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Abstract: The existence, uniqueness, and Carathéodory’s successive approximation of the fractional
neutral stochastic differential equation (FNSDE) in Hilbert space are considered in this paper. First,
we give the Carathéodory’s approximation solution for the FNSDE with variable time delays. We then
establish the boundedness and continuity of the mild solution and Carathéodory’s approximation
solution, respectively. We prove that the mean-square error between the exact solution and the
approximation solution depends on the supremum of time delay. Next, we give the Carathéodory’s
approximation solution for the general FNSDE without delay. Under uniform Lipschitz condition
and linear growth condition, we show that the proof of the convergence of the Carathéodory ap-
proximation represents an alternative to the procedure for establishing the existence and uniqueness
of the solution. Furthermore, under the non-Lipschitz condition, which is weaker than Lipschitz
one, we establish the existence and uniqueness theorem of the solution for the FNSDE based on
the Carathéodory’s successive approximation. Finally, a simulation is given to demonstrate the
effectiveness of the proposed methods.

Keywords: Carathéodory’s approximation solution; fractional calculus; neutral stochastic differential
equation; variable delays; existence and uniqueness theorem

1. Introduction

Nowadays, stochastic modeling is playing an important role in many fields of science
and industry such that more and more stochastic differential equations (SDEs) are estab-
lished. In general, the solution for the SDEs does not have an explicit expression, except in
the linear case. Therefore, it is necessary and meaningful to seek the approximation solution
rather than the accurate solution. Usually, the existence and uniqueness theorem of the
solution for SDEs are proved by taking the method of Picard successive approximation [1].
During the production of the Picard iteration, to compute the approximation solution x, ()
at the nth step, all past information xo(t), x1(t), ..., x,_1(t) is needed, which involves lots of
calculations on stochastic integrals. Therefore, to reduce the calculation, the Carathéodory
successive approximation was first introduced by Constantine Carathéodory in the early
part of the 20th century for ordinary differential equations (ODEs) [2], in which x,(f) is
computed directly. The Carathéodory’s approximation solutions for some general SDEs
were given in the monograph [1]. Moreover, the Carathéodory approximation solution for
the SDEs with pathwise uniqueness was given in [3]. The Carathéodory’s approximation
solution for a class of perturbed SDEs with reflecting boundary was given in [4]. Consider-
ing that the future state of the system may be determined by the present state and some of
the past states in some applications, then the functional SDEs are established. Furthermore,
some results were obtained on the Carathéodory approximation solutions for functional
SDEs with variable delays; for examples, see Refs. [5-9]. In particular, the neutral SDEs are
a class of SDEs depending on past and present values but that involve derivatives with
delays as well as the function itself. Examples are the problem of lossless transmission,
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the equation of vibrating masses attached to an elastic bar [10], the collision problem in
electrodynamics [11], and so on.

Fractional calculus is a generalization of integral calculus and has properties of mem-
ory and heredity. In the 1970s, B.B. Mandelbrot first pointed out that there are a large
number of fractional dimensions in nature and many technical fields, as well as self-
similarity between the whole and the part. Since then, fractional calculus has been applied
to many fields, such as chemistry, viscoelasticity, anomalous diffusion process, complex
networks, neural networks, etc. [12-17]. With this background, fractional SDEs are estab-
lished. The existence and uniqueness theorems of a solution for a class of fractional SDEs
were obtained by using the Picard approximation sequence [18,19] or by using the theorem
of the Banach fixed point [20-24]. Then, the Carathéodory approximations and stability of
solutions to non-Lipschitz fractional SDEs of the [t6—Doob type were investigated in [25].
The Carathéodory’s approximation for a type of Caputo fractional SDEs was obtained
in [26]. A class of fractional SDEs driven by Lévy noise was studied by using Carathéodory
approximation in [27]. The approximations for solutions of Lévy-type SDEs were given
in [28], and so on.

Inspired by the above discussion, some results on the existence, uniqueness and
Carathéodory’s successive approximation of FNSDE are given in this paper. The contribu-
tions of this paper are listed: (1) The Carathéodory’s approximation for the FNSDE with and
without time delay is established, respectively. (2) The boundedness and continuity of the
mild solution and Carathéodory’s approximation solution are given. (3) The mean-square
error between the mild solution and Carathéodory’s approximation solution is obtained.
(4) Under the non-Lipschitz condition, the existence and uniqueness theorem of the solu-
tion for the FNSDE without delay is established based on the method of Carathéodory’s
successive approximation.

The rest of this paper is organized as follows. In Section 2, some preliminaries are
introduced. The Carathéodory’s approximation solution for the FNSDE with variable time
delays is given in Section 3. The Carathéodory’s approximation solution for the general
FNSDE without delay is given in Section 4. The existence and uniqueness theorem of
the solution for the FNSDE under the non-Lipschitz condition is given in Section 5. A
numerical example is given in Section 6. Finally, the conclusion is given in Section 7.

Notations: Denote N, R, and C as the set of natural, real and complex numbers,
respectively. Let H, V be two separable Hilbert spaces, £L(V, H) be the space of bounded
linear operators from V into H, £(H) := L£(H, H). || - || denotes the norms in H, V, £(H)
and £(V,H). Let (-, -) denote the inner product, where E(-) represents the mathematical
expectation. C"([a, b], R") represents the family of continuously n-times differentiable R"-
valued functions defined on [4, b]. Let (Q, F, { F; }+>0, P) be a complete filtered probability
space satisfying that J( contains all P-null sets of F.

2. Preliminaries

Assume that there exists a complete orthonormal basis {e, },,>1 in V, and {W(t) };>¢ is
a cylindrical V-valued Wiener process [29] defined on (Q, F, { F; }¢>0, P) with a finite trace
nuclear covariance operator Q > 0. Denote Tr(Q) = Y7 1 Ay < +oo, with Qe, = Ayey,
n € N. Let {B,(t)},>1 be a sequence of the one-dimensional standard Wiener process
mutually independent of (Q), F, { F; }+>0, P) such that

W(t) = i VAnBn(Hen, >0,
n=1

For £, 0 € L(V,H), define (X, 0) = Tr[LQO*], and ®* is the adjoint of the operator
©. For any bounded operator © € £(V, H), then H@H%2 =Tr[@QO*] = ¥ ||[vVA1®e,|?. If
n=1

HG)||2Q < +oo, then @ is called a Q-Hilbert-Schmidt operator. Denote £2((); H) as the set
of all F;-measurable, square-integral H-valued random variables  on (Q), F, { F;}+>0, P),
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which is a Banach space equipped with the norm E||Z||? < +co. Denote C([a, b]; £2((; H))
as the space of all continuous H-valued functions © defined on [4, b], which is a Banach

1/2
space equipped with the norm E(supte[ll,b] |O(t) ||2) < +o0. Denote LP([a,b];H) as
the family of H-valued F;-adapted process {h(t)},<;<) such that fab |h(s)||Pds < o0

almost surely.

