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Abstract: Hyperparameters involved in neural networks (NNs) have a significant impact on the
accuracy of model predictions. However, the values of the hyperparameters need to be manually
preset, and finding the best hyperparameters has always puzzled researchers. In order to improve
the accuracy and speed of target recognition by a neural network, an improved genetic algorithm is
proposed to optimize the hyperparameters of the network by taking the loss function as the research
object. Firstly, the role of all loss functions in object detection is analyzed, and a mathematical model
is established according to the relationship between loss functions and hyperparameters. Secondly, an
improved genetic algorithm is proposed, and the feasibility of the improved algorithm is verified by
using complex fractal function and fractional calculus. Finally, the improved genetic algorithm is used
to optimize the hyperparameters of the neural network, and the prediction accuracy of the model
before and after the improvement is comprehensively analyzed. By comparing with state-of-the-art
object detectors, our proposed method achieves the highest prediction accuracy in object detection.
Based on an average accuracy rate of 95%, the detection speed is 20 frames per second, which shows
the rationality and feasibility of the optimized model.

Keywords: neural networks; genetic algorithm; target detection

1. Introduction

Object detection is an applied mathematical technique based on the geometric and
statistical characteristics of objects [1]. Physical properties related to various physical
phenomena based on technologies also play a key role in object detection, such as elec-
tromagnetics, acoustics, optics with scattering, emission, and absorption. In recent years,
with the continuous development of science and technology, target detection has played
an important role in various fields, such as intelligent monitoring, medical navigation
surgery, military target detection, etc. However, many models fail when faced with various
complex scenarios and real-time processing of targets [2]. In order to improve the ability
of computer vision to cope with complex environments, various scholars have made ef-
forts [3]. The research trends for improving performance can be divided into two directions:
one is to improve the ability of model feature extraction from the network framework,
such as geometric detectors, attention mechanisms, pyramid networks, etc.; the other is
to start from the loss function used to optimize hyperparameters in the network, such as
Bayesian-based hyperparameter optimization and whale optimization algorithm-based
hyperparameter optimization.

Taking into account the impact of the backbone network on object detection perfor-
mance. Hua et al. [4] proposed a matrix-information geometry detector based on Bregman
divergence. The author first establishes a positive definite matrix and a clutter covariance
matrix for each sample and then redefines the points on the matrix manifold as the discrim-
inator for signal detection. The final experimental results show that the proposed model is
stronger than other detectors. Dai et al. [5] propose a model-driven network for small object
detection, where the authors transform traditional local contrast measurements into deep
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unparameterized feature refinement layers. In addition, the authors design a bottom-up
attention mechanism to transform subtle details into higher-level feature maps. Through
ablation experiments, it is proved that the accuracy of the changed network is significantly
improved. Zhan et al. [6] proposed a feature pyramid network based on parallel spatial
domain attention mechanism and small-scale transformers. The author fully extracts the
texture of the target, which effectively improves the extraction ability of small targets.
Validated on a home-made dataset, the results show that the proposed network has better
performance than previous methods. However, these methods are only improved for the
network framework, and they do not seem to realize the importance of parameters. It is
understood that the setting of hyperparameters has a direct impact on the performance of
the model, not only in terms of detection accuracy and training speed [7]. Therefore, some
scholars propose to use intelligent optimization algorithms to optimize hyperparameters.

Considering the impact of hyperparameters on object detection performance, a large
number of scholars optimize these hyperparameters using intelligent optimization algo-
rithms. With the loss function as the objective function, the set of hyperparameter values
with the smallest loss will be given as the optimal hyperparameter. Here, we emphasize
the role of the loss function. Generally speaking, the loss function is used to calculate
the gap between the forward calculation result of each iteration of the neural network
and the real value, so as to guide the next step of training in the right direction. Victoria
et al. [8] propose a model based on Bayesian optimization of hyperparameters. The authors
validate the performance of the Bayesian hyperparameter optimization algorithm on the
CIFAR-10 dataset. The results show that the Bayesian optimization algorithm model saves
time and improves performance during the training phase. Brodzicki et al. [9] proposed a
whale-based optimization algorithm to optimize hyperparameters. The authors highlight
the difficulty of the Whale algorithm in the hyperparameter optimization task and compare
it with other state-of-the-art algorithms. By searching for objects in 3D space, the results
show that the proposed algorithm achieves an average accuracy of up to 85%. Lee et al. [10]
proposed a neural network structure and hyperparameter optimization method based on
genetic algorithm. The authors highlight the impact of different hyperparameters on the
convergence of convolutional neural network (CNN) models, showing the possibility of
Genetic Algorithm (GA) optimizing the network framework. Validated on a self-made
image dataset, the results show that the proposed algorithm outperforms the equivalent
object detection algorithm by 11.73%.

However, in the above-mentioned published papers, the existing optimization al-
gorithms are only directly applied to target detection, which obviously cannot meet the
practical challenges [11]. Furthermore, they simply optimize the initial hyperparameters.
It is understood that the hyperparameters required in the object detection task should be
updated in real time to improve the effect of model detection [12]. Therefore, this paper
proposes a deep learning hyperparameter optimization framework based on an improved
genetic algorithm. The main contributions of this paper are as follows:

(1) An improved genetic algorithm is proposed to solve the problem of objective optimization;
(2) The improved genetic algorithm is proposed to optimize the hyperparameters of the

neural network;
(3) Determine a reasonable fitness function according to the relationship between the loss

function and hyperparameters, and establish a mathematical model;
(4) The superiority of the proposed method in the task of object detection is demonstrated

by comparing with state-of-the-art object detection algorithms.

