fractal-like structures [7], it is acceptable to quantify their irregularity by
means of the fractal dimension D f , as proposed by Mandelbrot [8]. In recent years, the
fractal dimension has been investigated and used in order to characterize the morphology
of particle systems and porous media [9–11], including building materials [12], as well as
in the context of transport equations for fractal media [13]. Regarding the aggregates of
primary particles, the box-counting (BC) [14] and the power law (PL) [15] methods are the
most common methods used to calculate the fractal dimension.

Complementary to the fractal dimension is the prefactor k, as a second fractal property,
which has though received much less attention than D f . It is worth pointing out that
for a given aggregate size, the spatial distribution of primary particles in aggregates is
dependent on both the fractal dimension and the prefactor [16,17]. The constituent primary
particles of aggregates become more concentrated in space with an increase in either of
these two parameters. In the frame of a power law, the prefactor has an influence on how
the aggregate mass is filling up the space, independently of its size, and on how the primary
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particles are packed [18]. The prefactor has been associated with the porosity and lacunarity
of the aggregates [19]. The variation of the prefactor as a function of the fractal dimension
and the packing density has been discussed in [16]. However, the power law method needs
to collect data from many aggregates with distributed size to, then, provide mean fractal
properties (D f , PL and kPL) for the whole particle population [20]. In contrast, the box-
counting method (BC) is a simple mathematical method that enables the determination of
fractal dimensions on a single aggregate [21,22]. However, there are no studies with respect
to the BC prefactor kBC, which is not even defined and evaluated in many cases. Moreover,
interrelations between BC fractal properties and PL fractal properties are missing.

Three-dimensional (3D) information about the aggregates can visually and comprehen-
sively describe the morphological properties of aggregates. Tomography is widely applied
to obtain 3D scanning of aggregates. The inner structure of aggregates can be directly
accessed by optical coherence tomography or micro-computed tomography (µ-CT) [23].
Pashminehazar et al. [21] investigated the morphological properties of amorphous mal-
todextrin aggregates with highly porous and soft structures by X-ray µ-CT. The morphology
and microstructure of diesel soot particulate matter were investigated by synchrotron soft
X-ray tomography in [24]. Those authors calculated the fractal dimensions of agglomerates
and diesel soot particulate matter by image analysis. However, when the aggregates are
composed of nano-sized primary particles, their 3D data are difficult and expensive to
obtain with the necessary resolution. It is, however, relatively easy and quick to get the
2D data of such aggregates by SEM or TEM. Light scattering and electron microscope
methods for calculating the fractal dimension of fumed silica are compared in [25]. Quanti-
tative analysis of the fractal dimension of soot aggregates by SEM and image processing
techniques was performed by Chakrabarty et al. [26] to find the dependence of particle
morphology on the electrical charging of particles. A new method was proposed in [27]
to estimate the fractal dimension of individual soot aggregates, which can be applied
to TEM images. Therefore, the development of a correlation between 2D and 3D fractal
properties of aggregates would be highly beneficial, because then the 3D fractal properties
of aggregates could be obtained from 2D fractal properties by means of the correlation.
Wang et al. [28] proposed a 2D projection method to obtain the minimum overlapping
between primary particles and built a correlation between 2D BC fractal dimension and
the 3D power law fractal dimension. However, this correlation neglects the effect of the
prefactor, considering the prefactor to be constant and equal to 1.

In this study, this limitation is removed. A particle-cluster tunable aggregation model
is applied to generate a series of aggregates with various fractal properties (based on the
power law and denoted by D f ,PL and kPL) and with various numbers of primary particles
Np. This is the modified polydisperse tunable sequential aggregation (MPTSA) model
from [29]. Compared to cluster–cluster models, the particle–cluster tunable aggregation
model can predict realistic fractal properties of aggregates accurately and quickly. Then, the
projection method that has been introduced in [28] is applied to get 2D data of the generated
aggregates. Further, the box-counting method is applied to obtain the respective fractal
properties both in 2D (denoted by D f ,BC,2D, kBC,2D) as well as in 3D (D f ,BC,3D and kBC,3D).
Not only the fractal dimension, but also the fractal prefactor is evaluated in this frame.
Finally, correlations between 3D BC fractal properties and 3D PL fractal properties with 2D
box-counting fractal properties are established. Prospectively, such correlations can be used
to reconstruct the spatial structure of aggregates based just on planar microscopy images.