Lemma 1 ([29]). If®isan L(V,H)-valued stochastic process such that ©(t) is measurable relative
to Fy, and fOTIEH@(s)Hst < oo for some 0 < T < o0, then

| [ o) 2

Definition 1 ([30]). The a-order Caputo fractional derivative for a function f(t) € C"([to, t],R)
is defined by

< Tr(Q) /OtIEH@(s)Hst, 0<t<T.

1

%Dt“f(t):m f J(s)k(t —s)ds, t>to,

where k(t) = t" %", n € Zsatisfiesn —1 < a < n.

Definition 2 ([30]). The a-order Riemann—Liouville (R-L) fractional integral for a function f ()
is defined by
It f( /f k(t—s)ds, t=>to,

pa—1
[(a)’

where k(t) =

Definition 3 ([30]). The a-order R-L fractional derivative for a function f(t) is defined by

o
RDIF(1) = 25 [W T F (D], £ 2 to,

where n € Z satisfiesn —1 < a < n.

Lemma 2 ([30]). Leta € R, n = [a] + 1, for f(t) € C"([to,t],R), then

n=1 r(m)
Ia {CDzXf( )} (t) _ Z f (tO) g

|
=0 m:

In particular, when 0 < « < 1and f(t) € C'([to,t],R), then
WIE[DEF()] = £(1) = flto).

Definition 4 ([30]). A two-parameter Mittag—Leffler function is defined by
Zl’l

=L 5y

where z,7, B € C, R(y) > 0. Specially, E,(z) = E, 1(z), E1(z) = €.

Lemma 3 ([31]). Forany p,q > 0and x € (0,1), then (p +q)* < ’”72 + %.
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Lemma 4 (Holder’s inequality [31]). Suppose that x > 1, 1 + % =1 Ifp(t) € LY(Q) and
q(t) € LY(Q), then

| ps)a(s)s < ( / |p(s>|de) % (/Q Iq(S)lyds) g

Lemma 5 (Generalized Gronwall inequality [32]). For ] := [0, T] with 0 < T < o0, suppose
that o > 0, c(t) is a nonnegative, nondecreasing, and locally integrable function on ], b(t) is a
nonnegative, nondecreasing continuous function defined on |, with b(t) < ¢, and c is a constant.
For t € ], if a(t) is non-negative and locally integrable with

a(t) < c(t) + b(t) /Ot(t —5)*la(s)ds,

then
a(t) < c(H)Ea[b(HT ()],

Lemma 6 (Bihari’s inequality [1]). For | := [0, T] with 0 < T < +o0, let ¢ > 0 is a positive
constant and K : Ry — Ry be a continuous nondecreasing function such that K(t) > 0 for
all t > 0. Let a(t) be a Borel-measurable bounded non-negative function on J, and b(t) be a
non-negative integrable function on J. For t € |, if

a(t) < c+/0tb(s)1<(a(s))ds,

then

o) < 171 () + [ b(s)is),

holds with H(c) + [} b(s)ds € Dom(H™1), H(t) = [} % ont > 0,and H~'(-) is the inverse
function of H(-).

Remark 1. Lemmas 5 and 6 are both generalizations of the classical Gronwall’s inequality, which
will be used in the following analysis. In addition, there are many generalizations of Gronwall’s
inequality, for example, the fractional version of the stochastic Gronwall inequalities [33,34], and
S0 ON.

3. Carathéodory’s Approximation Solution for the FNSDE with Variable Time Delays

In this section, the Carathéodory’s approximation solution for the FNSDE with variable
time delays is given. For 0 < T < +o0, let #(t) be a continuous nonnegative function on
R with @ = sup{d(t) : t > 0}. Denote Cr := C([-9, T|; L2(Q;H)) C H. Consider the
following FNSDE with variable time delays:

| o k(E =) (y(t) = hy(£) — & + 1(©))ds]
= P(y(t), y(t — (1)), Hdt + Qy(), y(t - 8()), aw(r), o<t<T, D
y(t) =Z e L2(uH), —9<t<0,

where y(1) € H, k() = s, } < a < 1, {h(y()} € £'EH), {P(y(), y(t — 8(1)),

1)} € LYH x H x [0, T|;H), and {Q(y(t),y(t — 8(t)),t)} € L2(H x H x [0, T]; £L(K, H))
are continuous nonlinear mapping functions.
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Divide both sides of Equation (1) by dt, then Equation (1) is equivalent to
0 DEly(1) = h(y(t)) — & +h(¢)]
= P(y(t),y(t = (1), 1) + QUy(), y(t — 8(1),H ", 0<t<T, @)

which is the a-order R-L derivative of y(t) — h(y(t)) — & + h(&). Furthermore, Equation (2)
is equivalent to

SDE[(1) — h(y()] = P(y(b), y(t — 8(1)), ) + Qu(t), y(t — 8(1)), )™, 0<t<T,

y(t)y=¢ —-09<t<0,

which is the a-order Caputo derivative of y(t) — h(y(t)). Therefore, it could also said that

the FNSDE (3) is considered in this paper. It should be noted that dv‘\i/t(t) is only seen as a

kind of notation in form, which usually be used in the studies of SDEs [18,20-26]. Taking
the a-order R-L fractional integral on both sides of Equation (3), Equation (3) is equivalent
to the following stochastic integral equation:

y(t) = &= @) +h(y(t) + g Jo [(t =) P(y(s),y(s — 8(s)),5)]ds

4)
+1t Jo [(E=9)T1Q(y(s), y(s — 9(s)),8)]dW(s), 0<t<T.

Definition 5. An H-valued stochastic process {y(f) }o<¢<r is called a mild solution of

Equation (3) if it has the following properties:

(i) {y(t)} is t-continuous and Fi-adapted.

@ {nc(t)} € LYILH), {P(ci(t),c2(t),t)} € LY(HxHx[0,T;H), and
{Q(c1(t),62(t), 1)} € L2(H x H x [0, T; L(K, H)).

(iii) Equation (4) holds for every t € [0, T] with probability 1.

To continue, the following assumptions are necessary:

Assumption 1. (Linear growth condition) There exists a positive constant Ky > 0 such that for all
(61,62,t) € Hx H x [0, T], then |[P(c1, 62, 4)1> V [Q(1, 62, ) I* < Ka (1 + llg1ll* + llg2l?).

