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Abstract: This paper aims at analyzing nonlinear dependence between fractionally integrated, chaotic
precious metal and oil prices and volatilities. With this respect, the Markov regime-switching frac-
tionally integrated asymmetric power versions of generalized autoregressive conditional volatility
copula (MS-FIAPGARCH-copula) method are further extended to multi-layer perceptron (MLP)-
based neural networks copula (MS-FIAPGARCH-MLP-copula). The models are utilized for modeling
dependence between daily oil, copper, gold, platinum and silver prices, covering a period from
1 January 1990–25 March 2022. Kolmogorov and Shannon entropy and the largest Lyapunov expo-
nents reveal uncertainty and chaos. Empirical findings show that: i. neural network-augmented
nonlinear MS-FIAPGARCH-MLP-copula displayed significant gains in terms of forecasts; ii. asym-
metric and nonlinear processes are modeled effectively with the proposed model, iii. impor-
tant insights are derived with the proposed method, which highlight nonlinear tail dependence.
Results suggest, given long memory and chaotic structures, that policy interventions must be kept at
lowest levels.

Keywords: fractional integration; entropy; multi-layer perceptron; precious metals; oil prices; energy;
GARCH; volatility

1. Introduction

Precious metal (PM) and oil prices have significant roles in the real sector in addition
to the financial markets. Further, forecasting and foreseeing the oscillations in oil and PM
prices, in addition to investigating their interrelations, is of critical importance for various
participants in economies. This includes administrators in the real sector, investors in the
financial sector, and policymakers in the public sector. Even if gold and silver were popular
options among PMs until recent years, nowadays platinum has gained importance for
financial investment portfolios. Precious metals are also utilized effectively and commonly
in a wide set of industries, ranging from semiconductor/chip production/electronics to
construction.

Precious metals face noteworthy demand from manufacturing and the ornaments
industries, in addition to being considered as a measure of wealth stock. In addition to such
industries, precious metals (hereafter PM) are included in the portfolios of institutional
and individual investors in the finance sector because they are viewed as a safe investment
during periods of recessions, stagnations, and crises. Further, the selected metals in
the study—gold, silver, platinum, and copper—especially face significant demand from
the production side through industrial demand. It is noted that, especially during the
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COVID-19 period, these four metals showed significant fluctuations compared to other
various metals. When evaluated together with oil price fluctuations, while a rise in oil
prices causes supply-side inflation, the platinum, copper, silver and gold prices fluctuate
with inflation due to two main factors. First, during sharp periods of recessions and
crises, to balance their portfolio, investors include such assets with safe-haven expectations.
Second, as economies start to open, precious metals are demanded even more in many
industries. Nevertheless, the inclines in shipment costs, in addition to chip shortages,
still lead to drastic supply shortages today. These are also coupled with inclines in PM
prices. Recent evidence shows that periods of inflation and stagflation drive their prices,
especially during economic crisis periods. Given the fact that PMs have different uses in
different sectors including electronics, automobiles, and even dentistry components, they
are subject to increased demand. This drives their prices and fluctuations due to economic
conditions that affect the manufacturing industries. Due to the electrical conductivity,
ductility, and malleability of PM, they are used in many applications, including radar
equipment, satellites, and electronics in addition to semiconductors and electronic circuits.
As an example of a typical year-period, platinum demand, when divided by use, saw 38%
for auto-catalysts, 31% for jewelry, and 6% for exchange-traded fund (ETF) investments in
2011 [1]. Moreover, among the four PM’s analyzed in the study, gold, silver, and platinum
attract additional attention from the jewelry and ornament industries.

The construction, electrical, automotive, and manufacturing industries are known
for being sensitive to the volatility in prices of oil and precious metals. Among the four
PMs used in the study, copper is largely demanded by the construction industry and
industrial machinery production industries, in addition to its use in transportation and
vehicles, not to mention energy generation facilities and the transportation of electricity. If
an overall evaluation is provided, the four PMs are subject to strong price oscillations. This
is due to economic business cycles that characterize investment behavior towards portfolio
diversification, inflationary periods in the economy, and also due to economic crises periods
coupled with strong oil price fluctuations. These factors make the investigation of the oil
price and volatility interrelations with selected PMs especially important.

In addition to demand conditions, there are some other factors affecting the PM
and oil prices. Hence, PM and oil prices are economic [2], speculative [3], non-economic
factors. Examples include the Gulf war, and geopolitical tensions [4]. In recent years,
the upsurge of speculative activities is also observed to lead to inclines in volatility and
uncertainty in the gold, platinum, copper, and silver prices, in addition to oil prices [5].
Nevertheless, uncertainty and volatility in the prices of the selected PM set in the study
could have strong implications on the investment decisions, in addition to the decisions
and costs of manufacturers in industrial production. Furthermore, during the COVID-19
lockdown period, the uncertainty of PM prices became more evident in addition to sudden
fluctuations in their prices. As will be discussed in the literature section, the recent literature
provides evidence of relations between PMs and oil prices including common tail risk in
addition to spillover effects from oil to PMs, especially during COVID-19. Additionally,
PMs are shown to provide hedge potential for oil price jumps during crises and deep
recession periods.

The PM and oil returns and volatilities can exhibit persistence and nonlinear behav-
ior [6–8] during business cycles with expansionary and recessionary stages, the furthest
extent of which are the boom and crisis periods. Each stage could have a uniqueness in
terms of duration in addition to its distinct distributional characteristics; these are subject
to being governed by regime switches [9,10], a phenomenon which leads to nonlinear and
asymmetric behavior. For instance, during crises and/or during high-volatility regimes,
the financial return series can become less persistent compared to the boom stage and/or
low volatility regime [11], or when the duration of phases of economic expansion is longer
than that of periods of crisis. The asymmetry between the periods of high–volatility and
low–volatility regimes can be explained as also being dependent on the length of time.
According to Cuddington and Jerrett [12], if the volatility in metal prices over the last
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200 years were to be categorized by four main cycles that exhibited persistence between 20
and 70 years, the fourth super-cycle would be stated to be started in 1999 which continues
today [13,14].

In this paper, two different regimes, low and high volatility, will be investigated to de-
termine whether there is evidence of variation in the dependence and persistence structure
between oil and PM returns, whether there is tail dependence, whether copula parameters
are greater than previous ones after the change point, and whether a contagion impact
occurs. Firstly, the evidence of chaotic behavior and uncertainty for the changes in oil price
and the return of precious metals will be explored by Kolmogorov and Shannon entropy
tests, and the Lyapunov exponent test. For the Kolmogorov and the Shannon entropy
tests, it will be explored whether the Eckmann–Ruelle condition is satisfied. Moreover, the
Markov-switching fractionally integrated asymmetric power GARCH (MS–FIAPGARCH),
and its multi–layer perceptron (MLP)—augmented version, the MS–FIAPGARCH–MLP
model will be integrated into copulae to obtain the MS–FIAPGARCH–MLP–copula method.
If the volatilities of PMs and oil prices are interdependent, the MS–FIAPGARCH–MLP mod-
els will determine the contagion, persistence, nonlinear, and/or asymmetric behavior in PM
and oil price. For comparative purposes and to evaluate the results, the MS–FIAPGARCH–
copula method is applied. These methods will reveal the contagion impact, asymmetric
behavior, and persistence of PM and oil price volatility in distinct regimes characterized by
high or low volatility.