2. Methods
2.1. Power Law (PL) Method

Using the power law method to estimate the fractal properties (fractal dimension D f ,PL
and prefactor kPL) of the aggregates requires knowledge of several parameters, namely of
the mean radius of primary particles (Rp), the radius of gyration (Rg), and the number of
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primary particles (Np). The above parameters combine with the fractal properties to the
power law relationship,

Np = kPL

(
Rg

Rp

)D f ,PL

. (1)

In Equation (1), gyration radius Rg is one of the basic parameters to describe an
aggregate since it is influenced by the spatial distribution of mass around the mass center
of the aggregate. Thus, Rg depends on both, the aggregate size and the mass distribution
in it. The illustration of Rg of an aggregate is shown in Figure 1.
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Figure 1. Illustration of the radius of gyration Rg of an aggregate.

In our present work, the constituent primary particles of aggregates are considered as
monodisperse, so that Rg can be calculated according to [30] by means of the relationship

Rg =

√√√√ 1
2Np2

Np

∑
i=0

Np

∑
j=0

(
Ri − Rj

)2, (2)

where Ri and Rj are the position vectors of the ith and the jth primary particles in
the aggregate.

Equation (1) can be transformed into a logarithmic form:

log
Rg

Rp
= D f ,PL log Np − kPL. (3)

According to Equation (3), plotting Np versus Rg/Rp in logarithmic coordinates results
in a linear regression that can be used to correlate log Np and log(Rg/Rp). Then, the linear
regression slope is fractal dimension D f , PL and the intercept is prefactor kPL.

The power law method is an averaging method, which means that this method
requires to collect data from a relatively large number of aggregates with distributed size
and provides mean fractal properties (D f , PL and kPL) of the whole particle population.

2.2. Box-Counting (BC) Method

The box-counting method is a relatively simple mathematical method that enables
the determination of fractal properties on a single aggregate. This method can estimate
the fractal dimension for aggregates with or without self-similarity. As discussed in
Wang et al. [28], Strenzke et al. [31], and Pashminehazar et al. [21], the BC method can be
used on both 2D and 3D aggregates.
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The key point of the BC method is to create a grid with the same number of unit
boxes (n) in each direction (for 3D, x, y and z directions, and one direction less for 2D).
The number of boxes n varies with the scaling factor, ε, as shown in Figure 2. Typically, n
has the value of a power of 2: it starts with 2 and ends with a limiting number (Sn). Sn
is related to the resolution, for example, the number of voxels in 3D X-ray scans or the
number of pixels of 2D microscopy images. The effect of Sn has been discussed in [28],
Sn = 512 having been selected for this work. Then, the BC fractal dimension (denoted by
D f , BC) is estimated by the dynamic relationship between the number of boxes that are
occupied by the aggregate N(ε) and the scaling factor ε:

D f , BC = lim
ε→0

 log(N(ε))

log
(

1
ε

)
. (4)
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Figure 2. The evolution of n (=1/ε) in the 3D box-counting method.

In Figure 2, L is the side length of the whole grid and δ is the size of one box. The
definition and determination of L have been investigated in [28], and in this work the same
setting of L as in [28] has been applied when using the BC method. The relationship of L
with respect to δ and ε is

L = nδ =
δ

ε
. (5)

As shown in Figure 2, δ cannot reach zero. Thus, it is required to count the changing
number N(ε) of corresponding boxes with different side lengths, decreasing the value of ε
for several times. Plotting N(ε) versus 1/ε on a log-log plot gives a straight line with the
least square method, and the absolute value of the slope of this line is the box-counting
fractal dimension. Thus, D f , BC is calculated through the equation

y = D f , BCx + kBC. (6)
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where y represents log(N(ε)), x is log(1/ε), and kBC is the BC fractal prefactor. Comparing
Equations (3) and (6), one can see that the slope of both equations represents the fractal
dimension, whereas the intercept represents the prefactor. The relationship between BC
fractal properties and PL fractal properties is discussed in Section 3.