Assumption 2. (Lipschitz condition) There exists a positive constant Ky > 0 such that for all
(c1,62,t) € HxH x [0, T| and (g1,5y,t) € H x H x [0, T}, then | P(g1,62,t) — P(¢1,Gp, 1) [|* V
1Q(61,62,4) = Q1 &2 HII* < Kalller = Gall* + lle2 = &2 [1%)-

Assumption 3. There exists a positive constant K3 € (0,1) such that for all ¢1,¢> € H, then
[h(c1) — h(c2)ll < Ksller — g2|-

Remark 2. Assumption 3 is a common hypothesis for neutral SDEs, which means that h(-) is
uniformly Lipschitz continuous with the Lipschitz coefficient less than 1. It is known from [1] that
the Assumption 3 is obtained from a series of experimental data.

For n > max{1,2/0}, define D, = {t €[0,T]:0(t) < %}, DS = [0,T] — D,. The
Carathéodory’s approximation solution for the FNSDE (3) is defined by
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where Ip, and Ipc represent indicator functions of Dy, and Dy, respectively. Then, Y (-)

can be determined explicitly by the stepwise iterated It6 integrals over the intervals [O, ﬂ ,
12 (23
(ﬁ' z}r (53] ete.

Remark 3. The main idea of the Carathéodory’s approximation solution is to replace the present
state y(t) with the past state y(t - %), replace the state y(t — 0(t)) with y(t —0(t) — %) when
0 < 0(t) < L, and keep the state y(t — 0(t)) unchanged when 9(t) > 1.

Remark 4. Usually, the Picard approximation is defined as

Y.(t) = E—h(&)+h(Y,_1(t)) + r(la) fg [(t—s)*LP(Yy_1(s), Yuo1(s — 8(s)),s)]ds
7 Jo [(E =) 1Q(Ya(5), Yo (s = 9(s)),5)|dW(s), 0<t<T,
Yu(t)= ¢ —-0<t<0.
During this produce, the past states Yo(t), Y1(t), ..., Yy—1(t) need to be computed in order to
compute Yy (t), which involve lots of calculations on stochastic integrals. Better than the Picard

approximation, Yy, (t) can be calculated directly during the Carathéodory’s approximation.

Theorem 1. Assume that Assumptions 1-3 hold. Let y(t) be the unique mild solution of Equa-
tion (1) on [0, T]. Then, forn > 1,

]E< sup ||Yn(t) — y(t)|2> < H(T)Eze_1 {2W71“(2¢x — 1)T2“*1}, (6)
0<t<T

4K, [T+Tr(Q)] Wy — —2Ws
(1-VEKs) (1-Ky)T(@)?” "7~ 1K

200—1 200—1 20—1 20—1
SW3 W, — 3W,WV;
H(T) = w4w6(%> + BNl {Tzﬂ‘ 1_ (T— %) } + aly (%) (T— %)

20—1
AWs W7 | r2a—1 1
+21x3—17|:T“ _<T_‘9_E) ]

where Wg = and

Next, four lemmas are given, which is helpful to prove Theorem 1.

Lemma 7. Under Assumptions 1 and 3, for all n > max{1,2/0}, then Y, (t) € Cr, that is

E( sup ||Yn(t)|2> < WiEpe 1 [Wol' (20 — 1) T2 1] := W3, @)
—0<t<T
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10K, [T+Tr(Q)]
(1-VEKs) (1-K3)T (a)*

where Wy = % + %EHQ‘H and Wy =

Proof. From Equation (5), Lemmas 1-4, Assumptions 1 and 3, then

]E< sup ||Yn(r)||2>
0<r<t
< &E[n(u (- 1)) - n@)| + SgElel?

s 8 _IDs,(s)(t—s)z“ZE\P(Yn(s—i),yn@—ﬂ(s»,s) Z]ds
T I A AT W
e { I ID,g(s)(t—s)Z“—ZEHQ(Yn (s~ ;),Yn<s—ﬂ<s>>,s)Hz] ds
T e LA R

< K| (- ) ¢+ Bl + )

(5= 1) B - oI ) |as

o )

<¢1<*3E< sup ||Yn<r>||2> (5% + =Bl

—O<r<t
$)* 2 142E( sup [|Ya(r)|*] | |ds
—9<r<s

E( sup IIYn(r)HZ) < IEIICII2+E< sup IIYn(r)HZ)

—O<r<t 0<r<t

) { Jo [IDﬁ (s)(t — s)z,XZ(

+fo {IDH (s)(t—s)*? (1 +E

’2 +E||Yy (s —9(s) — %)

5K1[T+Tr(Q)] f
(1—K3)T(« 0

Hence,

S\/KTJE< sup ||Yn<r>||2) + (14 29 + 5 Bl

—0<r<t

e o [ =9 2 (3 E( sup ()] ) ) |ds
(1-K3)T —0<r<s
Furthermore,
) <1 6+K3v/K3
1k sup Iy 1 %
! <ﬁ<f<t' u(r >|> 2 v Bl

10K [T+Tr(Q o—
+(1—\(}Ki) Y 1<3 )72 fo [ 2 2(% <§1<1F<S||Yn(”)||2>>1ds

::W1+W2f0t[(tsz"‘ 2( +E( sup [[Yu(r) ))]ds,

—0<r<s
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_1 6+K3/Ks 2 _ 10K [T+Tr(Q)]
where Wy = 5 + (17\/?3)(17K3)E||§H ,and W, = (vEa) (KT (@ From Lemma 5, then
T4E( sup [Ya(")|* ) < WiEgu 1 [Wal(26 —1)2*"1], VO<t<T.
—9<r<t
In particular, take t = T, then
E( sup [[Yu(r)]?) < WiEp1 {wzr(ztx - 1)T2'H]
—9<r<T
The proof is completed. O
Lemma 8. Under Assumptions 1 and 3, then y(t) € Cx, that is
E( sup ||y(r)||2> < WiEp—1 [Wol'(2a — 1) T2 1] := W, (8)
—9<r<T
W,=1 4+K3v/Ks 2 W, — _ 6K[T+Tr(Q)]
where W1 = 2 + k) k) LIS nd W = = ke

Proof. This lemma can be proved in the same way as Lemma 7. [

Lemma 9. Under Assumptions 1 and 3, for all n > max{1,2/0}, and any 0 < t, <t; <T
with t;1 — t) <1, then

E[[Ya(t2) = Ya () [* < Wa(t — 1), ©)

oW _ 16K; (142W3)[T+Te(Q)]
where Wy = =K’ and Ws = (2a—1)(1-K3)[(a)*

Proof. Forany 0 < t, < t; < T witht; —f; <1, then

Yu(t2) — Yu(t1)

== 1) -0l -1)
+ vy Jo° [ng (5)T1(t1, 12)P (Yo (5= 4), Ya(s — ﬁ(s)),s)} ds
— ri S 15 (5) (11 = ) P (Y (5 = 1), Ya(s — 8(5)), 5) | s