Asymmetric behavior, persistence, and contagion impacts were analyzed separately
via various methods in many papers. Nonetheless, these methods did not provide an
overview of all impacts simultaneously. The MS–FIAPGARCH–copula and the MS–
FIAPGARCH–MLP–copula methods are capable of providing and evaluating such impacts
simultaneously. Some papers used unit root tests to determine the PM volatility persistence.
However, the unit root testing methods are known for having insufficiencies under certain
states. First, these tests exhibit lower power in the state of high persistence which causes an
over–acceptance of the unit root behavior [15–17]. Second, omittance of structural breaks
leads to inflated parameter estimates which measure persistence [18].

To test the volatility and non–linear behavior in PM and oil prices, some papers used
various GARCH methods. There are some insufficiencies in this methodology. Firstly, the
outliers can be seen in both in oil and PM price series. If the phases of the cycle and outliers
are not explored, the estimated parameters can become misleading and incorrect. The
outliers also influence the estimation of and the model selection of GARCH family meth-
ods [19,20] and could mistakenly result in hiding heteroscedasticity or the suggestion of
conditional heteroscedasticity [21]. Moreover, the performance of out–of–sample forecasts
obtained from GARCH models is affected if nonlinearities and regime dependencies are
not taken into account [22]. To control the problem caused by outliers various methods
have been proposed. Ané et al. [23] proposed an outlier–augmented–GARCH and esti-
mation procedure for such methods are discussed. For the detection of outliers, Charles
and Darné [24,25] suggested employing the Laurent et al. [26]’s outlier detection method.
In the condition of outliers, Bildirici and Ersin [6–8] suggested estimating the volatility in
oil prices with the LSTAR–LST–GARCH–RBF and LSTAR–LST–GARCH–MLP methods.
Additionally, Bildirici and Ersin [7–9] showed that, in the case of the business cycle and
outliers, the MS–FIAPGARCH and MS–FIAPGARCH–MLP methods are more efficient
than the other GARCH methods.

This paper has important contributions. For econometric modeling, the paper distin-
guishes different regimes and their effects on analyzing the oil prices and precious metals
(PM) which are shown to be fractionally integrated. Further, the paper determines the
regime-dependent fractional integration, copulae-based contagion and tail-dependence
among PM’s and oil prices with MS–FIAPGARCH–copula and MS–FIAPGARCH–MLP–
copula methods. The methods also allow for investigation of persistence and spillover
effects between PM’s and oil prices. Methodologically, the MS–FIAPGARH method is gen-
eralized to MS–FIAPGARH–copula and MS–FIAPGARH–MLP–copula methods, where the
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latter is a regime–dependent neural network–augmented model. The recent literature fol-
lowing the copulae approaches to contagion is extended to regime dependency in the coeffi-
cients of tail dependence and copula. Examples include the studies of Chan-Lau et al. [27],
Forbes and Rigobon [28], Boubaker and Sghaier [29], and Bildirici [30]. As for the appli-
cation aspect, the proposed method has significant gains by augmenting the forecasting
capabilities with neural networks. This paper is among the first papers employing the
MS–FIAPGARH–MLP–copula method to evaluate the contagion and its impacts on PM
and oil price volatility.

This paper is structured into five parts. The Section 2 is the literature review. The
Section 3 is devoted to data and methodology. The empirical results, discussion and policy
recommendations are in the Section 4. Conclusion is given at Section 5.

2. Literature Review

The works of Mckenzie et al. [31], Liao and Chen [32], Tully and Lucey [33], Kang et al. [34],
Morales and O’Callaghan [35], Cochran et al. [36,37], Ewing and Malik [38], Arouri et al. [3],
Bildirici and Ersin [6,8,9], Chkili et al. [39], Gil-Alana and Tripathy [5], Tiwari and Sahadud-
heen [40], and Behmiri and Manera [41] examined the volatilities of oil and precious metal
using the GARCH methods. The overview of the studies above provides insights as a basis
for investigating fractional integration and asymmetric nonlinear behavior in the volatility
processes of PMs and oil prices. Gil-Alana and Tripathy [5], for metal markets, tested the
leverage effect and persistence by employing the GARCH family methods and determined
an important level in the persistence of volatility. They explained the nonlinearity using the
TGARCH model for 7 PMs and with EGARCH model for 10 PMs. Mckenzie et al. [31] explored
the volatility of PMs by employing the PARCH model, but they did not determine asymmetric
effects in metal markets. Arouri [3] showed the impact of structural breaks, whereas Liao and
Chen [32] analyzed the relationship amid gold and oil prices in Taiwan by using the TGARCH
model. Tully and Lucey [33] showed the leverage effects with the APGARCH models. Kang
et al. [34] explored the persistence in the oil prices by employing GARCH models. Morales and
Andreosso-O’Callaghan [35] tested the PM volatility dynamics with GARCH and EGARCH
models, and pointed out the persistency in the relation between returns of PMs during the 2008
crisis in contrast to their weak persistence during the Asian crisis.

Fractional integration has a central role in the determination of long memory in PM
and oil prices. As a basis, Arouri et al. [3] investigated the fractional integration and long
memory characteristics for platinum, silver and gold with the FIGARCH model and showed
the existence of dependence amid investigated PMs. Cochran et al. [36] tested the threshold
effects for some metals. According to their results, the DT-FIGARCH model determined
the nonlinearity of metal returns and volatilities. Moreover, they found that long memory
returns depend on the regime. Conversely, in the short memory, parameter returns of
platinum copper, and silver are unaffected by shifts in the regime. Cochran et al. [37]
examined the volatilities of some metals using the FIGARCH model and their findings
revealed the importance of modeling fractional integration in the metal markets.

A certain set of papers provided evidence in favor of nonlinearity. Ewing and
Malik [38] used bivariate and univariate GARCH models and they examined the gold
and oil price volatility by combining structural breaks, finding strong evidence of volatility
transmission amid returns of oil and gold by incorporating structural breaks to the condi-
tional variance processes. Chkili et al. [39] examined the volatilities of oil, gold, gas, and
silver with various GARCH methods and determined an inverse leverage effect in silver
and gold prices. Tiwari and Sahadudheen [40] explored the association amid gold and
oil prices by using GARCH methods. The results confirmed positive impact of rises in oil
prices on gold price. [40] also showed that EGARCH model underlined the importance of
asymmetric effects and helped on the determination that shocks with different signs led to
dissimilar impacts on gold prices. Behrimi and Manera [41] showed the roles of oil shocks
and outliers on volatility transmission mechanisms between various PM’s. Mensi et al. [42]
showed volatility transmission amid oil and previous metals and obtained safe–haven
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characteristics in the Asian crisis and during COVID-19. Hammoudeh and Yuan [43] tested
the volatility in prices of silver, copper, and gold by employing GARCH type–models and
the presence of the shocks by including oil prices. Diaz [44] used four combinations of
fractional integration (FI) models to estimate the dependence in the returns of platinum
and palladium.

Das et al. [45] explored the impacts of oil price jumps on PMs and showed that the
inclines in oil volatility led to volatility in PM prices in addition to putting forth the
potential of PMs as hedging tools. Ahmed et al. [46] investigated tail risk and spillover
effects between crude oil and PMs using GARCH models and their findings showed
time–varying effects in addition to the acceleration of spillover risk, especially during
periods of crisis. Bentes [47] explored the volatility persistence of PM prices before and
throughout COVID-19 in the direction of evaluating hedge and safe–haven characteristics.
Dinh et al. [48] demonstrate the negative and positive effects of economic factors on PM
prices. Mensi et al. [49] investigate currency market and PM market links and show that
PMs have strong hedge potential along with spillover effects from oil to PMs, which
alter depending on the magnitude and the direction of the change. In a recent study,
Septhon [50] showed the hedge effectiveness of PMs against inflation. Kaczmarek et al. [51]
explore a large set of safe–haven asset candidates including various PMs; in contrast to the
literature, they concluded that no safe–haven property exists for the evaluated PMs. If the
above–mentioned literature is overviewed, the characteristics of the PM and oil relation
necessitate the investigation of interrelations and contagion effects between PM and oil
in combination with fractional integration and nonlinearity with more recent techniques
that capture not only fractional integration and nonlinearity, but also tail dependence and
contagion relations.