The rest of this article is organized this way. Section 2 briefly introduces the classi-
fication loss function and regression loss function in target detection and expounds the
improved genetic algorithm. Section 3 introduces the improved genetic neural network
and establishes the mathematical model according to the actual problem. Section 4 devel-
ops qualitative and quantitative analyses to demonstrate the superiority of the proposed
method. Section 5 is the conclusion.
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2. Related Work
2.1. Loss Function for Object Detection

The loss function is used to evaluate the degree of difference between the predicted
value of the model and the true value [13]. Specific to target detection, the function of
the loss function is to make the recognition accuracy higher and the positioning more
accurate. The loss function in the object detection task consists of a classification loss (Lcls)
and a regression loss (Lbox) [14]. The optimization process of the classification problem is
essentially the process of minimizing the loss function. In the task of multi-classification,
the softmax function is usually used. It maps the outputs of multiple neurons to the
(0, 1) interval, and selects the largest value as the final predicted category according to the
probability value output by each neuron. It is worth emphasizing that in the process of
prediction, there is a competitive relationship between different categories [15]. Ideally, the
model predicts a class with the highest probability value and the rest are very low. The
labels of objects are predicted according to a dedicated classification branch, each label
representing a different class. The loss function used for the classification task is shown
in Equation (1).

Lcls = loss1(Pi, class) = − log

exp(P[class])
∑
j

exp(x[j])

 = −P[class] + log

(
∑

j
exp(x[j])

)
(1)

Among them, loss1 is the defined first-class loss function, which has two parameters
(Pi and class), Pi represents the probability predicted by the model when dealing with
multi-classification problems, i represents the labels of all targets in the multi-classification
task, and class represents the class assigned to each codes [0, 1, 2 . . . ] of classes, and j
represents the total number of all classified objects.

Logistic regression is a supervised classification model that is often used to describe
the difference between predictions and reality [16]. Therefore, the regression loss function
is used to evaluate the size of the information loss caused by the model fitting training. The
smaller the loss function, the better the model fits on the training set. The loss function for
logistic regression is shown in Equation (2). The regression of bounding boxes in SSD and
Faster RCNN uses Smooth L1 as the iterative function.

loss2

(
F∗nj, Gnj

)
= smoothL1

(
F∗nj, Gnj

)
=

0.5
(

F∗nj − Gnj

)2
,

∣∣∣F∗nj − Gnj
∣∣ < 1∣∣∣F∗nj − Gnj

∣∣ − 0.5,
∣∣∣F∗nj − Gnj

∣∣ ≥ 1
(2)

Lreg =
1
N

N

∑
n=1

t∗n ∑
j∈{x,y,w,h}

loss2

(
F∗nj, Gnj

)
(3)

Among them, F∗nj represents the predicted value, Gnj represents the real value, N
represents the total number of anchors (here N = 9), and t∗n represents the encoding of
the area within the target frame (the background is marked with 0, and the target area is
marked with 1).

2.2. Intelligent Optimization Algorithm

Optimization problem is an applied technique based on mathematics for solving vari-
ous optimization problems [17]. It is widely used in image processing, pattern recognition,
automatic control and signal processing and other fields. A common optimization problem
refers to finding the optimal parameter values and solutions among many parameters
and solutions under given conditions so that multiple performance indicators are optimal.
Inspired by biological groups or the laws of natural development, many intelligent opti-
mization algorithms are used to solve practical engineering problems [18]. For example,
genetic algorithms that imitate biological evolution mechanisms; differential evolution algo-
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rithms that optimize search through cooperation and competition among individuals; ant
colony algorithms that simulate collective path-finding behavior of ants. These algorithms
have in common that they were developed by simulating or revealing certain natural phe-
nomena and processes [19]. They can be roughly divided into three categories: evolutionary
algorithms, swarm intelligence algorithms, and simulated annealing algorithms.

Evolutionary computing is a series of search technologies, including genetic algo-
rithms, evolutionary algorithms, etc., which are widely used in machine learning, neural
network training, intelligent control and other fields. Among them, the genetic algorithm
is the most commonly used representative. In [20], a control strategy method based on
improved genetic algorithm is proposed. The authors emphasize the role of artificial
intelligence in promoting social development, and apply the proposed algorithm to the gov-
ernance of living standards, solving practical problems, and assessing epidemic prevention
and control. The research results show that the problem solving rate increased by more than
50% after the introduction of the improved genetic algorithm. The immune algorithm is an
intelligent search algorithm constructed by imitating the biological immune mechanism
and combining the genetic evolution mechanism. Compared with other algorithms, the
immune algorithm has its own production diversity and maintenance mechanism, which
avoids the “premature” problem and can obtain the global optimal solution.

Swarm intelligence is a computing technology based on the behavioral laws of biolog-
ical groups. Most global optimization problems can be solved efficiently with centralized
control and no global model. At present, there are two main algorithms in the research
field of swarm intelligence theory: ant colony algorithm and particle swarm algorithm. The
former is to simulate the food collection process of the ant colony, and the latter is to simu-
late a simple social system. Liang et al. [21] proposed an improved ant colony optimization
algorithm. The author modeled according to the weather, comfort and travel route of the
scenic spot, and introduced sub-road support to avoid falling into local optimum. The
experimental results show that the optimized route greatly improves the travel experience.

The simulated annealing algorithm selects a state with a large target value in the
field with a certain probability and has a very strong global search performance. It uses
probabilistic transitions to guide its search direction, and these probabilities are just a tool
to guide its search process toward a region of more optimal solutions. Ilhan et al. [22] pro-
posed an improved simulated annealing algorithm, and the author proposed the crossover
operator of ISA-CO for the first time in the paper. Partial map crossover and order crossover
operators are applied to the in-swarm solution to speed up convergence, and a hybrid
selection method is used to ensure a balance between exploitation and search. The results
show that this method in most cases outperforms other state-of-the-art methods.