+ ey Jo” I, ($)T1(t1, 0)P (Yo (5 = 1), Ya (5 = 0(s) — ;),s)}ds

— ri S 1D, () (1 = ) TP (Ya (s = 1), Y (5 = 0(5) = 1) ,5) | s

+ ey Jo’ :IDs (5)T1(t1,£2)Q (Yo (5= 1), V(s — ﬁ(s)),s)] AW (s)
- ftt; [ID,% (s)(t — S)DHQ(Yn (s - %),Yn(s —d(s)),s }dW(s)
= et it 10, 1,00 (v (- ). a5 805) -

~ rt Jt 10,61 =) Q(Ya (s = %) Yu(s = 0(5) = 1) 5) | aW (s),



Fractal Fract. 2022, 6, 700

9 of 24

where I1(t1,t2) = (t» —$)* ' — (t; — s)* 1. Furthermore,
EY(t2) ~Ya() 2 < &E||n(Ya (2= 1)) = h(vu (- 1)) [ + 100

< KgE‘

) I O

with
I(t)

8K1 2 Tr
< el 3 {IDC( )H(tl,t2)2<1 +E

8Ki[ti —h+Tr(Q)] 200—2
+ 7211 K: ft I:IDC tl - S) (

2
(s )+ B oIR) s
Yu(s=4)
Yn(s—%)
1
Ya(s=4)
SML [ 5)2%= 2<1+21E< sup || Ya(r ||2)>
(1-K3)T —9<r<s
+8(1<1 tz+Tr 1[ [H(h,tz (HZIE( sup || Y (r ||2>)] s
—09<r<s
)

2 2
| +ElYa(s - 8(6))]

)]
e

2
[+l

Yy (S - 19(5) - %)

+8K”Z+Tr ]f [an tl,t2)2(1+E

8Ki[ti —h+Tr(Q)] 202
s o -7

‘HE

Yn (s —9(s) — %)

< 8K1(1(Jlril?<fz))[rtzu+;r(Q)] Otz T1(ty, t2)2ds + 8K1(1+(21W312£t1 (t2>+Tr ftt;( )22,
Noted that 2« — 2 € (—1,0), then
Jo It )2ds = [ [(t2 — )22+ (1 —5)22 = 2(ty — 5)% (1 — 5)* 1] ds
< fo2 (k2 = )22+ (1 — 5)272 = 2ty — 5)2* 2] ds
= fp2[(t2 = )72 — (1 — 5)"2]ds
= — e (2 =) g + g (=)
= gap (b — 02 G 5 —
< Za%l(tl _ tZ)ZIX*l/
and
ttzl (b — )27 2ds = — 3Ly (b — )27}l = 5l (b — )L
Furthermore,

16K, (1+2W3)[T+Tr(Q)] 20-1, a1
1) < (226*1)(1i1<3)r(a)2( —h) =Ws(t1 — )™ 7,

)
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where Wg = 16KLE2Wo)[THTH(Q)] Ny
(20—1)(1-K3)T (a)*

E||Ya(t2) = Yu(t1) |

< KE[|va (12— 1) ~Ya (1 = 1) |+ Wa( )2

< KEE|Yu(ta — 2) — Yu(t1 — 2) ||2 + K3Ws(t — £2)27 1 4 Wi (ty — £p)20 1
2 .
< KCE|Yu(ta — 2) = Yu(t1 — 2)|" + L KiWs(t =)
thn—1

< KE"E[|Y,(0) — Yo (t — t2)|* + T KiWs(t — £)1

< Kézn+lE’

Yn( Yn( 2_1)

g ‘ZOKQWS(tl )
=
tin 2 et 201
< KUE(Yq(0) = Yu (0)[1° + 'Zo K3Ws(t — t2)
=

Tn—1 Tn
i _ 1-K _
< '20 KiWs(t — )21 = 5 Ws(h —tp)2 L,
1=

Since K3 € (0,1), then E||Y;(t2) — Yu(t)||* < Wa(t; — £2)2~L. The proof is com-
pleted. O

Lemma 10. Under Assumptions 1 and 3, for any 0 < tp < t; < Twith t; — t, <1, then

Elly(t2) — y(t)|* < Wa(ts — 1), (10)

_ 2Ky (142W3) [T+ Tr(Q)]
where Wy (21a 1)(13K3)2F(o¢)2 )

Proof. From Equation (4), Lemmas 1-4, Assumptions 1 and 3,

Elly(t2) —y(t)|?

< &EI(y(1)) ~ Hy(t)I?
+ Bt O iy, — o)202(14 Blly(s)]+ Elly(s — 9(6))1) s
2K1[t2+Tr

(1—Ks)T ]f [ (t1,t2) (1+E||y(s)||2+EH]/(s—19(5))||2)}ds

< KE|ly(t2) —y(t)|)* + 2K1(1+(21VX3K)3[;1F—(;§;-Tr(Q)] ttzl(tl B s)z”‘*zds

2K1 (142W3) [ta+Tr(Q)]

T @)

()t2 H(tll tZ)zds/

where I1(t1,t2) = (ty —s)* ' — (t; —s)* . Since

t 200—2 — t _
ftzl (tl — S) s < 20‘1_1 (tl — t2)21x 1, fOZ H(tl, t2)2d5 < 20}_1 (tl — fz)za 1,
then

2K7 (1 +2W3)[T + Tr(Q)]
(20 — 1)(1 — K3)2T ()2

Elly(t2) —y(t)]* < (= k) =Wyt — )™,

_ 2Ky (142W3)[T+Tr(Q)
where W, (211x 1)(13K3)2F( w)?

| The proof is completed. [J
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We are now in a position to prove Theorem 1.

Proof of Theorem 1. From Equations (4) and (5) and Assumptions 2 and 3,
E[|Ya(t) — y(t)|

(1= 4) w0+ ST G s e
B Ya(s — 8(5)) — y(s — <>>|)]ds+“<2”+“@fo 10, (5) (¢ =52
< (Ea(s = 3) v+ 2 (s - 009 - 1) —ats - 0661 ) s

- k(1= 1) =00+ 50 -0

< K3E

i

Ya(s—1) —y(s)

4K [T+Tr(Q)] ] [ 211 2
(1-K3)T(a)® fo (t= E‘

Y(s— 1) - Yn()+Yn(s)—y(s)(ﬂdS
+ Sl O [ g (91t = )™ B a5 — 9(6)) — y(s — 0() 2] ds
(506~ 1) = (s - o06)) ]
Yi(t-1) —Yn(t)H2