A selected set of papers analyzed the volatility in oil or gold price by combining
MSGARCH or LSTARGARCH and neural network methods. One study conducted by
Bildirici and Ersin [6] used the LSTARLSTGARCH family of models and their neural
networks variants to examine oil price volatility. According to their findings, nonlinearity,
volatility, and asymmetry in oil is effectively modeled with MLP based versions. Bildirici
and Ersin [8] suggested MLP and RBF based neural network–augmentation of nonlinear
LSTARLSTGARCH models to achieve gains in forecasting capabilities if daily oil prices
are to be modeled. Their results confirmed that the RBF and MLP extensions of the
LSTARLSTGARCH models provided a significant improvement in volatility modeling
and forecasting. Bildirici and Ersin [7] evaluated the Markov–switching GARCH–MLP
methods and their results exhibited enhanced performance in forecasting the volatility in
daily returns for the international gold market. Jahanshahi et al. [52] explore the financial
hyperchaotic structures with coexisting attractors. Bildirici and Sonüstün [53] determine
the chaotic structure in bitcoin and three different PMs’ prices. Bildirici [54] inspects the
chaotic dependence between PMs, oil and COVID-19 MS–GARCH–MLP–copula models.

From the standpoint of the contagion effects, the stock markets have been tested
in many papers by employing various econometric approaches. A set of papers utilize
dynamic conditional correlation DCC) method to cover the time-varying structure in the
correlations [55–59], while a certain set of other papers uses the switching models [60].
These methods are insufficient since they do not allow asymmetry in the dependence
parameters [61]. To this extent, some papers used copula methods to analyze contagion with
tail dependence. Among these, a large set of papers in this respect used the Archimedean
copula [62]. The study by Rodriguez [63] was among the first studies to suggest time–
varying copula. Boubaker and Sghaier [64,65] investigated the existence of a change–
point in the dependence based on copula. Refs. [64,65] found the signal of instability in
both tail dependence and copula parameters. By applying TAR–TR–TGARCH–copula,
Bildirici [30] studied co–movement among the expectations of the investors, oil price and
stock return volatility and determined presence of nonlinear tail dependence among the
selected variables. By MSGARCH–MLP methods, Bildirici [54] tested the co–movement
and contagion behavior among returns of precious metals, oil price and COVID-19–infected



Fractal Fract. 2022, 6, 703 6 of 22

persons for the 30 December 2019, 26 October 2020 period with MS–GARCH–MLP–copula
model and determined co–movement and contagion structure among the selected variables.
Bildirici’s findings support the nonlinear contagion and causality between the gold and oil
prices, the VIX, currency exchange rates, and stock market returns.

3. Methodology

The fractionally integrated asymmetric power generalized autoregressive conditional
heteroskedasticity (FIAPGARCH) model is a conditional model that allows integrating frac-
tional integration, in addition to asymmetric power terms, into GARCH–type conditional
heteroskedasticity models. The Markov regime–switching (MS) concept of Hamilton [11]
is introduced to FIAPGARCH processes to let them have regime–dependent dynamics
in two or more distinct regimes to achieve the MS–FIAPGARCH model. The model is
used for modeling marginal distributions of time series which are further utilized in
copula modeling. In this paper, a novel model which is based on the augmentation of
MS–FIAPGARCH–copula model with multi–layer perceptron (MLP) neural networks. The
MS–FIAPGARCH–MLP–copula aims at capturing long memory and persistence character-
istics that possess different characteristics in two distinct regimes. The model also allows
the modeling of tail dependence with copulae functions within each regime. The inclusion
of MLP’s to each regime aim at augmenting the forecasting and generalization capacity.
Therefore, two models will be utilized in this study. The first benefits from MS, FIAP-
GARCH and copula, while the second further augments the first with MLPs to improve
the generalization, forecasting and modeling of tail dependence.

3.1. MS–FIAPGARCH Model

Following [7,9,11,54], a regime–switching GARCH model with Markov-switching is,

xt,(st) = µ(st) +
r

∑
i=1

φi,(st)xt−i+
m

∑
j=1

ϕj,(st)εt−j,(st) + εt,(st) (1)

σ2
t,(st)

= ω(st) +
p

∑
m=1

αm,(st)ε
2
t−m,(st)

+
q

∑
n=1

βn,(st)σ
2
t−n,(st)

(2)

σt−i−1,(st−i)
= E

[
εt−i−1,(st−i−1)

∣∣∣st−i, xt−i−1

]
(3)

where xt is a daily return series, Equations (1 defines conditional mean, Equations (2) and
(3) define conditional variance for time series xt. The model assumes a Markov regime–
switching MS–ARMA(r,m) process with AR and MA orders of r and m in Equation (1) and a
regime–switching GARCH(p,q) process where p and q define orders of ARCH and GARCH
terms in Equation (2) which are assumed as p = 1, q = 1. The non–negativity constraints for
the α(st), β(st) > 0 are assumed and obtained through the following,

L = ∏T
t=1 f (st = i, Yt−1)Pr[st = i] (4)

and P[ st = i|Rt−1] is attained through iteration, where,

πjt = P[ st = j|Rt−1] = ∑1
i=0P[ st = j|st−1 = i]Pr[ st = j|Rt−1]∑1

i=0ηjiπ
∗
it−1 (5)

Two approaches, Francq and Zakoian [66] and Henneke et al. [67] are separated in
terms of the descriptions of σt−1 and ε2

t−1, and the study assumes the Francq and Zakoian
model [66]. The MS–FIAPGARCH model is achieved by further extending the MS–GARCH
model to asymmetric power and fractional integration. Therefore, the MS–FIAPGARCH
extends conditional variance function in Equation (5) with regime–dependent power terms
and long–memory characteristics. Following the method of [9,11], the MS–FIAPGARCH is
presented as,(

1− βi,(st)L
)

σ
ϑ(st )
t,(st)

= ω(st) +
((

1− αi,(st)L
)
−
(

1− βi,(st)L
)
(1− L)∆(st )

)(
|εt−1| − γi,(st)εt−1

)ϑ(st ) (6)
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with δ(st) > 0, βi,(st) > 0, αi,(st) > 0, and ω(st) > 0 non–negativity restrictions. The ϑ(st)

is the power term and ∆(st) is regime–specific and is 0 ≤ ∆(st) ≤ 1 bounded fractional
differentiation parameter. Regime changes are governed by st = 1, 2, . . . , m; for m number
of regimes, as a function of the unobservable Markov process. The asymmetry is captured
with γ(st) < 1 in each st regime, so that the negative and positive innovations with similar
magnitudes lead to asymmetric responses in the regime–specific conditional variance pro-
cesses. The regimes of the conditional variance process—st—are achieved by maximizing
the log–likelihood (LL) function,

LL = ∏T
t=1 f (yt|st = i, Rt−1)Pr[ st = i|Rt−1] (7)

for a return series Rt and Pr[ st = i|Rt−1] is the conditional probability that is to be achieved
through iteration,