3. The Proposed Methods
3.1. Improved Genetic Algorithm

Genetic Algorithm (GA) is a computational model that simulates the genetic mecha-
nism and the biological evolution process of natural selection [23]. Relying on its excellent
global search ability, genetic algorithms are widely used in engineering applications. How-
ever, blindly applying GA directly to real projects can lead to many problems. For example,
it is prone to premature phenomenon, it is difficult to obtain the global optimum, and the
optimization speed is slow and detours. In this paper, an improved genetic algorithm is
proposed to solve the problems of low precision and slow speed in target detection.

Evolutionary algorithms were developed by drawing on phenomena, such as inheri-
tance, mutation, natural selection, and mutation. The process of natural selection is based
on fitness evaluation, and an unreasonable fitness function will lead to convergence to a
local optimum [24]. In this paper, we use Equation (4) as the fitness function, which can well
reflect the performance of the model during the training phase. In addition, elite retention
strategy and roulette, as the most classic selection operators, have their own advantages
and disadvantages [25]. Specifically, elite retention is to directly copy the optimal individ-
uals that appear in each round to the next generation, without participating in selection,
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crossover and mutation operations to retain samples. However, it ignores the diversity of
species and tends to limit the results to local optima. The roulette approach focuses on
species diversity but cannot guarantee the survival of optimal samples [26]. Therefore, in
order to get a better selection operator, we learn from the idea of elite reservation, and
directly copy the 5% individuals with higher fitness to the next generation. In addition,
10% individuals with higher fitness will replace individuals with lower fitness, and the
newly formed community will complete the process of crossover and mutation and inherit
it to the next generation (as shown in Figure 1).
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However, the above process leads to an increase in the number of populations as the
number of evolutions increases, which obviously increases the computational load of the
network [27]. In order to reduce the amount of computation, we sorted the fitness of all
individuals, and inherited the top 95% of the individuals to the next generation, while
the rest were directly discarded. This method is not good enough. Although the optimal
individuals participate in the crossover and mutation operations, it is easy to fall into a local
optimum by directly copying the top 5% of the optimal individuals to the next generation
each time. In order to obtain the global final solution, we increased the mutation rate to
Pm = 0.1 based on the original Pm = 0.03.

3.2. Improved Genetic Neural Network

Hyperparameters in a neural network have a crucial impact on the training effect of
the model [28]. Random selection of hyperparameters will cause the model to easily fall
into problems such as local minimum and poor search ability. Using the global search
ability of the genetic algorithm, more reasonable hyperparameters can be obtained. The
optimization objects of the genetic algorithm are mainly the learning rate, the number of
training rounds, and the number of hidden layers, which make the neural network have
the ability of self-adaptation and self-evolution [29,30]. Using the loss function obtained in
each round of training as the reference object, the hyperparameters are modified. It is worth
emphasizing that this is a dynamic process. Specifically, if the current number of training
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rounds is 200, but the loss function will no longer decrease after the 100th round, the model
will consider ending work after approximately 110 rounds. The improved genetic neural
network is shown in the Figure 2 below.
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The improved genetic neural network consists of eight parts. First, build the basic
structure of the neural network according to the actual problem. For example, when
performing a multi-classification task, the number of output nodes must be the same as the
type of classification. Second, initialize the population and encode the hyperparameters
(learning rate, number of iterations, number of training rounds, number of hidden layer
units, number of hidden layer layers) for each individual of the population [31,32]. Third,
calculate the fitness value of each individual through the loss function and fitness function,
and sort them according to the size of the fitness value, and select the optimal top 5%
and the top 95%. Fourth, the individuals of the newly built community are randomly
matched into pairs, each individual is crossed according to a certain crossover rate, and
each individual in the population is subjected to mutation operation with a probability of
0.1. Fifth, the fitness of individuals in the new population is calculated. If the termination
condition is met, the update of the community is stopped, otherwise, re-selection, crossover
and mutation operations are performed. Sixth, select the optimal fitness and complete
the decoding to obtain the optimal solution. Seventh, the optimal hyperparameters are
substituted into the neural network to complete the update of weights and biases. Eighth,
when the loss function changes abnormally during training, these hyperparameters will be
redefined. Under normal circumstances, the learning rate will be larger in the early stage of
training, and the change of the loss function after n rounds of training becomes small, so
the learning rate can be adjusted appropriately [33].

3.3. Fractal Dimension Calculation Method

Consider that the classification loss is often directly related to how well the model
predicts. If the classification loss is too large, it indicates that the model cannot accurately
extract the features of the image. It even leads to confusion among similar categories,
which is a fatal effect in the object recognition process [34]. However, most of the existing
algorithms fail to satisfy the more precise definition of loss function. To solve the above
problem, we redefine the total loss function. We divide the loss function into a regression
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box loss function, a confidence loss function, and a classification loss function. The overall
loss function is shown in Equation (4).

f (x) = loss(object)

= λcoord
K×K
∑

i=0

M
∑

j=0
Iobj
ij (2− wi × hi)

[
(xi − x̂i)

2 + (yi − ŷi)
2
]

+λcoord
K×K
∑

i=0

M
∑

j=0
Iobj
ij (2− wi × hi)

[
(wi − ŵi)

2 +
(

hi − ĥ
)2
]

+λobj
K×K
∑

i=0

M
∑

j=0
Iobj
ij
[
Ĉi log(Ci) +

(
1− Ĉi

)
log(1− Ci)

]
+λnoobj

K×K
∑

i=0

M
∑

j=0
Inoobj
ij

[
Ĉi log(Ci) +

(
1− Ĉi

)
log(1− Ci)

]
+λobj

K×K
∑

i=0
Iobj
ij ∑

c∈ classes
[ p̂i(c) log(pi(c)) + (1− p̂i(c)) log(1− pi(c))]

(4)

Here, coord indicates that the input layer has additional co-ordinate information
channels, P indicates the predicted classification probability, i and j indicate co-ordinate
information, (x, y) indicates the center co-ordinates of the rectangular box, w and h indicate
the width and height of the rectangular box, C stands for confidence, M stands for the
number of categories, K stands for all clusters, λ stands for the parameters used to balance
these loss functions, c stands for the class of classification, and those symbols with crowns
represent the true value.