Yn(s—f) Yy (s) H ]ds

Y E|Ya(s) — y(s)||ds

+ Q) iy, (51 5

< VEE|Ya(t) = y()|* + =3z

4 $KalTHTH(Q)) f { 52 ZE‘
0
t_

(1—K3)T(a
8K2[T+Tr Q)] fo [

4112[2?((3 Lyt [1 $)2* E[| Yo (s — 9(s)) — y(s — 8(s)) Hz] ds

r 2
R o o0 1) ]
Denote Wy = a \ﬁ)z and W, = = ?KﬁZ[;gTrI(g))]( i then

E< sup || Yu(r) —y<r>||2>

0<r<t
(t— S)Z“ZE< sup |[Ya(r) — y(r)||2>

0<r<s

< 2w [,

3
dS + Z Hl(t)/
i=1

with

2

7

Hq (t) = W¢E

Yn (t - %) - Yn(t)

Ha(t) w7f0{ s)X2E Yn<sfl) Yn(s)‘ﬂds,

n(s—ﬁ(s) ) Yu(s—19 H}

Halt) = Wy J} 1o, (50— 91

From Lemma 5, then

: (di“zt Yo (r) = y(r) |2> < [H(t) + Ha(t) + H3 ()] Eye—1 [2W,T (20 — 1)122 1],
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In particular, take t = T. Then from Lemma 9,
() < Wi (1)
Hy(T) =W, [y (T {( 22|y (s 1) = va(s) }ds
(o= ) %) Jos
Yi(s—1) ‘ FE|[Y(s) ﬂds
Yo (T=1) = Yals H ]
< AWy [ (T — ) Zas + Way (1) JT(T — 5% 2as
= T {TZ“ (- }1)2&_1} + e (1 )ZH (T-1)""
Denote Do(t) = {t € [0, T] : 8(t) = 0}, and Dy (t) = Dn(t) — Do(t), then
Yu(s—1) - yn(s)m ds

(st 2) -0 [

+ Wy [T [(T - s)za_zE’

<2W; [ [(T — )22 (E‘

Wy f%T [( 2a ZE)

HA(T) = W J] 1oy (6)(T ) 2]

e 7 15, 6)(T =525
= Hgl(T) + H32(T).

Similar to the analysis of H>(T), then

200—1 200—1 200—1
AW Wy | roa—1 1 WaW; (1 1
H (T) < 337 {T = (T— ﬁ) } Tt (ﬁ) (T— ﬁ) ,

and
H32(T)
<2wW, [P {1 202 - -
2037 [, (o)t =5 2 (B (s - 00) — 1) [+ Bl s - 00 )|
+ Wy [ {ID (s)(T — )™ ZE’Yn(s—ﬂ(s)—%> Yo(s — (s))mds
< 4Ws Wy [y [ (5)(T = 57 ds + wawi (1) 1 ] T—s?]d

Noted that (T — 5)2"‘_2 >00n0<s<T,then
o+ 1 _ 20—
Hyo(T) < 4WsWy [y 7 (T = 5 2ds + Wawy (1) fﬂ T — ) 2ds
200—1 200—1 20—1
_ AWW, Wy W,
- 2a317{T2“1 (T_ﬁ_%) }‘sz—f(}q) (T_ﬂ_%>

200—1 200—1 200—1
AW W, 20—1 1 WaW7 (1 1
< T [T - (T —0- ﬁ) } + T (ﬁ) (T - ﬁ) :
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From the above analysis, then

E ((JquT HYn(?’) - .1/(7’) ||2> < H(T) EQ,X,1 [2W7F(20¢ _ 1)T2”‘*1] )

The proof is completed. [

4. Carathéodory’s Approximation Solution for the General FNSDE without Delay

In this section, the Carathéodory’s approximation solution for the general FNSDE with-
out delay is given. Denote C := C([0, T]; £2(€; H)) C H. Consider the following FNSDE:

[ Jy Kt = $)(y(t) = h(y(5)) — &+ 1(@)ds] = P(y(t), Dt + Qy(1), HAW (1), 0 <t < T, o

y(t) =g e L2(uH), -1<t<0,

where y(t) € H, } < a <1, {h(y(t))} € LYE;H), {P(y(t),t)} € LY(H x [0, T];H), and
{Q(y(t),t)} € L2(H x [0, T]; L(K,H)) are continuous nonlinear mapping functions.
Divide both sides of Equation (11) by dt, then Equation (11) is equivalent to

{ KD2[y(t) = h(y(H) — &+ (@) = Py(H), 1) + QUu(r), H ™5, 0 <t <T, )

y(t)=¢ -1<t<0,

which is the a-order R-L derivative of y(t) — h(y(t)) — ¢ + h({). Furthermore, Equation (12)
is equivalent to

{ SDE[y(t) — h(y(1))] = P(y(t), ) + Qy(1), &L, o<t <T )

which is the a-order Caputo derivative of y(t) — h(y(t)).
Taking the a-order R-L fractional integral on both sides of Equation (13), then this
equation is equivalent to the following stochastic integral equation:

y(t) = &—h@) +h(y() + w5 Jo [(E = 9)* " Py(s),)]ds

17 o [(E= )5 1Q(y(s),5)]dW(s), 0 <t < T

(14)

Definition 6. An H-valued stochastic process {y(t)}o<t<T is called a mild solution of Equa-

tion (13) if it has the following properties:

(@) {y(t)} is t-continuous, and Fy-adapted.

i) {n(c(t)} € LUMGH), {P(c(t),t)} € L1(H x [0, T];H), and {Q(c(t), 1)} € L2(H x
[0,T]; £L(K,H)).

(iii) Equation (14) holds for every t € [0, T] with probability 1.

To continue, the following assumptions are necessary:

Assumption 4. (Linear growth condition) There exists a positive constant Ky > 0 such that for
all (g, ) € H x [0, T], [|P(c, 1)|* v 1Q(s, )1 < Ky (1 + [[g|?).

Assumption 5. (Lipschitz condition) There exists a positive constant Ky > 0 such that for all
(e1,t) € Hx [0, T]and (g2, t) € Hx [0, T], [|P(61,£) - P(c2,t)[>V11Q(c1,t) — Qe )|* <
Kallg1 — col*.
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The Carathéodory’s approximation solution of the FNSDE (11) is defined as follows:

Ya(t) = C—h(C)Jrh(Yn(t—%))+ﬁfg{(t—s)“*1p(yn(s_%),S)PS
fo[f—S‘”Q( (S—l)/S)}dW(s), 0<t<T, (15)
Yu(t)= & —-1<t<0.

Theorem 2. Assume that Assumptions 3—5 hold. Let y(t) be the unique mild solution of Equa-
tion (11) on [0, T]. Then, forn > 1,

lim E( sup ||Yx(t) —y(t)||2> =0. (16)
n——4o0 0<t<T

Next, four lemmas are given, which is helpful to prove Theorem 2.