πjt = P[ st = j|Rt−1] = ∑1
i=0P[ st = j|st−1 = i]P[ st = j|Rt−1]∑1

i=0ηjiπ
∗
it−1 (8)

3.2. MS–ARMA–GARCH–MLP and MS–ARMA–FIAPGARCH–MLP Models

The multi–layer perceptron (MLP) method consists of the input layer, one or more
hidden layers and an output layer [7]. In the MS–ARMA–GARCH–MLP model of Bildirici
and Ersin [7], the conditional mean is modeled as Equation (1), while the conditional
variance is modeled as Equation (9) below which augments the MS–GARCH model with
MLP–type neural networks,

σ2
t,(st) = ω(st) +

p
∑

i=1
αi,(st)ε

2
t−i ,(st) +

q
∑

j=1
β j,(st)σt−j,(st)

+
h
∑

h=1
ξh,(st)ψ

(
τh,(st), Zt,(st)λh,(st), θh,(st)

) (9)

for st with i = 1, . . . , m regimes which are directed by an unobservable Markov process,

m

∑
i=1

σ2
t(i)P

(
St = i|zt−1

)
(10)

so that the variances are a function of probability of being at regime state i which is
conditional on the normalized residuals. The model assumes h number of neurons of the
form of sigmoid activation functions,

ψ
(

τh,(st), Zt,(st)λh,(st), θh,(st)

)
=

[
1 + exp

(
−τh,(st)

(
l

∑
l=1

[
h

∑
h=1

λh,l,(st)z
h
t−l,(st)

+ θh,(st)

]))]−1

(11)

with
(

1
2

)
λh,d~ uniform [−1,+1]. P

(
St = i|zt−1

)
is the filtered probability constructed as,(

P
(

St = i|zt−1
)
α f
(

P
(

σt−1|zt−1, st−1 = 1
)))

(12)

in which, zt−d is the normalized residuals,

zt−d = [εt−d − E(ε)]
/√

E(ε2) . (13)

The s→ max{p, q} is recursive which is gathered via initiating P
(

zs = i|zs−1
)
, and

the assumption of logistic function 1/(1 + exp(−x)) leads to favorable characteristics for
optimization, given that the logistic function is twice–differentiable, continuous and [0, 1]
bounded. Based on [7], in case of nj,i, the transition probability P

(
zt = i|zt−1 = j

)
was

taken as,

f (yt|xt, zt = i) =
1√

2πht(i)

exp

−
(

yt − x′t ϕ−
H

∑
j=1

β j p
(

x′tγj
))2/

2ht(j)

 (14)
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hence, the s→ max{p, q} recursive process is obtained by building P
(

zs = i|zs−1
)

as given
by Bildirici and Ersin [7].

3.3. MS–ARMA–FIAPGARCH–MLP

Bildirici and Ersin [7] obtain the MS-ARMA-GARCH-Neural Network model by
introducing MLP type neural networks in MS-GARCH model given in Equations (1)–(3).
To further capture fractional integration and asymmetric power properties, the model is
generalized to MS–ARMA–FIAPGARCH–MLP by augmenting Equations (1)–(6) with MLP
neural networks given in Equation (9). The model is achieved as,(

1− βi,(st)L
)

σ
ϑ(st)

t,(st)
= ω(st) +

((
1− αi,(st)L

)
−
(

1− βi,(st)L
)
(1− L)∆(st)

)
×
(
|εt−1| − γi,(st)εt−1

)ϑ(st) +
h

∑
h=1

ξh,(st)ψ
(

τh,(st), Zt,(st)λh,(st), θh,(st)

) (15)

where,

ψ
(

τh,(st), Zt,(st)λh,(st), θh,(st)

)
=

[
1 + exp

(
−τh,(st)

(
l

∑
l=1

[
h

∑
h=1

λh,l,(st)z
h
t−l,(st)

+ θh,(st)

]))]−1

(16)

is the logistic activation function [7]. Further,
(

1
2

)
λh,d~ uniform [−1,+1] and P

(
St = i|zt−1

)
is the filtered probability,(

P
(

St = i|zt−1
)
α f
(

P
(

σt−1|zt−1, st−1 = 1
)))

(17)

with zt−d being normalized zt−d = [εt−d − E(ε)]/
√

E(ε2). The dynamics of transition is
determined through the conditional probability P

(
zt = i|zt−1 = j

)
which is given as,

f (yt|xt, zt = i) =
1√

2πht(i)

exp

−
(

yt − x′t ϕ−
H

∑
j=1

β j p
(
x′tγj

))2/
2ht(j)

. (18)

3.4. MS–ARMA–FIAPGARCH–Copula and MS–ARMA–FIAPGARCH–MLP–Copula

Both MS–ARMA–FIAPGARCH–MLP–copula and MS–ARMA–FIAPGARCH–copula
methods provide the exploration of contagion structure through various forms of tail
dependence functions among analyzed variables. Among these, one of the most common
ones is the symmetrized Joe Clayton (SJC) [54,68],

CSJC( x1, x2|τu, τL) =
0.5
(

FJC
(

x1, x2|τu, τL)+ FJC
(

1− x1, 1− x2|τu, τL)+ x1 + x2 − 1
) (19)

where τL is the lower, τu is the upper tail copula parameters [29,69]. Another common
copula is the Joe Clayton (CJC) which also has interesting properties,

C JC( x1, x2|τu, τL) =
1−

(
1−

{[
1− (1− x1)

v]ν
+
[
1− (1− x2)

v]−ν − 1
}−1/ν

)−1/v (20)

where τL, τu ∈ 0, 1 and ν = −1/ log2
(
τL) and v = 1/ log2(2− τu). Similar to the

SJC copula [68], the upper and lower tail dependences are gathered by JC copula [68];
the dependence is asymmetric if symmetric τL 6= τu and, in the case of τL = τu, the
dependence becomes symmetric [29,30,54,63].
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4. Empirical Results
4.1. Data

The sample covers daily observations for the 1 January 1990–25 March 2022 period and
the dataset consists of daily prices of oil, copper, silver, gold and platinum and is obtained
from the Bloomberg database. For all commodities evaluated in the analysis, their generally
accepted units are utilized, and all are reported in USA dollars (USD). Oilt is the per barrel
USD Brent oil price, Coppert is the USD price per 1 lbs. of of copper. Goldt, Platinumt and
Silvert are quoted per 1 ounce USD price, and they represent gold, platinum and silver
price per 1 ounce. In the analysis, all variables are in daily percentage returns. Further, the
dataset is divided into training, test, forecast sub–samples with 80–10–10 percentages. The
total sample size is n = 8411.

The justification of daily data use is based on the work of Reboredo and Rivera–
Castro [70], who accepted that daily data is more appropriate in exploring contagion due
to the fact that shocks are transmitted immediately and this also leads high speeds in
contagion after a shock. However, the transmission and contagion could also expire very
rapidly in couple of days. Further, the study assumes working days, i.e., five days per week.

The analysis comprises the following five stages,

i. Exploring data with descriptive statistics. Employing Hsieh and Tsay tests to deter-
mine nonlinearity [71,72].

ii. Examining presence of chaotic behavior through Lyapunov exponents, Kolmogorov–
Shannon entropy tests. Exploring whether the Eckmann–Ruelle [73] condition holds.

iii. Determination of the number of regimes, calculating regime durations and regime
transition probabilities [11].

iv. Estimation of MS–FIAPGARCH–copula and MS–FIAPGARCH–MLP–copula models
which integrate fractional integration into the MS–GARCH–MLP model of [54].

v. Determination of contagion effects, as well as the persistence and dependency behavior.
vi. Obtaining the forecast results and evaluating forecast performances.