As a loss function to evaluate the gap between prediction and reality, it needs to be
judged by multi-angle information, and these observation angles also have self-similarity.
Considering the multifractal nature of the loss function, we analyze and evolve a system
consisting of many interacting elements in space and time. First, assuming that the entire
agent population is distributed in a regular space, a representation of the spatial co-ordinate
(x, y) at time t is sought. Time t is used to describe the number of training rounds, and
(X, Y) is used to describe the relevant data of the predicted value. In this paper, the box
counting method is used to estimate the fractal dimension of an object as the slope of a
linear fit between the logarithm of the number of boxes required to optimally cover the
object and the logarithm of the box size. We follow Wang et al. [35] and consider defining
the fractal loss function in terms of the integral and its continuous limit time derivative, as
shown in the following equation.

x
R(x, y)

∂β f (x, y, t)
∂tβ

dxdy = lim
∆t→0

x
R(x, y)

f (x, y, t + ∆t)− f (x, y, t)
∆tβ

dxdy (5)

Here, x represents the center co-ordinates of the prediction frame, y represents the size
of the prediction frame, R represents an arbitrary function (generally refers to weighing
the importance of each parameter by establishing weights), and t represents time (number
of rounds). Assume that the evolution of f (x,y,t) is fractal in time, and express the frac-
tal by fractional derivatives of order β. Using the Bayesian variation, the expression in
Equation (6) is updated as:

lim
∆t→0

s
R(x, y) f (x,y,t+∆t)− f (x,y,t)

∆tβ dxdy =

lim
∆t→0

s R(x,y)
∆tβ

{
s

f
(

x, y, t + ∆t
→

AB |x1,y1,t

)
. f (x1, y1, t)dx1dy1 − f (x, y, t)}dxdy

(6)
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Reversing the order of integration and using the fractional Taylor expansion R(x,y) is
expressed as:

R(x, y) = R(x1, y1) + (x− x1)
γ ∂γR(x,y)

∂xγ

∣∣∣ (x, y) =
(x1, y1)

+(y− y1)
γ ∂γR(x,y)

∂yγ

∣∣∣ (x, y) =
(x1, y1)

+ (x− x1)
2γ ∂2γR(x,y)

∂x2γ ,y1)

∣∣∣ (x, y) =
(x1, y1)

+(x− x1)
γ(y− y1)

γ
[

∂2γR(x,y)
∂xγ∂yγ + ∂2γR(x,y)

∂yγ∂xγ

]
(x, y) =
(x1, y1)

+(y− y1)
2γ ∂2γR(x,y)

∂y2γ

∣∣∣ (x, y) =
(x1, y1)

+ O
(
x2γ, y2γ

)
+ . . .

(7)

where γ is the fractional order related to the fractal structure of agent evolution, and (x, y)
represents the center co-ordinates of the training box in the first round.

3.4. The Proposed Genetic Neural Network

The initialization of the population is essentially to give the initial solution of the
population according to the coding rules [36]. Population initialization is the first and
most important step of the algorithm. Common initializations include fixed value setting
method, M-type random method and two-step method. The fixed value setting method is
more dependent on the range of feasible solutions, and is often used to search for uniformly
distributed points in the space. When faced with large-scale optimization problems, random
generation methods are easily limited to local optimal solutions. The two-step method is
by far the most commonly used method. It is divided into early stage and late stage. The
early stage is generally generated randomly, and the later stage is adjusted according to the
change of the fitness function (Equation (4)). Considering the complexity of the change of
the loss function in the target recognition task, this paper creatively proposes a population
initialization method based on the global loss mixed sorting [37]. The design concept of
this method is to infer a set of optimal solution candidates as the initial population through
the loss function mixture matrix.

a The initialization of the population is provided by the following Equation (5).

HM =



Nck
11 Sck

21 Nnl
11 Fac

2i Rlea
x1 Nbs

y1 Wdc
w1 Rdro

h1 Ĝθ1
...

...
...

...
...

...
...

...
...

Nck
1i Sck

2i Nnl
1i Fac

2i Rlea
xi Nbs

yi Wdc
wi Rdro

hi Ĝθi
...

...
...

...
...

...
...

...
...

Nck
1n Sck

2n Nnl
1n Fac

2n Rlea
xn Nbs

yn Wdc
wn Rdro

hn Ĝθn


(8)

where Nck represents the number of convolution kernels, Sck represents the size of
the convolution kernel, Nnlrepresents the number of network layers, Fac represents
the activation function, Rlea represents the learning rate, Nbs represents the number
of batch samples, Wdc represents the weight decay coefficient, Rdro represents the
dropout ratio, and G is the regression parameter.

b Encoding: encoding length when encoding in binary;

L = log2
b− a
eps

+ 1 (9)
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where (a, b) is the value range of the independent variable, eps is the required precision,
and when there are multiple independent variables, the code length is the sum of the
code lengths of each independent variable.

L =
n

∑
i=1

Li (10)

c Decoding: Convert binary numbers to decimal numbers;

x = a + (b− a)× X/(2L − 1) (11)

where L is the encoding length, X is the binary data.
d Fitness function: find the minimum value;

F1(x) =
{

Cmax − f (x) f (x) < Cmax
0 otherwise

(12)

where Cmax is an appropriately large number, and f (x) is determined as the objective
function by Formula (4).

e Scale transformation of fitness function: here, the dynamic linear transformation
method is selected to search for the optimal solution;

F(x) = aF1(x) + b
a = −1, b = F1max + ξk

ξ0 = M, ξk = ξk−1 × r
r ∈ [0.9, 0.999]

(13)

where M represents the total number of individuals in the population, and r is a
random number between [0.9, 0.999].