2.3. Aggregate Generation

Here, a tunable aggregation model is applied to generate a series of aggregates with
various fractal properties and different numbers of primary particles. This is the modified
polydisperse tunable sequential aggregation model (MPTSA) from [29]. In this aggregate
generation model, the input parameters are the fractal dimension D f , PL, the prefactor kPL,
the number of primary particles NP, and the radius of primary particles Rp. The flowchart
of the MPTSA model is shown in Figure 3.
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The first primary particle is allotted to the center of the simulation space. Next, a point
is selected on the surface of the first particle, and the second particle is placed adjacent to
this point. As discussed in [32], there is a limitation of prefactor in the tunable sequential
algorithm. So, the input fractal dimension D f , PL and prefactor kPL are tuned to D f , t and
kt(=1) by the following equation [32],

D f ,t = D f ,PL

 log
(

Np
1

)
log
(

Np
kPL

)
. (7)

Then, the third and subsequent particles are inserted one by one. The center of each
additional primary particle is located on a sphere of radius T

T2 =
P2Rp

2

P− 1

(
P
kt

) 2
D f ,t −

0.6PRp
2

N − 1
− PRp

2
(

P− 1
kt

) 2
D f ,t

. (8)

Here, P ranges from 3 to Np. The precise position on the sphere of radius T is chosen
to have point contact with the new primary particle without overlapping. The addition of
primary particles is continued one by one until P ≥ Np.

For illustration, we first generated a series of aggregates using the MPTSA model
with different fractal properties (D f , PL and kPL) and the same number of primary particles
(Np = 50), as shown in Figure 4. It can be seen from Figure 4 that both D f , PL and kPL
can affect the structural and morphological properties of aggregates. When D f , PL or kPL
increases gradually, the constituent primary particles tend to be more and more concen-
trated around the center point of the aggregate, which more and more resembles a sphere.
However, the morphology of aggregates is more sensitive upon D f , PL than upon kPL
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(variation of D f , PL is from 1.8 to 3.0, whereas the variation of kPL is from 1.0 to 7.0). This is
due to the fact that kPL is the prefactor, not the exponent of Equation (1).
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3. Results and Discussion
3.1. Effective Range of Prefactor kPL

The prefactor kPL is an important parameter to describe the structural and morpholog-
ical properties of aggregates, as shown in Figure 4. Therefore, and with values of D f , PL
being in the range of 1 to 3, the question arises about the effective range that values of
the prefactor kPL may attain. For a first orientation, we summarized values of kPL for
aggregates with different D f ,PL from the literature in Table 1.

Table 1. Values of kPL and D f ,PL from previous work.

References kPL Df,PL

Mountain and Mulholland [33] 5.80 1.90

Wu and Friedlander [18] 1.30 1.84

Puri et al. [34] 9.00 1.74

Sorensen and Roberts [16] 8.50 1.82

Ouf et al. [35] 2.44 1.78

Brasil et al. [36] 1.27 1.82

Table 1 shows a spread of kPL from 1.27 to 9.0. However, the variation of D f ,PL is small
in the previous research, and derivations are not always detailed and clear. Therefore, we
have decided to test the effective range of kPL with the help of aggregates generated by the
MPTSA model.

In the power law relationship (Equation (1)), the radius of gyration Rg can describe the
spatial mass distribution around the mass center of the aggregate. As a criterion for the ef-
fective range of kPL, we compare the radius of gyration calculated by Equation (1), denoted
by Rg,PL, to the radius of gyration from generated aggregates according to Equation (2),
denoted by Rg,MP. Both Rg,MP and Rg,PL are obtained with the same input parameters. The
comparison is quantified by the ratio

Ra =
Rg,PL

Rg,MP
. (9)
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If Ra of the generated aggregate is greater than 99.99%, then kPL is assumed to have
been in its effective range.

Next, we generated in the frame of this evaluation two groups of aggregates with
different fractal dimensions and prefactors. In the first group, the number of primary
particles was Np = 50, with D f ,PL = 1.8:0.2:2.8 and kPL varying from 0.9 to 5.0 in steps of 0.1.
As for the second group, it had Np = 300, D f ,PL = 1.8:0.2:2.8, and kPL = 0.9:0.1:10. The radius
of primary particles Rp was constant and equal to 0.2 mm, but the absolute value of this
variable has no influence on the results. The relationship of kPL and D f ,PL with Ra, based
on two different values of Np, is shown in Figure 5.
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As can be seen in Figure 5a,b, all the curves show the same trend: at the beginning, Ra
of the aggregates does not change with increasing kPL, being on a plateau with Ra = 1. Then,
as kPL increases, all curves show an inflection point, after which Ra decreases dramatically.
When Np is the same, the main difference among the curves is in the length of their plateau
regions; aggregates with a smaller D f ,PL show a longer plateau with Ra = 1 over kPL. This
means that the aggregates with smaller D f ,PL have a broader effective range of kPL. Besides,
by comparing Figure 5a,b at the same D f ,PL, we can find that the effective range of kPL
of aggregates with smaller Np(=50) is narrower than in the case of larger Np(=300). The
horizontal axis coordinates of the inflection points on each curve are considered as the
upper limit of the effective range of kPL under conditions specified by different D f ,PL and
Np. Respective values are shown in Table 2.