Forecasting evaluation is crucial to assessing the effectiveness of the models and to
evaluating whether differentiated (or improved) results exist.

4.2. Results
4.2.1. Descriptive Unit Root, ARCH Effects and Nonlinearity Tests

The descriptive statistics for oil, gold, copper, silver and platinum % returns are
reported Table 1. Among the analyzed variables, platinum has the lowest (0.173) and oil
has the highest standard deviation (0.687). The low value of platinum may be an effect of
its lower rate of industrial usage, and the high returns of gold could be originated from the
usage of gold as a long–run hedge counter to inflation or economic crises which is thought
to have reflections on its monetary value.

Table 1. Descriptive statistics.

Gold Oil Silver Platinum Copper

Min −0.121 −0.289 −0.199 −0.287 −0.141
Max 2.531 2.266 1.132 1.810 2.117
Skewness 0.377 −0.227 0.319 −0.878 −0.776
Kurtosis 7.743 4.701 6.438 4.5137 5.303
JB 975.92 620.912 785.391 639.645 845.025
Q(5) 8.114 11.952 9.428 15.402 15.046
R/S 1.382 1.702 1.276 1.601 1.401
Runs test 6.359 5.764 6.227 3.304 5.203
Lo R/S 1 1.919 1.091 1.355 1.602 1.402

1 R/S is the Hurst–Mandelbrot R/S test and Lo R/S is Lo’s modified R/S test. Q(5): Ljung–Box no autocorrelation
test statistic at degree 5. Runs is Bradley’s Runs test of randomness. JB: Jarque–Bera test of normality.
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Table 1 also exhibits that the % returns of copper, platinum and oil are negatively
skewed. For all % return series, the JB, Q(5), R/S, Runs and Lo’s R/S test results determined
non–normality, persistence and non–linearity at a 1% statistical significance level. In Table 2,
the results of ADF and ARCH–LM tests are shown. For all series, the H0 hypothesis of a
unit root is rejected at conventional significance levels and ADF tests confirmed that the
variables are I(0) stationary. The ARCH–LM test reveals ARCH–type heteroskedasticity in
data, which confirms the necessity of integration of ARCH–type processes in addition to
nonlinearity to analyze the series investigated.

The ARCH effects determined the necessity of the utilization of models aiming at
modeling the conditional heteroskedasticity under consideration. In the next step, the
Hsieh and Tsay tests [71,72] were applied to testing the nonlinearity reported in Table 3.
Two different tests were applied to obtain robust results for different forms of nonlinearity.

Table 2. Unit root and ARCH–type heteroskedasticity test results.

Gold Oil Silver Platinum Copper

ADF Unit Root Test

Tau test statistic: −7.091 −7.032 −6.511 −4.142 −8.394
Decision: I(0) I(0) I(0) I(0) I(0)

ARCH–LM Tests 1

ARCH–LM (1) 81.179 37.462 100.852 213.684 186.743
ARCH–LM (4) 59.810 26.0476 55.541 88.199 148.903
Decision Yes Yes Yes Yes Yes

1 ARCH–LM(1) and ARCH–LM (4) are the ARCH–LM test statistic at order 1 and 1–4, respectively.

Table 3. (a) Tsay Nonlinearity Test. (b) Hsieh Test Results.

(a)
Oil 16.224 (0.000) 1

Copper 9.257 (0.000)
Gold 8.549 (0.000)
Silver 13.686 (0.000)

Platinum 10.932 (0.000)

(b)
r(1,1) r(2,2) r(3,3) 2

Oil 0.121 0.884 0.124
Copper −0.148 −0.051 0.282

Gold −0.123 −0.057 0.128
Silver 0.151 −0.039 0.176

Platinum 0.029 0.132 0.155
1 Marginal significance levels are in parentheses. 2 For Hsieh test, r(1,1), r(2,2) and r(3,3) were exhibited. The test
is one–tailed and the results favor that the significance of the parameters at a 1% significance level.

The Tsay test results favor nonlinearity in the investigated series. The test is known to
capture cases of additive nonlinearity, but also known to have relatively less power against
multiplicative nonlinearity [71,72]. Hsieh test is applied to test if the third–order moments
parameters are different from zero. The Hsieh [72] test confirms the nonlinearity in the five
series investigated.

4.2.2. Chaotic Behavior Tests

In the next step, the Lyapunov exponent (LE), Kolmogorov entropy (KE) and Shannon
entropy (SE) tests were employed. The results are presented in Table 4.

The positive LE values showed a chaotic structure but not deterministic chaotic struc-
ture due to exponents being measured as LE < 1. Under these conditions, the predictability
of the analyzed series is expected to be very low. The results show that the variables follow
chaotic structures in addition to being nonlinear stochastic processes. The results for %
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oil returns are in accordance with the results of Adrangi and Chatrath [74], and Bildirici
and Sonüstün [75] who confirmed the existence of chaotic structure for % oil price returns.
In addition, the results also confirm those from Bildirici and Sonüstün [75] in terms of gold,
silver and copper % returns.

Table 4. The results of Lyapunov exponent, and Kolmogorov and Shannon entropy testing.

Copper Gold Silver Platinum Oil

Largest LE 0.302 0.183 0.598 0.169 0.325
Shannon

entropy (SE) 0.028 0.046 0.042 0.046 0.045

Kolmogorov
entropy (KE) 0.028 0.055 0.044 0.039 0.667

Existence of chaotic behavior

Decision: Yes Yes Yes Yes Yes

Uncertainty

Decision: Yes Yes Yes Yes Yes

Eckmann–Ruelle condition

Decision: Yes Yes Yes Yes Yes

SE and KE tests reveal important characteristics of data in terms of uncertainty and in
terms of following random processes in addition to complexity. The variable is accepted
as following a random or uncertain process as the value of the entropy statistic becomes 1
and, if the calculated entropy statistic is 0, the results favor perfect certainty. Regarding the
analyzed variables, the results do not favor certainty and they confirm the series analyzed
as random and uncertain processes. Similar to these results, for oil price during COVID-19,
Bildirici [54] found the results of the Shannon and Kolmogorov entropies as 0.932 and 0.882,
respectively, approaching unity during that period. The difference between the coefficients
of uncertainty was due to the period analyzed, and the uncertainty coefficients decreased
due to their covering a relatively very large period in the sample of this study.

4.2.3. Model Selection for MS–GARCH–Copula

The test results suggest the rejection of the single–regime GARCH(1,1), APGARCH(1,1)
and FIAPGARCH(1,1) models, and the two–regime MS–FIAPGARCH and MS–FIAPGARCH–
MLP models were accepted as candidate models. To model tail dependency and contagion,
four different copulae are utilized: i. Clayton, ii. Gumble, iii. symmetrized Joe Clayton and, iv.
Student’s t. Following the recommendations of [54,76], the selection of the copula in models
is conducted by employing i. deviance information criterion (DIC) and, ii. the acceptance
statistic of [76]. The results are reported in Table 5. Symmetrized Joe Clayton produced the
highest DIC (least negative) than any other copulae applied. Gumble produced the lowest
DIC (i.e., the most negative) in addition to providing the highest acceptance statistic, that is,
52%. Zhu et al. [76] and Bildirici [54] found Student’s t functions providing high acceptance
values. In contrast to these findings, Student’s t and symmetrized Joe Clayton copulae led to
relatively lower acceptance rates for our sample and for the analyzed commodity prices.

Table 5. Copula Selection Tests.