3.5. Visualization of the Optimization Process

When solving the minimum value of the loss function, the genetic algorithm can be
used to generate the initial value, and then the gradient descent method can be used to
iteratively solve the problem, and finally the global minimum value of the loss function can
be obtained (Figure 3). The calculation process of the gradient descent method is essentially
to find the minimum value along the gradient descent direction. The iterative formula for
gradient descent is Equation (11).

x(k+1) = x(k) + ϑkd(k) (14)

where d(k) is the search direction starting from x(k), taking the gradient descent direction at
point x(k).

d(k) = −∇ f
(

x(k)
)

(15)
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ϑk is the step size of one-dimensional search from x(k) along the direction d(k), that is,
ϑk satisfies:

f
(

x(k) + ϑkd(k)
)
= min

λ≥0
f
(

x(k) + ϑkd(k)
)

(16)

To sum up, this paper uses the genetic algorithm to determine the hyperparameters
of the neural network classifier, and uses these optimized hyperparameters as the initial
population of the genetic algorithm. Each chromosome contains the desired values for the
above parameters. This paper updates the definition of the total loss function of target
detection, and stipulates that the smaller the loss function, the higher the fitness. After
determining the initial parameters, the gradient descent method (GD) is used to find the
minimum value and then the global minimum value is obtained. Figure 1 shows the
optimization process of the genetic algorithm combined with gradient descent (GA-GD)
proposed in this paper. Figure 3a represents the initialization of such a group, and Figure 3b
shows the optimization process.

4. Experiment

To verify the efficiency of the improved genetic algorithm, we tested it on several
complex multimodal functions. Furthermore, to verify the performance of the improved
genetic neural network (IGN), we graft the IGN to the classical object recognition algo-
rithm [38]. For example, YOLOv5, Faster RCNN, and SSD. By comparing experiments with
commonly used algorithms, the results of the experiments are analyzed qualitatively and
quantitatively. The following first introduces the data set and experimental environment
used in this paper, then shows the optimization performance of the improved genetic
algorithm, and finally analyzes the target detection effect of the genetic neural network.

4.1. Experimental Environment

The hardware environment of this experiment is a central processing unit (CPU) Intel
i5-7300HQ, and a graphics processing unit (GPU) RTX3080Ti. Memory 128 G. The software
environment is Anaconda3, Cuda11.3, Python3.7, Pytorch1.6.0. The entire training process
uses a genetic neural network to learn and update the network’s hyperparameters. The
initial learning rate is 0.03, the initial decay coefficient is 0.0005, the initial batch size is 8,
the initial number of training rounds is 200, and the image input size is 640 × 640. The
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parameters (weights and biases) throughout the training process are learned and updated
using stochastic gradient descent.

The dataset used in this paper is collected by the experimental group from the Kaggle
(www.kaggle.com, accessed on 19 January 2021) platform. It contains 10,000 datasets
covering common animals and plants. These data are divided into two parts, one part is
used for the training set (8000 images) and the other part is used for the test set (2000 images).
Each piece of data contains at least three different categories of things. We annotated
8000 training sets in Make Sense (www.makesense.ai, accessed on 19 January 2021) software
(Version 1.10.0).

4.2. Verify the Performance of the Improved Genetic Algorithm

In the process of intelligent optimization algorithm, it is easy to fall into local optimum.
To this end, this section will verify the search ability of the improved algorithm in the entire
context space. In order to explore the ability of the improved genetic algorithm to find the
optimum, 10 complex multimodal functions were selected to test the optimization effect, as
shown in Table 1.

Table 1. Testing the Improved Genetic Algorithm with Multimodal Functions.

No. Function Range Range

1 f1(x) = 1
2

n
∑

i=1

(
x4

i − 16x2
i + 5xi

) xi ∈ [−5, 5] −39.166

2 f2(x) = −
n
∑

i=1
sin(xi) sin20

(
ix2

i
π

)
xi ∈ [0, π] −1.801

3 f3(x) = − cos(x1) cos(x2) exp
(
−(x1 − π)2 − (x2 − π)2

)
xi ∈ [−100, 100] −1

4 f4(x) =
n−1
∑

i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

xi ∈ [−5, 10] 0

5 f5(x) =
(

4− 2.1x2
1 +

x4
1

3

)
x2

1 + x1x2 +
(
−4 + 4x2

2
)

x2
2

x1 ∈ [−3, 3]x2 ∈ [−2, 2] −1.0316

6 f6(x) = sin(x1 + x2) + (x1 − x2)
2 − 1.5x1 + 2.5x2 + 1 x1 ∈ [−1.5, 4]x2 ∈ [−3, 4] −1.913

7 f7(x) = 2x2
1 − 1.05x4

1 +
x6

1
6 + x1x2 + x2

2
xi ∈ [−5, 5] 0

8 f8(x) = 100
√∣∣x2 − 0.01x2

1

∣∣+0.01| x1 + 10 x1 ∈ [−15, −5]x2 ∈ [−3, 3] 0

9
f9(x) =

−0.0001
(∣∣∣∣sin(x1) sin(x2) exp

(∣∣∣∣100−
√

x2
1+x2

2
π

∣∣∣∣)∣∣∣∣+ 1
)0.1 xi ∈ [−10, 10] −2.0626

10 f10(x) = −
1+cos

(
12
√

x2
1+x2

2

)
0.5(x2

1+x2
2)+2

xi ∈ [−5, −5] −1

Hyperparameters will directly affect the training effect of the model. For example, the
number of training epochs is one of the important factors affecting detection performance.
If the epoch is too large, the training time will be too long, and even overfitting will occur. If
the epoch is too small, the model will not be able to fully learn the feature information of the
target, resulting in a low accuracy rate. To better illustrate the impact of hyperparameters
on the model, we tested it on CIFAR-10, using epoch as an example to visualize the
training process.