Table 2. Lower and upper limits of the effective range of kPL for different D f ,PL and Np.

Df,PL Np = 100 Np = 300

1.8 [0.9, 4.7] [0.9, 9.7]

2.0 [0.8, 3.6] [0.8, 6.9]

2.2 [0.7, 2.8] [0.7, 4.5]

2.4 [0.6, 2.1] [0.6, 3.1]

2.6 [0.5, 1.6] [0.5, 2.1]

2.8 [0.4, 1.2] [0.4, 1.4]
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In Figure 5a, when kPL is larger than 4.7 at Np = 50 and D f ,PL = 1.8, then the Ra of
the aggregates is less than 1. This is since with an additional increase of kPL (>4.7), the
primary particles of these aggregates can no longer be concentrated further in space. So,
Rg,MP of these aggregates does not change with further increasing kPL. For example, as
shown in Figure 4, the structural and morphological characteristics of the aggregate with
D f ,PL = 1.8 and kPL = 4.7 are the same as those of the aggregate with D f ,PL = 1.8 and
kPL = 7.0, with Rg,MP of these two aggregates being same and equal to 0.74 mm. However,
Rg,PL calculated formally from Equation (1) continues to decrease as kPL increases, namely
from Rg,PL = 0.74 mm for aggregates with D f ,PL = 1.8 and kPL = 4.7, to Rg,PL = 0.6 mm for
aggregates with D f ,PL = 1.8 and kPL = 7.0. Therefore, when D f ,PL = 1.8 and kPL > 4.7, the
ratio Ra of the aggregates is less than unity, meaning that kPL has moved outside of its
effective range.

As to the lower limit of kPL, it has been determined by decreasing its value in steps of
0.1. This process stops when the MPTSA model ceases being able to generate the aggregate.
Until then, the values of Ra of the generated aggregates remain equal to 1. The minimum
kPL at which aggregates can be generated is the lower limit of the effective range. Values
for different D f ,PL and Np are shown in Table 2.

In addition to the above method that presupposes the generation of agglomerates
by means of the MPTSA algorithm, a much simpler, algebraic estimation of the limits of
the effective range of kPL has also been implemented in the present work. According to
Equation (1), kPL shows a negative relationship to Rg/Rp under fixed Np and D f ,PL,

kPL = Np/(Rg/Rp)
D f ,PL . (10)

Therefore, when Np and D f ,PL are fixed and Rg/Rp minimal, kPL takes its upper limit
value. The lower limit of kPL occurs when the situation is conversed (Rg/Rp at maximum
value). The radius of gyration Rg of an aggregate shows the mass distribution around
the aggregate center of mass. In our present work, the radius of primary particles Rp is
constant at 0.2 mm. Therefore, when two aggregates with the same Np show different
Rg, the lower value of Rg indicates that the mass (primary particles) of the aggregate is
more concentrated at the center of mass. So, the minimum Rg/Rp is reached when the
morphology of the aggregate is like that of a sphere, which is here assumed to happen for
an aggregate with D f ,PL = 3.0 and kPL = 1.0. On the contrary, the relative gyration radius
Rg/Rp of the aggregates is maximum when the primary particles of the aggregates are
most dispersed, assumed here to be the case for aggregates with D f ,PL = 1.7 and kPL = 1.0.
Minimal Rg/Rp (at D f ,PL = 3.0 and kPL = 1.0) and maximal Rg/Rp (at D f ,PL = 1.7 and
kPL = 1.0) of aggregates with different Np are calculated by Equation (1), the results are
summarized in Table 3.

Table 3. Minimal Rg/Rp (D f ,PL = 3.0 and kPL = 1.0) and maximal Rg/Rp (D f ,PL = 1.7 and kPL = 1.0)
of aggregates with different Np.