Acceptance DIC

Clayton 0.49 −2363.15
Gumble 0.52 −2472.79
Student’s t 0.41 −2291.06
Symmetrized Joe Clayton (SJC) 0.35 −1995.28
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4.2.4. MS–FIAPGARCH–Copula Estimation Results

In Table 6, the transition probabilities of the estimated models are reported. Given
the fractional integration parameter estimates, the second regime (R2) is characterized
with higher persistence, except for gold % returns, for the majority of commodities relative
to the first regime (R1). The overall investigation favors R1 as the high–variance regime
with lower returns and R2 as the low–variance regime with higher returns. Hence, the R2
represents the low variance regimes with higher returns compared to the high–variance R1
with lower returns. Further, given the regime switching probabilities, persistence in R2 is
relatively higher compared to R1 for all commodities. Similar results for precious metals
can be seen in the works of Cashin [77] and Rossen [78], which determine the asymmetry
of commodity price cycles. Another point is that the MS–FIAPGARCH model is capable
of providing regime–dependent characteristics given above which are among the major
advantages over its single–regime variant.

Table 6. MS–FIAPGARCH–Copula Model Estimation Results.

Oil

ARCH GARCH d–
FIGARCH

APARCH
(gamma)

APARCH
(delta) Constant Trans. Prob’s:

P(0|0) = 0.77,
P(1|1) = 0.82

Diagnostics:
LL = 179012
RMSE = 0.33
ARCH = 0.05

(0.97)

R1 0.11 ***
(0.00)

0.71 ***
(0.00)

0.34 ***
(0.00)

0.09 ***
(0.00)

0.84 ***
(0.00)

0.92 ***
(0.002)

R2 0.41 ***
(0.00)

0.58 ***
(0.00)

0.42 ***
(0.00)

0.12 ***
(0.00)

1.78 ***
(0.00)

0.02 ***
(0.003)

Copper

R1 0.23 ***
(0.00)

0.74 **
(0.03)

0.81 **
(0.01)

0.15 ***
(0.01)

0.99 ***
(0.002)

−0.13 **
(0.03) P(0|0) = 0.79,

P(1|1) = 0.81
LL = 16444.7, RMSE = 0.35,

ARCH = 0.12
(0.6)

R2 0.27 **
(0.01)

0.71 ***
(0.007)

0.99 ***
(0.009)

0.30 ***
(0.01)

1.49 ***
(0.00)

0.65 ***
(0.009)

Gold

R1 0.28 ***
(0.00)

0.70 ***
(0.00)

0.28 **
(0.03)

0.26 ***
(0.01)

0.93 ***
(0.001)

0.07 ***
(0.001) P(0|0) = 0.74,

P(1|1) = 0.82
LL = 17211.6, RMSE = 0.365,

ARCH = 0.33
(0.54)

R2 0.32 ***
(0.002)

0.65 ***
(0.01)

0.19 **
(0.05)

0.23 **
(0.03)

0.84 **
(0.02)

−0.01 ***
(0.00)

Silver

R1 0.20 ***
(0.00)

0.72 ***
(0.00)

0.07 *
(0.07)

0.09 **
(0.003)

0.97 ***
(0.001)

−0.358 ***
(0.001) P(0|0) = 0.76,

P(1|1) = 0.83
LL = 19330.4, RMSE = 0.31,

ARCH = 0.52
(0.46)

R2 0.29 ***
(0.00)

0.61 ***
(0.00)

0.19 ***
(0.00)

0.16 **
(0.03)

0.96 ***
(0.02)

0.0176 ***
(0.01)

Platinum

R1 0.13 ***
(0.00)

0.82 ***
(0.00)

0.08 **
(0.03)

−0.34 ***
(0.01)

0.98 ***
(0.001)

0.32 **
(0.01) P(0|0) = 0.79,

P(1|1) = 0.80
LL = 23144.7, RMSE = 0.34,

ARCH = 0.19
(0.91)

R2 0.24 ***
(0.002)

0.72 ***
(0.0001)

0.11 ***
(0.00005)

0.14 **
(0.03)

0.99 **
(0.02)

0.02 **
(0.01)
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Table 6. Cont.

Copula Results:

Oil–Gold Oil–Copper Oil–Silver Oil–Platinum Copper–
Platinum

L U L U L U L U L U

R1 0.535 0.525 0.519 0.503 0.535 0.508 0.671 0.631 0.102 0.048

R2 0.425 0.485 0.521 0.563 0.587 0.506 0.456 0.501 0.131 0.083

Gold–Copper Gold–Silver Silver–Platinum Copper–Silver Gold–Platinum

L U L U L U L U L U

R1 0.09 0.101 0.589 0.561 0.303 0.396 0.001 0.136 0.508 0.594

R2 0.11 0.11 0.512 0.528 0.321 0.305 0.108 0.123 0.551 0.561

Notes. *, **, *** indicate statistical significance at 10%, 5% and 1% significance levels. The transition probability
matrix is ergodic, which confirms the stationarity of the regime. L and U represent lower and upper tails,
respectively. LL is the log–likelihood. Probabilities are reported in parentheses.

In Table 6, the coefficients of GARCH and ARCH determine the volatility in the
selected variables. In both regimes for all commodities, the sum of ARCH and GARCH
coefficients is smaller than 1, indicating the achievement of stability condition. However,
the sum is close to 1 for majority of commodities’ regimes, an indication of the persistence
of shocks towards future periods. Moreover, the ARCH–LM test is employed to determine
the ARCH effect in residuals. The MS–FIAPGARCH models for copper and silver have a
negative constant for first regimes and in R2 for gold. Cashin [77] found that the magnitude
of price falls in a high–volatility regime at a rate that is larger than the magnitude of price
rebounds, while the rate of change of prices in low volatility regime is faster than the
volatility in prices in the high–volatility regime.

MS–FIAPARCH models of precious metals show that volatility has a strong effect in
addition to leverage effects due to positive values of (δ) with relatively low values. Such
findings indicate that precious metals could be immune to the implied risks caused by
rising volatility and low persistence in the regimes. MS–FIAPARCH models determine that
platinum has an asymmetric volatility response to shocks with the presence positive gamma
coefficients in each regime. According to our findings, positive and negative shocks have
differentiated effects on commodity returns in each regime. The findings for platinum are in
accordance with the fact that this metal has stable demand from industrial users, jewelers,
and automotive manufacturers. Our findings for regime 1 are similar to the results Masa
and Diaz [79] obtained with ARFIMA–FIGARCH models for oil. Batten [80] showed that
macroeconomic factors such as financial market sentiments, monetary policy and business
cycles have effects on the volatility of silver, gold, platinum and palladium. Fassas [81]
determined that gold, silver, palladium and platinum have physical exposure. Sensoy [82]
found the contagion to have impacts in gold, platinum, palladium and silver. Bildirici and
Turkmen [2] showed that most precious metals in the effects of economic circumstances
exhibit the nonlinear causality relation. In Table 6, the estimation results for the MS–
FIAPGARCH–copula method determines the characterization of the co–movements. The
results reveal the presence of regime–switching effects on the precious metal returns that
are greater than the impacts of oil prices.

MS–FIAPGARCH–copula method determines positive dependence in the upper and
in the lower state in majority. A high degree of dependence holds for both regimes again
for the majority of cases but not for all. Exceptions are the following couples: copper–silver,
gold–copper, copper–platinum. If investigated, similar low dependence parameters are
estimated between gold–copper and copper–silver. For gold–silver, the dependence is
moderately high in both regimes and in both lower and upper regimes, and the same
holds for gold–platinum. Oil and all investigated precious metals have moderately high
levels of dependence in both regimes and in both lower and upper tails similar to [83]
which confirms high degree of dependence between oil and stock markets. The overall
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investigation favors dependence relations that are subject to nonlinearity for the majority
of precious metal pairs, while the dependence structure is comparatively high between all
analyzed precious metals and oil in all regimes.

