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1. Introduction and Main Results

In the present work, we study the existence of solutions to the critical Schrödinger-type
fractional p&q-Laplacian equations:

(−∆)s
pu + (−∆)s

qu + V(x)
(
|u|p−2u + |u|q−2u

)
= M(x)(µ f (x, u) + |u|q∗s−2u) in RN , (1)

where s ∈ (0, 1), 1 < p < q < N/s, q∗s = Nq/(N − qs). The function f is a continuous
function with suitable conditions and M, V are nonnegative continuous functions with
appropriate assumptions. µ > 0 is a real parameter. The main operator (−∆)s

λ with
λ ∈ {p, q} is the fractional λ-Laplace operator which, up to a normalizing constant, may be
defined as

(−∆)s
λu(x) := 2 lim

ε→0+

∫
RN\Bε(x)

|u(x)− u(y)|λ−2(u(x)− u(y))
|x− y|N+sλ

dy, x ∈ RN ,

for any u ∈ C∞
c
(
RN), where Bε(x) =

{
y ∈ RN : |x− y| < ε

}
.

Throughout the paper, we assume that (V, M) ∈ M if the following conditions
are fulfilled:

(VM1) V(x), M(x) > 0 for all x ∈ RN and M ∈ L∞(RN).
(VM2) if {An}n∈N is a sequence of Borel sets such that the Lebesgue measure |An| ≤ R

for some R > 0, then

lim
ρ→∞

∫
An∩Bc

ρ(0)
M(x)dx = 0, uniformly in n ∈ N,

where Bc
ρ(0) := RN\Bρ(0).

Furthermore, one of the following hypotheses occurs:

(VM3)
M
V
∈ L∞

(
RN
)

.

(VM4) there exists m ∈ (q, q∗s ) such that:

lim
|x|→∞

M(x)
(V(x))(q∗s−m)/(q∗s−q)

= 0, where q∗s = qN/(N − qs).
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For p = 2, s = 1, the assumptions on V(x) and M(x) were initially presented in [1],
while these assumptions can be found in [2] as p 6= 2, s = 1.

As for the nonlinearity f , we suppose that f ∈ C(RN ×R,R) satisfies the following
growth assumptions in the origin and at infinity:

( f1) lim
t→0

f (x, t)
|t|p−1 = 0.

( f2) there exists ν ∈ (q, q∗s ) such that

lim
|t|→∞

f (x, t)
|t|ν−1 = 0.

( f1)
′ there exists C > 0 such that

| f (x, t)| ≤ C|t|m−1,

where m is given in (VM4).

( f3) there exists θ ∈ (q, q∗s ) such that

0 < θF(x, t) := θ
∫ t

0
f (x, τ)dτ ≤ f (x, t)t for all |t| > 0.

( f4) f (x, t) = 0 for all t ≤ 0.

Due to its interesting structure and wide range of applications in areas such as finance,
anomalous diffusion, phase transition, optimization, quasi-geostrophic flows, material
science, soft thin films, water waves, multiple scattering, obstacle problem and so forth,
nonlinear problems involving nonlocal operators have attracted a lot of attention of mathe-
matical community in recent years. For more information, see [3,4].

It was well known that when p = q = 2, Equation (1) arises in the investigation of the
standing wave solutions ψ(x, t) = u(x)e−ıωt for the fractional Schrödinger equation:

ıh̄
∂ψ

∂t
= h̄2(−∆)sψ + W(x)ψ− g(|ψ|) in RN ,

where h̄ is the Planck constant, W : RN → R is an external potential and g is a suitable
nonlinearity. Due to its appearance in issues involving condensed matter physics, plasma
physics and nonlinear optics, one of the most significant objects in fractional quantum
mechanics is the fractional Schrödinger equation. By extending the Feynman path integral
from the Brownian-like to the Lévy-like quantum mechanical paths, Laskin [5] proposed
this equation for the first time. The investigation of fractional Schrödinger equations
has recently attracted the interest of many mathematicians, and several works about the
multiplicity, existence, regularity, and asymptotic behavior of solutions to subcritical or
critical fractional Schrödinger equations under various conditions on the potentials have
been published, see [6–10]. For instance, in [11] the authors considered the case that
V(x)→ 0 as |x| → ∞ for the following problem:

−∆u + V(x)u = M(x)|u|γ, 1 < γ < 2∗ − 1,

where V, M ∈ C(RN ,R) and there exist constants b1, b2, b3, B, k1 > 0, such that:

b3

1 + |x|b1
≤ V(x) ≤ B, 0 < M(x) ≤ k1

1 + |x|b2
, ∀x ∈ RN .