Np Minimal Rg/Rp Maximal Rg/Rp

5 1.71 2.58

50 3.68 9.99

100 4.64 15.01

150 5.31 19.06

200 5.85 22.57

250 6.30 25.74

300 6.69 28.65

Then, minimal Rg/Rp and maximal Rg/Rp of the aggregates with different Np are
substituted into Equation (10), and upper and lower limits of the effective range are
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obtained for different D f ,PL, respectively. The lower and upper limits of the effective range
of kPL that have been estimated in this way are shown in Table 4.

Table 4. Upper limit and lower limit of effective range of kPL from the simplified estimation without
aggregate generation.

Np Df,PL = 1.8 Df,PL = 2.0 Df,PL = 2.2 Df,PL = 2.4 Df,PL = 2.6 Df,PL = 2.8

5 [0.91, 1.90] [0.75, 1.71] [0.62, 1.54] [0.52, 1.38] [0.43, 1.24] [0.35, 1.11]

50 [0.79, 4.78] [0.50, 3.68] [0.32, 2.84] [0.20, 2.19] [0.13, 1.68] [0.08, 1.30]

100 [0.76, 6.31] [0.44, 4.64] [0.26, 3.41] [0.15, 2.51] [0.09, 1.85] [0.05, 1.36]

150 [0.74, 7.42] [0.41, 5.31] [0.23, 3.80] [0.13, 2.72] [0.07, 1.95] [0.04, 1.40]

250 [0.73, 8.33] [0.39, 5.85] [0.21, 4.11] [0.11, 2.89] [0.06, 2.03] [0.03, 1.42]

300 [0.72, 9.10] [0.38, 6.30] [0.20, 4.36] [0.10, 3.02] [0.05, 2.09] [0.03, 1.44]

Comparing Tables 2 and 4, we can find that the upper limit of kPL obtained by use of
the MPTSA model is close (slightly smaller) to the results of the simplified estimation. The
lower limit of kPL in Table 2 is nearly equal to the lower limit value of kPL for aggregates
with the smallest Np (= 5) in Table 4.

3.2. Relationship between BC Fractal Properties and PL Fractal Properties

In this section, we generated a series of aggregates with different fractal properties
(D f ,PL and kPL) and Np by the MPTSA model, with NP varying from 100 to 300 in steps
of 50 and D f ,PL = 1.8:0.2:2.8. The investigated range of kPL for each D f ,PL is shown in
Table 5. Those ranges correspond to the ranges for NP = 100 from Table 4, being more
restrictive in comparison to the ranges for aggregates with a larger number of primary
particles. Consequently, all the generated aggregates are safely within the effective range of
kPL values. The primary particles of generated aggregates are monodispersed in the present
work, with the radius of primary particles formally set at 0.2 mm. To capture stochastic
variations, each aggregate is generated five times with the same input parameters.

Table 5. Realized ranges of kPL for aggregates with different D f ,PL.

Df,PL Lower Limit kPL Upper Limit kPL

1.8 0.9 6.3

2.0 0.8 4.6

2.2 0.7 3.4

2.4 0.6 2.5

2.6 0.5 1.8

2.8 0.4 1.3

In the further course of evaluation, a projection method proposed by [28] is applied
to get 2D data for the generated aggregates. Then, both 3D and 2D box-counting meth-
ods are applied to estimate 3D BC fractal properties (D f ,BC,3D and kBC,3D) and 2D BC
fractal properties (D f ,BC,2D and kBC,2D) of the generated aggregates. Next, aggregates
generated with different Np (=100, 200 and 300) and D f ,PL (=1.8 and 2.8) are chosen to
investigate the relationships between D f ,BC,3D and D f ,BC,2D with kPL. The averages of
D f ,BC,2D and D f ,BC,3D over the five realizations are shown in Figure 6 for the selected aggre-
gates. Furthermore, averages (D f ,BC,2D and D f ,BC,3D) over each entire aggregate series (with
Np = 100:50:300) are also plotted in Figure 6 against kPL.
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Figure 6. Relationship between D f ,BC,3D and D f ,BC,2D with kPL : (a) D f ,PL = 1.8 and BC in 3D,
(b) D f ,PL = 2.8 and BC in 3D, (c) D f ,PL = 1.8 and BC in 2D, (d) D f ,PL = 2.8 and BC in 2D.

All the curves in Figure 6 show the same trend, namely of BC fractal dimensions
increasing with increasing kPL. This is due to the fact that with the increase of kPL, the
distribution of primary particles becomes more and more concentrated (as shown in
Figure 4). In the BC method, the number of boxes (N) occupied by aggregates is larger
when the primary particles of aggregates are more concentrated [28]. According to Equation
(4), N and BC fractal dimensions show a positive relationship. Therefore, the BC fractal
dimension increases as kPL increases.