4.2.5. MS–FIAPGARCH–MLP–Copula Estimation Results

Model estimation was conducted with the backpropagation algorithm, and the weights
were iteratively calculated with the weight decay method. To determine the best model,
the AIC information criterion, LR and LL tests were used. The estimated models were
reported in Table 7. Ψ(zt,λh) specifies the logistic function in the hidden units of the
model. The model also necessitates two additional parameters to be estimated: λ and ξ.
Donaldson and Kamstra [84] chose λ and ξ to lie between −2 and 2 in order to improve the
identification process of parameters. The estimation results for the MS–FIAPGARCH–MLP
models and their transition probability results are given in Table 7. If an overview is
presented, the persistence is relatively higher in all models for the first regimes. Further,
the MS–FIAPGARCH–MLP results in Table 7 have lower RMSE and improvement in terms
of log–likelihood compared to the non–MLP MS–FIAPGARCH models in Table 6. The
stability condition is satisfied for all models. Furthermore, the results show that in addition
to asymmetry effects and regime dependency in the conditional variance processes, the
leverage effects are eminent and distinct within each regime given that δ parameters are
statistically significant at conventional levels.

Table 7. MS–FIAPGARCH–MLP–Copula Results.

Oil

ARCH GARCH d–
FIGARCH

APARCH
(gamma1)

APARCH
(delta) ξ λ

Transition
Probabilities Diagnostics

R1 0.28 ***
(0.00)

0.70 ***
(0.00)

0.66 ***
(0.00)

0.10 ***
(0.00)

0.98 **
(0.01)

0.07 ***
(0.00) 0.002 **

(0.02)
P(0|0) =

0.78,
P(1|1) =

0.81

LL =
1027.53,
RMSE =

0.192R2 0.32 ***
(0.00)

0.66 ***
(0.00)

0.45 ***
(0.01)

0.13 ***
(0.00)

0.85 **
(0.01)

0.09 **
(0.02)

Copper

R1 0.14 **
(0.01)

0.80 ***
(0.00)

0.81 ***
(0.00)

0.156 **
(0.02)

0.99 **
(0.01)

0.08 ***
(0.00) 0.004 ***

(0.00)
P(0|0) =

0.82, P(1|1)
= 0.92

LL =
7347.62,
RMSE =

0.206R2 0.21 ***
(0.03)

0.71 **
(0.02)

0.93 ***
(0.00)

0.13 ***
(0.00)

1.29 ***
(0.00)

0.61 ***
(0.009)

Gold

R1 0.21 ***
(0.00)

0.71 ***
(0.009)

0.68 ***
(0.00)

0.26 **
(0.02)

1.16 ***
(0.01)

0.08 ***
(0.00) 0.006 ***

(0.00)
P(0|0) =

0.75, P(1|1)
= 0.81

LL =
3445.6,

RMSE =
0.211R2 0.302

(0.00)
0.651 **
(0.01)

0.50 **
(0.02)

0.11 **
(0.01)

1.18 ***
(0.00)

0.07 ***
(0.00)

Silver

R1 0.24 ***
(0.008)

0.74 ***
(0.009)

0.66 ***
(0.00)

0.17 **
(0.02)

0.99 ***
(0.00)

0.08 ***
(0.00) 0.008 ***

(0.009)
P(0|0) =

0.97, P(1|1)
= 0.98

LL =
6687.11,
RMSE =

0.202R2 0.28 ***
(0.009)

0.69 **
(0.01)

0.59 **
(0.02)

0.31 ***
(0.007)

1.32 ***
(0.00)

0.07 ***
(0.00)

Platinum

R1 0.22 **
(0.01)

0.79 ***
(0.00)

0.63 ***
(0.00)

0.24 **
(0.02)

0.97 ***
(0.00)

0.095 ***
(0.00) 0.005 ***

(0.00)
P(0|0) =

0.93, P(1|1)
= 0.91

LL =
6446.52,
RMSE =

0.129R2 0.26 ***
(0.008)

0.71 **
(0.02)

0.57 **
(0.01)

0.13 **
(0.02)

1.21 ***
(0.00)

0.088 ***
(0.00)
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Table 7. Cont.

Copula Results:

Oil–Gold Oil–Copper Oil–Silver Gold–Platinum Oil–Platinum

L U L U L U L U L U

R1 0.720 0.733 0.721 0.731 0.707 0.701 0.848 0.973 0.829 0.801

R2 0.873 0.825 0.886 0.896 0.812 0.824 0.668 0.891 0.856 0.896

Gold–Copper Gold–Silver Copper–Silver Silver–Platinum Copper–Platinum

L U L U L U L U L U

R1 0.109 0.131 0.716 0.756 0.282 0.101 0.345 0.489 0.862 0.898

R2 0.112 0.186 0.721 0.995 0.295 0.199 0.365 0.495 0.901 0.956

Notes. **, *** indicate statistical significance at 5% and 1% significance levels.

The contagion effects between each precious metal investigated, in addition to the
contagion effects between the precious metals and oil, are estimated with copulae functions.
The overall investigation revealed similar results to the MS–FIAPGARCH models for the
majority of tests. Further, the low dependencies that were observed are confirmed with
the MS–FIAPGARCH–MLP model. Further, for all precious metal couples and precious
metal and oil couples, the general finding confirms relatively higher tail dependence in R1
compared to R2. Larger tail dependence exists in lower and upper tails in R1 and R2 for
which the copula parameters are close 1, which determines a robust positive dependence.
Positive dependences between oil–gold, oil–copper, oil–silver, oil–platinum, gold–silver,
gold–platinum, and copper–platinum are close to 1, confirming strong levels of positive
dependence in each regime and in both tails, respectively.

4.2.6. Forecasting Results

In this stage, forecasting performances determined by MSFIAPGARCH–MLP–copula
and MS–FIAPGARCH–copula models are evaluated. The results are reported in Table 8.
MS–FIAPGARCH–MLP–copula model for silver is the 1st model with the lowest RMSE
in forecasting (RMSE = 0.123) which is followed by the MS–FIAPGARCH–MLP for gold
(RMSE = 0.16) and MSFIAPGARCH–MLP for platinum (RMSE = 0.18) which take the 2nd
and 3rd places, respectively. The 4th and 5th places also are taken by the MLP–augmented
models. Thus, the neural network–augmented models show significant improvements in
forecasting relative to their non–neural network variants.

Table 8. Out of Sample Forecast Performances.