Figure 4 shows the GA-YOLOv5 network model proposed in this paper to study
the relationship between the number of training epochs and the loss function, accuracy,
and time. When the number of training rounds is greater than 10, the decreasing speed
of the training loss value and the test loss value begins to become very slow. When the
number of training rounds is 18, the recognition accuracy of the model is up to 98.3%.
The training time is roughly linear with the number of rounds. The tenth round takes
160 h, the twentieth round takes 260 h, and each additional round takes 10 h on average.
It can be seen that it is difficult to give reasonable values for the artificially defined initial
hyperparameters, and the hyperparameters should be updated in real time according to
the training loss function.

www.kaggle.com
www.makesense.ai
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4.3. Quantitative Analysis of Experimental Results

To verify the performance advantages of genetic neural networks, four sets of exper-
iments were conducted using self-made data. We selected the most popular YOLOv5,
Faster RCNN and SSD as the control group. As we all know, accuracy, precision, recall, IOU,
and FPS are commonly used detection indicators for target recognition algorithms [39]. In
addition, we also established four parameters TP, FP, TN, FN to construct the equation.
They are calculated as shown in Equations (14)–(18).

Accuracy =
TP

TP + TN + FP + FN
(17)

Precision =
TP

TP + FP
(18)

Recall =
TP

TP + FN
(19)

IOU =
Int
Uni

(20)

FPS =
f rame
time

(21)

Among them, TP means that positive samples are correctly classified as positive
samples, FP means that negative samples are wrongly classified as positive samples, TN
means that negative samples are correctly classified as negative samples, and FN means
that positive samples are wrongly classified as negative samples. Int represents the area of
the intersection between the predicted box and the real box, and Uni represents the union
area of the predicted box and the real box. Frame represents the number of frames, and
time is the time of the test data.

Here, we evaluate the performance of genetic neural networks on classification tasks
and plot the IOU–recall and recall–accuracy curves (shown in Figure 5). In the figure, A
represents the training curve change for airplanes, B represents the training curve change
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for birds, C represents the training results for pedestrians, D is fish, E is car, F is flower, G
is insect. In the Figure 5, red represents GA-YOLOv5, black represents YOLOv3, purple
represents Faster RCNN, blue represents SSD, green represents YOLOv5, orange represents
GA-YOLOv3, and yellow represents GA-SSD.
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In Figure 5a, when detecting the region of the object, the recall gradually decreases
with the increase of the IOU threshold. Among them, the recall rate of SSD algorithm and
YOLOv3 algorithm varies greatly with IOU. This shows that the above two algorithms
do not perform well in the task of small object recognition. While the GA-SSD and GA-
YOLOv3 algorithms have less variation in recall. The recall rates of GA-SSD and GA-
YOLOv3 are significantly higher than SSD and YOLOv3 under the same IOU threshold.
Compared to other algorithms, the GA-YOLOv5 algorithm reported here achieves the best
predictive performance.

According to the PR curve in Figure 5b, the recall decline trend of the Faster RCNN
algorithm is faster than other algorithms, indicating that the algorithm has poor positioning
of the bounding box. In addition, compared with other algorithms, the GA-YOLOv5 algo-
rithm has the highest accuracy under the same recall. It shows that the target recognition
effect of GA-YOLOv5 algorithm is the best. By comparing YOLOv5 and GA-YOLOv5, it
is clear that this algorithm is more suitable for determining hyperparameters by genetic
algorithm. This further proves the feasibility and rationality of the proposed method.

4.4. Qualitative Analysis of Experimental Results

To better demonstrate the performance capability of genetic neural network in object
recognition, we show the effect of GA-YOLOv5 model detection in four complex back-
grounds. Additionally, small goals should also be included in one of the performance
reviews. In Figure 6, the red rectangles identify giraffes, the green rectangles identify hip-
pos, the purple rectangles identify humans, the yellow rectangles identify turtles, the white
rectangles identify small fish, the black rectangles identify birds, and the blue rectangles
identify camel.
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To better illustrate the detection performance of GA-YOLOv5, we show the detection
performance of GA-YOLOv5 for small objects in complex backgrounds. In Figure 6a, we
choose a figure from the prairie. Among them, the detection accuracy of giraffes is higher,
while that of humans is lower. Considering the reason, the characteristic information
of giraffes is relatively obvious, while human beings have clothing decoration, and the
characteristics are relatively less obvious. In Figure 6b, we choose a figure from the ocean.
Among them, the detection accuracy of sea turtle is 92%, while that of fish is lower. Consider
that it may be because small fish are small targets and are denser. In Figure 6c, we choose
a picture from the sky. Among them, the detection accuracy of the larger birds was up
to 87%. In Figure 6d, we choose an image from the desert. This picture well verifies the
detection effect of GA-YOLOv5 on small targets. Among them, the detection accuracy
of the larger camel was 88%, and the worst detection accuracy was 68%. The detection
results under the above four complex backgrounds fully demonstrate the superiority of the
GA-YOLOv5 algorithm.

4.5. Ablation Experiment

In order to better illustrate the contribution of the optimized hyperparameter method
proposed in this paper to the field of object detection, we have selected the best object recog-
nition algorithm at present. For example, Cascade RCNN, Faster RCNN, SSD, YOLOv5,
RetinaNet, PV-RCNN. These algorithms include a 2D image detection network and a 3D
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point cloud detection network. For small target tasks, whether the improved algorithm
can effectively detect has a great relationship with the average accuracy. We choose mean
accuracy rate (mAP) as the evaluation metric for ablation experiments. The AP value is
obtained by calculating the area under the curve drawn by combining the precision and
recall points. Confidence can evaluate the effect of these parameters well, and when the
confidence is dense enough, better precision and recall can be obtained. In addition, FPS
will also be used to judge the improvement of the detection time brought by the optimized
hyperparameters to the model.