Lemma 11. Under Assumptions 3 and 4, for all n > max{1,1/90}, Y, (t) € C, that is

E( sup ||Yn<r>||2> < QuEza-1|Qul (20 ~ )T = s, a7
0<r<T

K3(1++/K3)+3 3K [T+Tr(Q)]
where Q1 =1+ 2 iy Bl and Q2 = G

Proof. From Equation (15), Lemmas 1-4, Assumptions 3 and 4, then

E[Y, (t)]?
< & ( (1= 3)) ~ 4@+ GBI+ et fo 19
y (1+E\yn(s_;)”2)]ds+ R zfo[ )2 2(1+E)yn(s_)u )}

Y- 1) - + Sl
n 31;1[2& fo [ 5) 2 2( (S _ l) 2)}115

. mx&( up ||yn<s>||2> (5 + 1 I

0<r<t

3K [T+Tr 2
n 11[K3+ (©) fo[ 5)2- 2(1+E]yn(s) )}ds.
Furthermore,
1 —i—IE( sup ||Yn(r)||2>
o<r<t
K3 3 2
<1+ =5y + mvedam | ENE

+(1 ?Kﬁl[TTTrIQ )2 fo l 5)%~ 2<1 ‘HE( sup |Yn(r)|2>>]d5

0<r<s

= +Q2f0 [ (t —s)2*2 (1—|—E< sup ||Yn(r)||2>>1ds
0<r<s
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where Q1 =1+ %EH@HZ, and Q, = (1_3/1%?;{323}](“)2. Then, from Lemma 5,

IE( sup |Yn(r)|2> <1 +E< sup |Y,,(r)|2> < Q1Ep-1[Qal (20 — 1)1~ 1], VO<t<T.
0<r<t 0<r<t
In particular, take t = T, then

E( sup HY”(r)HZ) < QiEx [er(Za — l)Tz“’l}.
0<r<T

The proof is completed. O

Lemma 12. Under Assumptions 3 and 4, then y(t) € C, that is

E( sup [y (r) |2> < QiEa 1| Q2 — )T = Qy, (18)
0<r<T

K3(1+K3)+3 2 3K1[T+Tr(Q)]
where Q; = 1+ 7(13\ﬁ) SB[ E[%, and Q, = = \/K%)(l—K3)F(1x)2'

Proof. This lemma can be proved in the same way as Lemma 11. O

Lemma 13. Under Assumptions 3 and 4, for all n > max{1,1/9}, andany 0 < t, < t; <T
witht;1 — tr <1, then

E[|Ya(t2) — Yu(t1) I < Qa(ty — t2)* 71, (19)

8(1 T+Tr K
where Qq = 19}23/ and Qs = ((2:7Q13))([17+K3)(FQ(2<])21'

Proof. From Equation (15), then

Yalt) = Yu(t) = h(Yn(tz -1) —h( (h-1))

ty —s)* 1 — (4 —s)“’l)P(Yn<s—%>,s>}ds

il
;[fvs“ ”’(Yn(s”) s)as
o[

—(t — s)”"l)Q(Yn (s - %),s)}dW(s)
b (e e

Furthermore, from Lemmas 1-4, Assumptions 3 and 4, then

E|[Y,(t2) — Yu(t)]?
(e 4) ()

tl fz Kl |: ZIX 2(1_’_]]3‘

2

b))
)

4f2K1
R [Tk 1) <1+]E‘
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ATr(Q)Ky it a2
Rt eR t21|:(t1 ) <1+IET‘

4Tr(Q)f1 tz
T KT {H(tl’m (

Wl =3) =l =)

4K (14Q3) [+ Tr(Q)] rt2 )
* (1—-K3)T(a)? o T(ty, t2)ds

n(s=3)[)Jo
n(s= 1)) Je

2 | AK(14Qs) [ —h+Te(Q)] h 202
+ (1—K3)F(0¢)2 ty (tl - S) ds

< K3E’ Yy (tz - 7> Y, (fl _ ,) H SlélalJ{)Q(i)[%;SITE(()g)] (f — t) 21
_K3]E‘Yn<2—f) Yn( 1_%) +Q5(tl_t2)2a—l

< Qa(t — )71,

where H(tl,tz) = (tz — S)lxil — (tl — S)ail, Q4= 1
The proof is completed. [

8K; (14+Q3) [ +Tr(Q)
5 and Qs = TG

Lemma 14. Under Assumptions 3 and 4, forany 0 < ¢, < t; < T witht; —t; <1, then

Elly(t2) —y(t)]|* < Qa(tr — )21, (20)

8K1 (14+Q5)[T+Tr(Q)]

where Q, = (2a—1)(1—K3)2T(a)2 *

Proof. From Equations (14), Lemmas 1-5, Assumptions 3 and 4, then

Elly(t2) — y(t)[1? < KeE[ly(t2) — y() 12 + TR Rom B (1 — 1)1,

Furthermore, it could be obtained that

Elly(t2) = y(t1)[1* < Qalts — )7,

8K1 (14+Q3)[T+Tr(Q)]
(2a—1)(1—K3)2T(a)? *

where Q, = The proof is completed. [

We are now in a position to prove Theorem 2.

Proof of Theorem 2. From Equations (14) and (15), then
Yu(t) —y(t) = h(Ya(t=1)) = h(y(®)
+ﬁ N {(t —s)1 (P(Yn (s - %),s) - P(y(s),s))} ds

i o [ =9 (Q(Ya (s = 1).5) = QUw(s),5) ) |dW ().

Furthermore, from Lemmas 1-4, Assumptions 3 and 5, then

E[|Ya(t) — y(1)|I?

< K[| (1~ 3) ~ H TRRar fo[ (t =528 |vs (s — 1) y(S)Hz]ds
+ s { — )2 2E|Ya (s — 1) — y(s)| }ds
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i

(t ) £) + Yau(t) —y(t)
+ ([HTr ? L Jo { (t—s)" ZEHY (S - 7) Yiu(s) + Ya(s) _y(s)‘ﬂ %

+ RS [y [ =912 2| Ya(s) — y(s) s

SR -z - ) - o

Denote Qg = a I\</3f)2 and Q7 = = %{;SQAI;(“)Z, then

E|| Y (t) — y(t)|)?

Ya(t = 1) = va) [+ Q7 Ji 1~ )% 2B]¥a(s) — y(s) 2 ds

(o) vt

< QlE

+Q7f0 (t—s)* 2R

Then,

E <Os<u};||Yn(”) —y(r) ||2>

<Qrfy [(tS)Z“ 2E<SUP IIYn(r)y(r)Hz)

0<r<s

ds + J1(t) + Ja(t),

with
2

7

Ji(t) = QeE

Y, (t - %) — Y, (t)
L) = Q7 [, [(t — s)Z“—ZEHYn (s-1)- Yn(s)m ds

From Lemma 5, then

E( sup ||y (r) — y(r)||2> < [J(t) + J2(#)]Egu—1[Q7T (20 — 1) 247 1].