Moreover, the trend in the variation of D f ,BC,2D with kPL in Figure 6d (D f ,PL = 2.8
and BC in 2D) is slightly different from the other three figures (Figure 6a–c). In Figure 6d,
D f ,BC,2D initially increases with increasing kPL (0.4 to 0.8), but then the value of D f ,BC,2D
starts fluctuating around 1.91 as kPL further increases. This is because the calculation of
the 2D BC fractal dimension of the aggregates is based on their projection. The purpose of
projection method in this work is to get the least overlapping between primary particles
(the maximum projected area of the aggregates) [28]. The morphology of the aggregates
is though close to spherical when aggregates with a high fractal dimension and prefactor
are considered [27] (i.e., D f ,PL = 2.8 and kPL > 0.8). Therefore, the 2D maximum projection
area of these aggregates is almost constant with increasing kPL, and the same holds for
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D f ,BC,2D values since these are directly affected by the projection area (positive relationship).
Therefore, the D f ,BC,2D value of the mentioned kind of aggregates floats around 1.91. In
less obvious but analogous way, it can be seen from Figure 6c that the D f ,BC,2D values of
fluffy aggregates also float around 1.91 when the value of kPL is large enough (> 5.5, in this
case). In addition, the values of averages (D f ,BC,2D and D f ,BC,3D) over the entire aggregate
series (with Np = 100:50:300) are generally close to the values for primary particle number
in the middle of the series (Np = 200).

3.3. Correlation between 3D BC Fractal Properties and 2D BC Fractal Properties

It is hard or even impossible to obtain the 3D fractal properties of aggregates composed
of very small primary particles or nanoparticles by X-ray µ-CT, because of limitation in
the spatial resolution of this imaging method. However, the 2D fractal properties of such
aggregates can easily be retrieved by SEM or TEM. Therefore, a correlation between 2D and
3D fractal properties is necessary to be established. In this section, the correlation between
2D and 3D BC fractal properties is discussed first. Furthermore, the correlation between 2D
BC and 3D PL fractal properties is discussed in the next section.

In Figure 7, the relationship between kBC,2D and kBC,3D for the aggregates with various
D f ,PL (=1.8:0.2:2.8) is shown. Values of kBC,2D and kBC,3D have been averaged over all Np
(from 100 to 300 in steps of 50) of the entire aggregate series and then over five realizations.
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As shown in Figure 7, k f ,BC,3D increases with kBC,2D for any value of power law fractal
dimension. All data points can, thus, be described by one and the same power regression,

kBC,3D = 1.0262e0.3714kBC,2D
(

R2 = 0.9705
)

. (11)

The average values of D f ,BC,3D (over five iterations) and kBC,3D for the aggregates with
different D f ,PL are plotted in Figure 8. From Figure 8 we can find that the value of D f ,BC,3D
is linearly increasing with kBC,3D. The respective linear regression for all the aggregates is

D f ,BC,3D = 0.3585kBC,3D + 0.0423
(

R2 = 0.9994
)

. (12)
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Figure 8. Correlation between kBC,3D and D f ,BC,3D for aggregates with different D f ,PL.

A combination of Equations (11) and (12) can be used to obtain 3D BC fractal properties
(kBC,3D and D f ,BC,3D) from a given 2D BC prefactor kBC,2D or, by additionally involving the
later Equation (17), from a given 2D BC fractal dimension D f ,BC,2D.

3.4. Correlation between 2D BC Fractal Properties and PL Fractal Properties

The relationship between kPL and kBC,2D for aggregates with various D f ,PL(=1.8:0.2:2.8)
is shown in Figure 9. Values of kBC,2D have been averaged over all Np (from 100 to 300 in
steps of 50) of the entire aggregate series and then over five realizations.
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In Figure 9, kBC,2D is seen to increase with increasing kPL; however, the growth rate of
kBC,2D decreases as kPL increases. As pointed out in Section 3.2, 2D BC fractal properties of
aggregates are influenced by the 2D projection area [28], being positively interrelated. And
when the morphology of the aggregates with higher kPL or D f ,PL has approached that of a
sphere (as shown in Figure 4), the projection area of these aggregates changes only slightly
with further increase in kPL. Therefore, the rise of kBC,2D with kPL flattens up at larger kPL
or D f ,PL. Here, an exponential function can be used for regression,

kBC,2D = ae−bkPL + c. (13)

In Equation (13), the curves with different D f ,PL have different values of a, b, and c, as
summarized in Table 6.