This experiment compares and analyzes the test results of the optimized hyperpa-
rameters on the classic target detection algorithms YOLOv5, SSD, and Faster RCNN. All
experimental environments and computer configurations for this experiment are the same,
and the data set used comes from the public cifar-100 data. Table 2 shows that YOLOv5 has
a better performance overall, especially with the help of the genetic algorithm, the indicators
have been significantly improved, the mAP indicator has increased by 7 percentage points,
and the FPS has also increased from the original 15 to 20. It can be seen that the optimized
hyperparameters did bring performance improvements to these algorithms. However,
there are also situations where the performance of some algorithms is unchanged, such as
the IOU indicator in CascadeRCNN and the recall indicator in PV-RCNN. Analyzing the
reason, these algorithms themselves include the function of adjusting hyperparameters.
Although it is not as comprehensive as ours to adjust hyperparameters, we have to admit
that they do play a positive role in some aspects. The overall experiment shows that
the optimized hyperparameters can increase the mAP in the target detection algorithm
by an average of 3 percentage points, and the FPS can be increased by at least 2 frames.
Large-scale commercial application value provides high returns by improving the speed
and accuracy of object detection algorithms, which is what the algorithm proposed in this
paper is about.

Table 2. Comparison of six different detection methods.

Method Backbone Accuracy Precision Recall IOU mAP FPS

Cascade RCNN
ResNet-101 + FPN 0.65 0.75 0.76 0.68 0.86 5

GA + ResNet-101 + FPN 0.71 0.76 0.83 0.68 0.88 7

Retina Net
ResNet-101 + FPN 0.76 0.77 0.83 0.69 0.87 7

GA + ResNet-101 + FPN 0.84 0.78 0.83 0.71 0.91 10

PV-RCNN
3D Voxel 0.43 0.51 0.65 0.56 0.71 4

GA + 3D Voxel 0.54 0.55 0.65 0.59 0.69 8

Yolov5
DarkNet-53 0.88 0.91 0.89 0.87 0.82 15

GA + DarkNet-53 0.94 0.95 0.96 0.94 0.89 20

SSD
VGG-16 0.75 0.87 0.73 0.67 0.81 15

GA + VGG-16 0.76 0.88 0.74 0.66 0.83 21

Faster RCNN
ResNet-101 + FPN 0.79 0.68 0.73 0.81 0.87 9

GA + ResNet-101 + FPN 0.82 0.75 0.74 0.86 0.88 12

5. Conclusions

As an important factor affecting the model detection effect, hyperparameters often rely
on artificially set initial values. In addition, during the training process, these hyperparame-
ters also need to be updated in real time, which depends on the experience of the algorithm
engineer. To this end, this paper creatively proposes to optimize these hyperparameters by
using an improved genetic algorithm. First, we propose an improved genetic algorithm
and verify the effectiveness of the algorithm in multimodal functions. Then, an improved
genetic neural network is proposed; we redefine the loss function of object detection and
set it as the objective function of the genetic algorithm. Finally, through qualitative and
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quantitative analysis, the superiority of genetic algorithm to optimize hyperparameters
is proved.

However, there are many factors that affect the accuracy of object detection. For
example, the quality of the dataset, the rationality of the intelligent optimization algorithm,
and the complexity of the image background. In the future work, we should also do
the following work: (1) Analyze the influence of the calculation amount of the intelligent
optimization algorithm on the target detection speed so as to improve the detection speed of
the model. (2) Improve the low-quality datasets, such as their exposure and blur functions
to improve the detection effect of the model in low-quality images. (3) Increase the number
of convolutional layers of the network, fully mine the feature information of different
targets, and improve the feature extraction ability of the model.

Author Contributions: M.Z. designed the main experiments and completed the writing of the
paper; B.L. provided the data set and participated in the annotation of the data set; J.W. provided
innovations and constructive comments for the idea of the paper. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data of this study is owned by the research group, and the data
sets and codes can be requested from us by peers and by email.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mathivanan, G. Survey on Object Detection Framework: Evolution of Algorithms. In Proceedings of the 2021 5th International

Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 2–4 December 2021; pp. 1–5.
2. Liu, Y.; Sun, P.; Wergeles, N.; Shang, Y. A survey and performance evaluation of deep learning methods for small object detection.

Expert Syst. Appl. 2021, 172, 114602. [CrossRef]
3. Ahmed, M.; Hashmi, K.A.; Pagani, A.; Liwicki, M.; Stricker, D.; Afzal, M.Z. Survey and performance analysis of deep learning

based object detection in challenging environments. Sensors 2021, 21, 5116. [CrossRef] [PubMed]
4. Hua, X.; Ono, Y.; Peng, L.; Cheng, Y.; Wang, H. Target detection within nonhomogeneous clutter via total bregman divergence-

based matrix information geometry detectors. IEEE Trans. Signal Process. 2021, 69, 4326–4340. [CrossRef]
5. Dai, Y.; Wu, Y.; Zhou, F.; Barnard, K. Attentional local contrast networks for infrared small target detection. IEEE Trans. Geosci.

Remote Sens. 2021, 59, 9813–9824. [CrossRef]
6. Zhan, J.; Hu, Y.; Cai, W.; Zhou, G.; Li, L. PDAM–STPNNet: A small target detection approach for wildland fire smoke through

remote sensing images. Symmetry 2021, 13, 2260. [CrossRef]
7. Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE

Trans. Neural Netw. Learn. Syst. 2021. [CrossRef]
8. Victoria, A.H.; Maragatham, G. Automatic tuning of hyperparameters using Bayesian optimization. Evol. Syst. 2021, 12, 217–223.