0<r<t

In particular, take t = T, then

(r- 1) v <)

Ya(s— 1) = Ya(s) }ds

<2Q [y [ 5)2- 2(E Yo(s— 1) \ +E|Yn(s>|!2ﬂds
-0 J1 (s (s- 2 H]ds

%) 5)22ds
10

= 42%_(317{1"%1 _ (T— 111)2"‘_1} + QG (%)th I(T— %)th—l‘

Ji(T) = Q6E

L(T) =Q7 fy [ 5)*°E

<40Q3Q7 fo —5)22ds + Q4 Q7
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Obviously, l_1)r£ J1(T) =0, and ET J2(T) = 0, then
n o n o

E( sup ||Yn(r) y(r)|2) — 0, as n — +oo.

0<r<T
The proof is completed. O

5. Existence and Uniqueness Theorem under Non-Lipschitz Condition

In this section, by using the method of Carathéodory’s successive approximation, the
existence and uniqueness theorem of the solution for the FNSDE (13) is established under
the non-Lipschitz condition, which is weaker than the Lipschitz one.

Assumption 6. Let P(x,t) and Q(x,t) be continuous functions. Assume that there exists a
continuous increasing concave function x : Ry — Ry with k(0) = 0 such that [, % = fo0

and forall (g1,t) € H x [0, T] and (g2, t) € H x [0, T, then ||P(¢1,t) — P(gz,t)”2 VIIQ(g1,t) —
Q2 H1* < x(llg1 — c2ll?)-

Remark 5 ([25,35]). The concrete form of the concave function x(-) can be selected as

k1(g) =Kg, 0<g,

glog(%), 0<¢<9,
ra(g) =

slog(}) +x(6-)(c—8), s<g

glog(%) log(log(%)), 0<c<y,
r3(¢) =

5log(%) log(log(%» +x5(0-)(c—96), d<yg,

where 6 € (0,1) is sufficiently small. Note that if «(-) = x1(-), then Assumption 6 yields to
Assumption 5 (Lipschitz condition).

Lemma 15 ([1]). Assumption 6 implies the linear growth condition (Assumption 4).

Proof. Since «(-) is a concave and non-negative function, there exists a positive constant
c1 > Osuch that x(y) < ¢1(1+y) fory > 0. Then

IP(y, )1 v [1Q(y, H)II?
<2(lIP(y,t) = PO, )2 v 1Q(y, £) — Q(O,1)12) +2(IIP(0, )] V |Q(0, 1) 1)
< 2c2 + 2 ([lyl*) < 2(c1+c2) (1 + [lylI?),

where c; = sup ([|P(0,#)]*> V [[Q(0,¢)]*). The proof is completed. [
0<t<T

Define H(t) = flt % for t > 0. Denote H~1(+) as the inverse function of H(-). From
Assumption 6, then lil’r(l] H(e) = —o0 and Dom(H!) = (—oc0, H(c0)).
€—

Theorem 3. Under Assumptions 3 and 6, the Equation (13) has a unique mild solution on [0, T.
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Proof. Proof of uniqueness. Let y(t) and z(t) be two mild solutions of the FNSDE (13) with
initial value yg and z, respectively. From Lemmas 1-4 and Assumptions 3 and 6,

Elly(r) - 2(1) |2

< E[|ny(1) = h(z(t) + g Jo [(t =) (P(y(s),5) = P(a(s),5))]ds
ek SR =921 QU(s),5) — Qa(s), )] aw s) |

< KE[ly(t) - 2(8)|” + A5 5]t = )2 2E (x(lly(s) — z()I17) ) [ s

Since «x(+) is concave, then from the Jensen inequality,

E(x(Iy(s) —2)17) ) < x(E(ly(s) —2()|*) ) < (E( sup [ly(r) - z<r>||2>>.

0<r<s

Furthermore, for any € > 0, then

E( sup [y(r) — Z(r)||2>
0<r<t

<e+ f[T;Tgr(a 2 fo l 5)%4 2K ( <OS<1;F<’S||V(7’) - Z(”)|2>>]d5-

In view of Lemma 6, then

E( sup Iy(r)—Z(r)||2> < H[H(e) + gyt Jo (T =) 2ds]

0<r<T
o 3[T+Tr(Q)]T>* !
= H | H(e) + i S

Letting e — 0 gives ]E< sup |ly(r) —z(r)|* | = 0, which implies that y(t) = z(t)
0<r<T

for all 0 < t < T almost surely. Therefore, the pathwise uniqueness of the solution for
Equation (13) holds. The proof of the uniqueness is completed.

Proof of existence. Consider the Carathéodory’s successive approximation defined by
(15). From Lemma 15, then Assumption 6 is satisfied. Furthermore, according to Lemma 11,
then Yy, (t) € C, Vt € [0, T]. Next, it will prove that {Y},(¢)} is a Cauchy sequence in C for
eacht € [0,T]. Letm > n > 1, then

Ym(t) - Yn (t)
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o=@ (e~ ) ~ Qe ) s
el 091 (@0 o~ 2):) (o 1)) Jawes

From Assumptions 3, 6, Lemmas 14, and Jensen inequality, then

E( sup || You(r) — Yn(r)|!2>
0<r<T

2
gK3E<sup |Ym<r>—yn<r>||2>+1“§31@< Ya(r=3) = vau(r-1)
0<r<T 0<r<T

51[T;<L3TI‘(Q . fol 204 24 ( <OS‘<L::I<)S||YW1 ))]
5[T+Tr( o
gt Sy S i

Furthermore, then

E( sup || Yn(r) — Yn<r>||2>
0<r<T
< o i [ 5)% %k ( <Os<ggsllYm(r)—Yn(r)l2>>

with
)

Nals =) =5 —3)

)

ds + P(T) + Py(T),

) = 25 s o 4) < ()

5[T+Tr(
PZ(T):l[Kt,;F 2f0|: 20(2(‘

From Lemma 13, then

—_

)

T 200—1
PZ(T> S (1 TI:;TZF(IX)Z f() |: 2“ 2 (Q4<,11 - %) ):|dS
5[T+Tr(Q)] T2 1)241
2a—1)(1—K3 T >2K<Q4( -5) )

In view of Lemma 6, then

IN

0<r<T

B 5K2Q 1 1 20—1 5[T+TI(Q)]T2’X1 1 200—1
=H 1{H<<l—31<$2<n_m> + g (Qu(h - )

5[T+Tr(Q) T2
* (204—1)(1—1(3)21"(13()2] 2

E( sup ||Yu(r) — Yn(7)||2>

Note that

5K2Q 1 1 20—1 5[T+TI‘(Q)]T2A'71 1 1 20—1
Toor(i-w) e (@i-a)" ) 2o

m

as m,n — —+oo,
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such that

5K2Q 1 2a—1 5[T+Tr Q) T2a 1 1 20—1
H<(131<3§2 (ﬁ - %) * (ch[ 1)(1( Kl T2 Q4( ﬁ) o

as m,n — +oo.