MS–FIAPGARCH–MLP
–Copula

MS–FIAPGARCH
–Copula

MSE RMSE MSE RMSE
Copper 0.178 0.241 (5th) 0.632 0.399 (7th) 1

Gold 0.027 0.163 (2nd) 0.656 0.431 (9th)
Oil 0.177 0.411 (4th) 0.672 0.451 (10th)

Platinum 0.036 0.193 (3rd) 0.587 0.345 (6th)
Silver 0.015 0.123 (1st) 0.639 0.409 (8th)

1 MSE (and RMSE) is the (root–) mean–squared forecast errors. Forecast accuracy rank is in parentheses.

The forecast results for the MS–FIAPGARCH–MLP–copula and MS–FIAPGARCH–
copula models are given in Figures 1–10 below. The figures on the left correspond to
the MLP–based models’ forecast results for a period of 1 month ahead. For this pe-
riod, given the working days structure of the dataset, the out–of–sample forecasts cover
22 working days. The results presented on figures located on the right–hand side represent
the forecast results for the MS–FIAPGARCH–copula models for the analyzed precious
metals and oil price % returns. If the non–MLP and MLP–based models are compared
in Figures 1–10, it can be seen that the MLP–augmented models provided better forecast
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performances relative to their non–MLP variants. However, the overall results suggest that
both MS–FIAPGARCH and MS–FIAPGARCH–MLP–copula models provided efficiency in
forecast performances.
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Figure 1. Copper, MS−FIAPGARCH−MLP. 
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Figure 3. Gold, MS−FIAPGARCH−MLP. 
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Figure 5. Oil, MS−FIAPGARCH−MLP. 
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Figure 6. Oil, MS−FIAPGARCH. 
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Figure 7. Platinum, MS−FIAPGARCH−MLP. 
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less effective and that determining a portfolio that covers precious metals and oil during 
high–volatility regimes and/or the crisis period is a theme to systematic risk. 
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4.3. Discussion and Policy Recommendations

The results can be provided in three subgroups, a. the MSFIAPGARCH and MSFIAPGARCH–
MLP–copula methods are suitable to determine contagion effect and the persistence, b. the effects
of the returns of the precious metals are significantly higher than the effects of oil prices. So, the
results suggest that the returns of precious metals can be more sensitive than the volatility in the
oil price, c. the normality assumption is not suitable for making neither financial nor economic
decisions and. there are persistence, dependence and contagion between the variables.
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The empirical results provided important insights regarding the relations between
the oil and the selected precious metals in terms of regime–dependent contagion and
dependence structure. The augmented copula models captured two distinct regimes char-
acterized as low–volatility and high–volatility regimes. The long memory characteristics
are observed in both regimes suggesting persistence in all series analyzed. Further, the
MLP–augmented variants achieved significant level of improvement for precious metals’
return predictability. Further, results also favored significance of leverage effects suggesting
asymmetric response of the series to negative compared to positive shocks and news.

The results found some important points. Therefore, it was determined a higher
dependence structure between the returns of the precious metals and oil price during R1
period than during the R2 ones. The results mean the dependence structures between oil
price volatilities and precious metals returns are deeper than the other one. The results
recommend the existence of a contagion effect and indicated that diversification can be
less effective and that determining a portfolio that covers precious metals and oil during
high–volatility regimes and/or the crisis period is a theme to systematic risk.

Similar to the results of Wen [83], Zhu [76], and Aloui [62], the findings determined
the evidence of a dependence structure between the analyzed variables. Further, the
findings also confirmed the validity of the works Boubaker and Shaier [29,64,65] and
Bildirici [30,54,69,75]. The dependence structure changes between regimes. This effect
shows that severe changes in energy prices impact precious metals prices. The energy
risk managers and the investors who embrace oil as an asset in a differentiated portfolio
must considerdownside risk disclosure and must accentuate the leftside of the return
distribution of portfolio. Therefore, the results obtained by this paper lead to important
policy implications for the governments, policymakers, portfolio managers and investors.
The volatility of oil, in addition to that of precious metals, is subject to persistence that
should be taken into consideration during policy and investment decisions. Further, such
long memory characteristics, especially for oil, also should be kept in consideration by the
central banks that aim at controlling inflationary policies. Since price instabilities of oil have
important impacts on the inflation, the governments should aim at the minimization of
volatility of oil and precious metal prices. The volatilities of oil price impact the persistence
of inflation, and moreover can trigger the rise in asset prices due to leading to inflationary
pressures. These results can also lead to important insights for the investors. Within an
international and national investor perspective, individuals and institutions and portfolio
managers have to consider the behavior of copper and silver in their precious metal
portfolios because its low correlation makes it a good hedge asset in addition to considering
the high levels of contagion between oil and all precious metals analyzed.

The findings obtained in this study highlighted that the analyzed precious metal and
oil price volatilities are subject to fractionally integrated characteristics which are regime–
dependent. The MS–FIAPGARCH and MSFIAPGARCH–MLP models in this study allow
the modeling of such marginal distributions with processes which will be used to be utilized
to obtain regime dependent tail dependence that provides important insights for investors
and policy makers. It should also be stated that the fractional integration characteristics
and chaotic behavior in the analyzed series require caution. Therefore, though important
improvement in forecasts is achieved, modeling series with such characteristics can also
lead to important limitations. The chaotic structure in the precious metal and oil prices show
that, under drastic changes in economic policies or unexpected shocks, the series would
lead to strong deviations from the analyzed relationships and forecasted values. Under
these circumstances, the investors should be aware of such limitations of the proposed
models similar to many time series models. The recent COVID-19 pandemic led to strong
deviations of oil prices in addition to precious metals. Due to the lockdown and the shocks
caused by the pandemic, the period of COVID-19 has been subject to strong fluctuations
in industrial production and significant changes in the investor behavior not to mention
the fluctuations in risk and return relationship. Given the chaotic, fractional integration
and persistence characteristics of precious metals and oil prices, the forecast performances
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of our models would deteriorate if the forecast experiment had been conducted for the
early days of pandemic. However, such conclusions cannot be drawn without testing and
simulating such an experiment which is left for future studies.

However, it should be noted that the models provide forecast improvement under
such turbulent periods. The sample period is between 1 January 1990 and 25 March 2022
and the out–of–sample forecasting evaluation is conducted for the last 30 days covering
the early days of March 2022 which provided an interesting experiment for our models.
The Ukraine–Russia War started on 20 February 2022 and had important effects on the
world economies, not to mention the energy crisis and fluctuations in oil prices. During
the period, precious metals have also been subject strong fluctuations. As seen in Table 8,
MSE and RMSE results provided significant improvement in forecast performances for
out–of–sample forecasts that covers the Russia–Ukraine war. If models are compared in this
respect, the MLP–type neural network–augmented MS–FIAPGARCH–MLP model showed
significant gains in forecast performance over its non–MLP–augmented counterpart for
all precious metals and oil series analyzed. The results show that MLP–based neural
networks augmentations provide improvement in forecasting in such turbulent periods.
The augmentation of the proposed models with deep neural networks would provide a
new area of research for the future studies.

5. Conclusions

This study determines the predictability of oil, gold, copper, silver, platinum through
the MS–FIAPGARCH–copula and MS–FIAPGARCH–MLP–copula methods for the
1 January 1990–25 March 2022 period. The MS–FIAPGARCH–copula model allows the
investigation of nonlinearity and asymmetry in capturing regime–specific fractional integra-
tion and long memory characteristics and asymmetric power structures for the conditional
variance processes in addition to allowing the assessment of regime–specific dependence
between the analyzed series. The MS–FIAPGARCH–MLP model further augments the MS–
FIAPGARCH model with MLP–type neural networks to augment the forecast capabilities.
The results obtained by this paper led to important policy implications. The nonlinearity
and regime dependent volatility in addition to asymmetric dependence and contagion rela-
tions cannot be rejected for policy makers and investors. The long memory characteristics,
especially for oil, also should be kept in consideration also by the central banks focusing
on anti–inflationary policies. The price volatility in oil in addition to precious metals are
known to affect persistence of inflation which in turn led to increasing policy interest rates
that affect financial markets especially stock markets. Results also favored addition of
copper and silver in the precious metal portfolios for its hedge asset characteristics in
addition to keeping in mind the high contagion between oil and the precious metals.
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