Table 6. Fitted values of a, b, and c corresponding to different D f ,PL.

Df,PL a b c

1.8 −1.182 0.551 5.223

2.0 −1.084 0.891 5.203

2.2 −0.928 1.244 5.210

2.4 −0.845 1.825 5.209

2.6 −0.805 3.311 5.197

2.8 −0.752 3.931 5.205

Then, correlations between, first, D f ,PL and a, and second, between D f ,PL and b are
developed as follows:

a =0.4389D f ,PL − 1.9419
(

R2 = 0.9508
)

, (14)

b =0.0363D f ,PL
4.5778

(
R2 = 0.9877

)
. (15)

The average value of c = 5.208 is used to represent this parameter.
Combining Equations (13)–(15), the correlation between kBC,2D and power law fractal

properties is obtained:

kBC,2D =
(

0.4389D f ,PL − 1.9419
)

e−0.0363D f ,PL
4.5778kPL + 5.208. (16)

The averages of D f ,BC,2D and kBC,2D over five realizations are plotted in Figure 10 for
aggregates with different D f ,PL. As shown in Figure 10, D f ,BC,2D increases linearly with
kBC,2D, according to the regression

D f ,BC,2D = 0.3693kBC,2D − 0.0076
(

R2 = 0.999
)

. (17)

Equations (16) and (17) are very important. Combining these two equations en-
ables to predict power law fractal properties (D f ,PL and kPL) of aggregates from their 2D
box-counting fractal properties (kBC,2D and D f ,BC,2D), the determination of which from
microscope images is fast and easy in practice.

Therefore, the reliability of these two correlations is tested by a new series of aggregates
generated by the MPTSA model. Here, three different values of D f ,PL are used, namely
D f ,PL = 1.9, 2.3, and 2.7. The input number of primary particles Np varied from 100 to
300 in steps of 50. The prefactor kPL of the aggregates takes values from 0.9 to the upper
limit of its effective range for each D f ,PL (according to Table 5). The primary particles are
still monodispersed, and the radius of primary particles is kept same as for the previously
generated aggregates. Each aggregate with the same input parameters is generated five
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times. Then, the aggregates that have been generated in 3D are projected onto a 2D plane
by the projection method from [28], and the 2D BC method is applied to estimate the 2D
BC fractal properties for those projections. Then, the averages of D f ,BC,2D and kBC,2D for
each aggregate are calculated over five realizations. Substituting kBC,2D and D f ,BC,2D into
Equations (16) and (17), values of power law fractal properties (kPL and D f ,PL) are finally
calculated. Examples of calculated results for aggregates with D f ,PL = 1.9 are summarized
in Table 7.
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Table 7. Predicted D f ,PL and kPL of aggregates with input D f ,PL = 1.9.

Input kPL Calculated Df,PL Calculated kPL

1.0 1.97 0.79

1.5 2.08 0.97

2.0 1.61 4.06

2.5 2.27 1.02

3.0 2.20 1.46

In Table 7, there is a notable difference between the input fractal parameters and the
calculated values. This is due to the difficult inversion of Equations (16) and (17) for given
kBC,2D and D f ,BC,2D. This is done by numerical optimization, which is though confronted
with several flat and similar optima.

Whereas further improvement is desirable at this point, the ratio Rg/Rp, which is
an important parameter for the morphological analysis of aggregates, can be applied to
test the predicted values from Equations (16) and (17). It is recalled that Wang et al. [28]
have recently established an original correlation between 2D BC fractal dimension and PL
fractal dimension. This correlation, however, neglected the influence of kPL and kept this
parameter constant (=1). The correlation is

D f ,PL = 0.2015D4.079
f ,BC,2D. (18)