Then,
E( sup ||Yu(r) — Yn(r)||2> — 0, as m,n — +oo,

0<r<T
which implies that {Y,(¢)} is a uniformly Cauchy sequence in C. Therefore, there exists a
continuous function y(t) in C such that

lim B[ sup ||Y.(t) —y(H)|*] =0
 Jim <0<t<pT|| n(t) y()l)

According to Lemma 15, the linear growth condition (Assumption 4) holds under
Assumption 6. From Theorem 2, it could be proven that the limit y(t) of the sequence
{Yu(t) }o<t<T is a solution of Equation (13). The proof of existence is completed.

Therefore, the proof of Theorem 3 is completed. [

Remark 6. In this section, only the Lipschitz condition and the linear growth condition that the
functions P(-) and Q(-) satisfied are weakened to the non-Lipschitz condition, the assumption
condition of the function h(-) is not changed, that is, the function h(-) still satisfies the Lipschitz
condition. This is because the FNSDE is a model summarized from the actual systems. It turns out
that h(-) should be Lipschitz continuous with the Lipschitz coefficient less than 1 [1].

Remark 7. When « = 1, Equations (3) and (13) yield the integer-order SDEs considered in [1].
Therefore, the results of this paper can be regarded as a generalization of the results in [1].

Remark 8. Compared with [1-9], where the Carathéodory’s approximation solutions of various of
SDEs were given, the FNSDE with memory and heredity is considered herein. Different from [18,19],
in which the existence and uniqueness of the solution of the fractional SDE were proved by defining
Picard’s successive approximation, the existence and uniqueness of the solution of the FNSDE are
established by using Carathéodory’s successive approximation in this paper.

6. Some Examples

In this section, two explicit examples are given to show that the obtained results can
be used in real-life models. A numerical example is given to demonstrate the effectiveness
of the proposed methods.

Example 1. Consider the fractional neutral stochastic complex networks

[fo (t=s)(yi(t) = h(yi(t)) — §+h(g))ds}

= [f(tyi(D) +k ‘%1 miTy;(t)]dt + g(t,yi(£)dW(t), i=1,2,..., M, 0<t<T, (21)
iz

yi(t)

gl _1§t§0/

where y;(t) € R" represents the state of the ith node at time t, k(t) = t=*/T'(1 — ) witha € (0,1),
h(-) € LYR",RY), f(-,-) € L1([0,00) x R";R"), and g(-,-) € L£2([0,00) x R"; L(U,R"))
are continuous differentiable nonlinear mapping functions, k > 0 represents the coupling strength,
I = diag{v1,72,...,7n} represents the inner linking matrix with v; > 0, M = (m;j)mMxm €
RM*M js the coupling configuration matrix which reflect the topological structure of the network.



Fractal Fract. 2022, 6, 700

22 of 24

Example 2. Consider the fractional neutral stochastic neural networks
| Jy k(e =) (i(t) = h(yi(£) = & +(2))ds]
= [—cyi(t) +]§1 aijfi(y;(t) + L(t)]dt + g(t,y;i(1)dW(t), i=1,2,...,n,0<t<T, (22)
yl(t) :CI -1 Stgoz

where y;(t) € R represents the state of the ith neuron at time t, c; > 0 represents the rate at which
the ith neuron returns to its resting state without any connection, a;; represents the connection
weight between the jth neuron and the ith neuron, f;(-) represents the activation function of the jth
neuron, and I;(t) represents the external input.

Example 3. Consider the following system:

d [ JEk(E =) (y(#) + tanh(y(t)) — 10 tanh(w))ds}
= [—0.5y(t) + cos(y(t))]dt + 0.2sin(y(t))dW(t), 0<t<T, (23)
y(t) =10, —9<t<0,

with « = 0.9. By using the predictor—corrector scheme proposed in [36], the trajectory of the mild
solution of the system (23) is depicted in Figure 1. At the same time, by using Carathéodory’s
successive approximation, the trajectory of Yy, (t) is also depicted in Figure 1. It is shown in Figure 1
that Y, (t) converges to y(t) as time passes, which is consistent with the conclusion of Theorem 2.

——y(t) ||

101 Y1)
8 | i
6 \ |

*_
%,

4 \ 1
2r %M 1

‘ e e e
5 10 15 20 25 30 35 40

Time

Figure 1. Trajectories of Yy, (¢) and y(¢).

Remark 9. Examples 1 and 2 are given to show that the dynamics of nodes in complex networks
and the dynamics of neurons in neural networks can be modeled by the FNSDEs. Since any property
of the solution is based on the existence of the solution, it is very important to study the existence
and uniqueness of the solution of the SDEs. The results obtained in this paper can be used to
prove the existence and uniqueness theorem of the solution for the fractional neutral stochastic
complex networks and fractional neutral stochastic neural networks. Furthermore, based on the
existence and uniqueness of the solution of the system, a series of problems, such as the mean-square
synchronization control problem of the fractional-order stochastic complex networks and the stability
problem of the fractional-order neural networks, can be studied [13-16]. Due to the complexity of the
system, the explicit solutions of some complex systems are difficult to be obtained. Therefore, based
on Caratheodory’s successive approximation, the numerical solution of the FNSDEs is given. It can
be proved theoretically that the convergence order between the approximation and exact solution is
O(1/n).
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Remark 10. For the case of FNSDEs with variable time delays, Theorem 1 shows that the
mean-square error between Yy (t) and y(t) depends on the supremum of time delay, that is
E(supg<;<7 | Yn(t) — y(t)||?) # 0. Considering the poor convergence effect of the numerical
example, the numerical result for this case is not given in the paper.

7. Conclusions

In this paper, the existence, uniqueness, and Carathéodory’s successive approximation
of FNSDE in Hilbert space were investigated. The Carathéodory’s approximation solution
for the FNSDE with and without delay was established, respectively. Next, the mean-square
error between the mild solution and Carathéodory’s approximation solution was obtained.
Furthermore, by using the defined Carathéodory’s successive approximation, the existence
and uniqueness theorem of the solution for the FNSDE was established under the non-
Lipschitz condition. Finally, some examples were given to demonstrate the effectiveness of
the proposed methods.
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