[CrossRef]
9. Brodzicki, A.; Piekarski, M.; Jaworek-Korjakowska, J. The whale optimization algorithm approach for deep neural networks.

Sensors 2021, 21, 8003. [CrossRef]
10. Lee, S.; Kim, J.; Kang, H.; Kang, D.-Y.; Park, J. Genetic algorithm based deep learning neural network structure and hyperparameter

optimization. Appl. Sci. 2021, 11, 744. [CrossRef]
11. Li, Y.; Shi, Y.; Wang, K.; Xi, B.; Li, J.; Gamba, P. Target detection with unconstrained linear mixture model and hierarchical

denoising autoencoder in hyperspectral imagery. IEEE Trans. Image Process. 2022, 31, 1418–1432. [CrossRef]
12. Sun, C.; Shrivastava, A.; Singh, S.; Gupta, A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In Proceedings

of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 843–852.
13. Wang, L.; Zeng, X.; Yang, H.; Lv, X.; Guo, F.; Shi, Y.; Hanif, A. Investigation and application of fractal theory in cement-based

materials: A review. Fractal Fract. 2021, 5, 247. [CrossRef]
14. Yang, Z.; Sun, Y.; Liu, S.; Shen, X.; Jia, J. Std: Sparse-to-Dense 3D Object Detector for Point Cloud. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, Seoul, Republic of Korea, 27–28 October 2019; pp. 1951–1960.
15. Karydas, C.G. Unified Scale Theorem: A Mathematical Formulation of Scale in the Frame of Earth Observation Image Classifica-

tion. Fractal Fract. 2021, 5, 127. [CrossRef]

http://doi.org/10.1016/j.eswa.2021.114602
http://doi.org/10.3390/s21155116
http://www.ncbi.nlm.nih.gov/pubmed/34372351
http://doi.org/10.1109/TSP.2021.3095725
http://doi.org/10.1109/TGRS.2020.3044958
http://doi.org/10.3390/sym13122260
http://doi.org/10.1109/TNNLS.2021.3084827
http://doi.org/10.1007/s12530-020-09345-2
http://doi.org/10.3390/s21238003
http://doi.org/10.3390/app11020744
http://doi.org/10.1109/TIP.2022.3141843
http://doi.org/10.3390/fractalfract5040247
http://doi.org/10.3390/fractalfract5030127


Fractal Fract. 2022, 6, 706 17 of 17

16. Tien Bui, D.; Tuan, T.A.; Klempe, H.; Pradhan, B.; Revhaug, I. Spatial prediction models for shallow landslide hazards: A
comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and
logistic model tree. Landslides 2016, 13, 361–378. [CrossRef]
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22. İlhan, İ. An improved simulated annealing algorithm with crossover operator for capacitated vehicle routing problem. Swarm

Evol. Comput. 2021, 64, 100911. [CrossRef]
23. Kumar, S.; Jain, S.; Sharma, H. Genetic algorithms. In Advances in Swarm Intelligence for Optimizing Problems in Computer Science;

Chapman and Hall/CRC: Boca Raton, FL, USA, 2018; pp. 27–52.
24. Guo, P.; Cheng, W.; Wang, Y. Hybrid evolutionary algorithm with extreme machine learning fitness function evaluation for

two-stage capacitated facility location problems. Expert Syst. Appl. 2017, 71, 57–68. [CrossRef]
25. Zhong, K.; Zhou, G.; Deng, W.; Zhou, Y.; Luo, Q. MOMPA: Multi-objective marine predator algorithm. Comput. Methods Appl.

Mech. Eng. 2021, 385, 114029. [CrossRef]
26. Liu, Y.; Sun, Y.; Xue, B.; Zhang, M.; Yen, G.G.; Tan, K.C. A survey on evolutionary neural architecture search. IEEE Trans. Neural

Netw. Learn. Syst. 2021. [CrossRef] [PubMed]
27. Chen, S.; Montgomery, J.; Bolufé-Röhler, A. Measuring the curse of dimensionality and its effects on particle swarm optimization

and differential evolution. Appl. Intell. 2015, 42, 514–526. [CrossRef]
28. Cheng, G.; Wang, X.; He, Y. Remaining useful life and state of health prediction for lithium batteries based on empirical mode

decomposition and a long and short memory neural network. Energy 2021, 232, 121022. [CrossRef]
29. Cui, Z.; Zhao, Y.; Cao, Y.; Cai, X.; Zhang, W.; Chen, J. Malicious code detection under 5G HetNets based on a multi-objective RBM

model. IEEE Netw. 2021, 35, 82–87. [CrossRef]
30. Zhang, X. Construction and simulation of financial audit model based on convolutional neural network. Comput. Intell. Neurosci.

2021, 2021, 1182557. [CrossRef]
31. Zahedi, L.; Mohammadi, F.G.; Amini, M.H. Hyp-abc: A novel automated hyper-parameter tuning algorithm using evolutionary

optimization. arXiv 2021, arXiv:2109.05319.
32. Mohakud, R.; Dash, R. Survey on hyperparameter optimization using nature-inspired algorithm of deep convolution neural

network. In Intelligent and Cloud Computing; Springer: Berlin/Heidelberg, Germany, 2021; pp. 737–744.
33. Talo, M.; Baloglu, U.B.; Yıldırım, Ö.; Acharya, U.R. Application of deep transfer learning for automated brain abnormality

classification using MR images. Cogn. Syst. Res. 2019, 54, 176–188. [CrossRef]
34. Cheng, G.; Han, J.; Zhou, P.; Guo, L. Multi-class geospatial object detection and geographic image classification based on collection

of part detectors. ISPRS J. Photogramm. Remote Sens. 2014, 98, 119–132. [CrossRef]
35. Wang, M.C.; Uhlenbeck, G.E. On the theory of the Brownian motion II. Rev. Mod. Phys. 1945, 17, 323. [CrossRef]
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