Predicted results (D f ,PL and kPL) from Equations (16) and (17) are substituted to
Equation (1) to calculate Rg/Rp of the new series of aggregates (D f ,PL = 1.9, 2.3, and 2.7,
Np = 100, 200, and 300). For the sake of comparison, D f ,BC,2D of the new generated
aggregates are substituted to Equation (18) to estimate their D f ,PL. Then, keeping kPL as
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constant and equal to 1, another Rg/Rp is estimated by means of D f ,PL predicted from
Equation (18). Finally, the two kinds of Rg/Rp are compared in Figure 11 based on three
Np (= 100, 200, and 300). Rg/Rp calculated from prediction results of the equations in this
research (Equations (16) and (17)) are denoted by “present”, Rg/Rp calculated from the
correlation of the previous work (Equation (18)) are denoted by “previous”. In addition, the
standard Rg/Rp which is calculated from the input parameters (D f ,PL, kPL, and Np) of the
MPTSA model is also shown in Figure 11 (dotted lines). The R-square analysis represents
the deviation of the predicted Rg/Rp (present or previous) to standard Rg/Rp.
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As shown in Figure 11, when both D f ,PL and Np are small (D f ,PL = 1.9 and Np = 100),
the difference between present predicted results (Equations (16) and (17)) and previous
predicted results (Equation (18)) is insignificant, the R2 of the two sets of results to the
standard (input, reference) data being 0.923 and 0.929, respectively. However, when D f ,PL

or Np increases, the R2 of previous results decreases significantly. Especially when the
aggregates with D f ,PL = 2.7 and Np = 300 are considered, the R2 of previous results reaches
a very low value of 0.439. However, the changes in D f ,PL or Np hardly affect the accu-
racy of the present results, which are based on predictions from Equations (16) and (17).
In Figure 11, the minimum R2 of present results is equal to 0.868 when D f ,PL = 2.7
and Np = 100.

4. Conclusions

This study aimed to investigate the fractal properties of aggregates made of primary
particles. To enable this investigation, synthetic aggregates have been generated by an
appropriate numerical method (MPTSA model) with various input parameters. Special
emphasis was set on the variation of power law prefactor kPL. Not every value of this
parameter is reasonable, so that its so-called effective range had to be first determined.
Therefore, we introduced a ratio Ra between two differently derived radii of gyration
Rg as a criterion that can be used to judge whether aggregates are within the effective
range of kPL or not. Where Rg,MP is estimated from generated aggregates (aggregates
produced with the help of the MPTSA model) and Rg,PL is obtained from the power law.
Conceivable deviation of Ra from unity means out-of-range values of kPL. A simplified
method that works without aggregate generation is also proposed as an alternative to this
rigorous approach.

In the main part of the work, a series of aggregates (with different fractal properties
D f ,PL and kPL, and also with different number of primary particles Np) is generated by the
MPTSA model. Values of kPL are taken from their effective ranges based on different Np
and power law fractal dimension D f ,PL. Next, a projection method proposed by [28] is
applied to retrieve 2D information for the generated aggregates. Both the 3D BC fractal
properties (D f ,BC,3D and kBC,3D) and the 2D BC fractal properties (D f ,BC,2D and kBC,2D) of
the generated aggregates are calculated by the box-counting (BC) method.
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Considering that the 3D fractal properties of aggregates composed of very small
particles are hard to gain by means of X-ray µ-CT, or with the help of other tomographic
methods, due to limited physical resolution, tractable pathways for their determination
from more easily accessible information would be of great importance. Such information
could be the 2D fractal properties of those aggregates, because 2D fractal properties can
easily be extracted from SEM or TEM images. To this purpose, novel correlations between
3D BC fractal properties and 3D PL fractal properties with 2D BC fractal properties have
been established with the help of synthetic aggregates. In addition, one more series of
synthetic aggregates has been generated to validate the correlation between 2D BC and 3D
PL fractal properties. The validation results are compared with the results of a previous
correlation (not considering the variability of kPL) as well as with results from the used
input data as a benchmark. Present and previous results meet similarly well the benchmark
only when both D f ,PL and Np are small (D f ,PL = 1.9 and Np = 100). However, our new
correlations are more accurate for aggregates with higher D f ,PL or Np.

The generated aggregates in this work had monodispersed primary particles. There-
fore, aggregates with polydisperse primary particles need to be also investigated, which is
planned for near future.
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Nomenclature

D f fractal dimension, -
k prefactor, -
L side length of domain, m
n number of unit boxes, -
N number of boxes occupied by the object, -
Np number of primary particles, -
P intermediate particle number, -
Rg radius of gyration, m
RP mean radius of primary particles, m
Sn limiting number of boxes, m
Greek letters
δ size of box, m
ε scaling factor, -
Abbreviations
BC box-counting
MPTSA modified polydisperse tunable sequential aggregation
PL power law
SEM scanning electron microscopy
TEM transmission electron microscopy
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