After that, Alves and Souto [1] considered more general weighted functions V and
M, so that the weighted Sobolev embedding theorems could be applied. As result, they
obtained a ground state solution using a Hardy-type inequality and variational method.
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Applying the approach in [1], do Ó et al. [12] also obtained the existence of solutions for
the equation:

(−∆)su + V(x)u = λM(x)g(u) + |u|2∗s−2u in RN .

However, we think that there are some gaps in their paper. To prove the energy
functional satisfying the conditions of mountain pass theorem, we need use the continuous
embedding from W ↪→ L2∗s

M
(
RN), then the term |u|2∗s−2u must be replaced by the form

M(x)|u|2
∗
s−2

s u, since M may vanish at infinity.
When p = q = 2, Equation (1) reduces to the following critical fractional p-Laplacian

equations of Schrödinger-type:

(−∆)s
pu + V(x)|u|p−2u = M(x)

(
µ f (x, u) + |u|p∗s−2u

)
in RN .

Here we emphasize that the nonlocality of fractional p-Laplacian and the interaction of
nonlinearity make the study of the related fractional problems very challenging. In fact, the
lack of Hilbertian structure in Ws,p(RN) for p 6= 2 makes it appear that standard tools used
to analyze the linear situation p = 2 are not trivially adaptable in the situation of p 6= 2.
Due to these reasons, the related models involving the fractional p-Laplacian operator have
attracted a lot of attention in the context of nonlocality; for example, see [13–17] and the
references therein.

The study of fractional p&q-Laplacian problems, on the other hand, has recently
received a lot of interest; we list [18–23] for some existence and multiplicity results, and [24]
(see also [20] ) for some regularity results. Few articles, nevertheless, address fractional
problems such (1). Isernia [25] obtained the existence of a positive and a negative ground
state solution to the following equation:

(−∆)s
pu + (−∆)s

qu + V(x)
(
|u|p−2u + |u|q−2u

)
= M(x) f (u) in RN .

Very recently, the authors in [26] studied the following Kirchhoff-type equations:

K
(∫∫

R2N

|u(x)− u(y)|p
|x− y|N+sp dxdy +

∫
RN

V(x)|u(x)|pdx
)(

(−∆)s
pu(x) + V(x)|u|p−2u

)
= M(x)

(
λ f (x, u) + |u|p∗s−2u

)
.

where K : [0,+∞)→ [0,+∞) is a continuous Kirchhoff function, f is a continuous function
satisfying the Ambrosetti-Rabinowitz type condition, M may vanish at infinity. They used
the mountain pass theorem to demonstrate the existence of solutions for the above equation.

In the current article, we are interested in the existence of nontrivial nonnegative solutions
to a fractional Schrödinger type p&q-Laplacian problem with potentials allowing for vanishing
behavior at infinity in this study, which is motivated by the aforementioned studies.

First, we introduce some notations before launching into our findings. Let u : RN 7→ R.
For 0 < s < 1 and p > 1, let us define Ds,p(RN) be the closure of C∞

c
(
RN) with respect to

[u]s,p :=
[∫

RN

∫
RN

|u(x)− u(y)|p
|x− y|N+sp dxdy

] 1
p
.

We denote Ws,p(RN) as the following fractional Sobolev space

Ws,p
(
RN
)

:=
{

u : |u|p < +∞, [u]s,p < +∞
}

equipped with the natural norm

‖u‖Ws,p(RN) :=
(
[u]ps,p + |u|

p
p

) 1
p ,



Fractal Fract. 2022, 6, 696 4 of 24

where
|u|pp :=

∫
RN
|u|pdx.

Now, let us recall the embedding property, Ws,p(RN) is continuously embedded in
Lr(RN) for any r ∈ [p, p∗s ] and compactly embedded in Lr

loc

(
RN) for any r ∈ [1, p∗s ). See

the introductory paper or monograph [3,5] for more details.
Let Es,p be the completion of C∞

0
(
RN), with respect to the norm:

‖u‖V,p =
(
[u]ps,p + |u|

p
p,V

)1/p
, |u|pp,V =

∫
RN

V(x)|u(x)|pdx.

Let Es,q denote by the completion of C∞
0
(
RN), with respect to the norm:

‖u‖V,q =
(
[u]qs,q + |u|

q
q,V

)1/q
, |u|qq,V =

∫
RN

V(x)|u(x)|qdx.

Then, Es,p and Es,q are uniformly convex Banach spaces (see Lemma 10 in [27]), and
hence, Es,p and Es,q are reflexive Banach spaces. Let us define the weighted Lebesgue space

Lr
M

(
RN
)
=

{
u : RN → R

∣∣∣u is measurable and
∫
RN

M(x)|u|rdx < +∞
}

,

with its norm
‖u‖r

Lr
M(RN)

=
∫
RN

M(x)|u|rdx

and the space

X =

{
u ∈Ws,p

(
RN
)
∩Ws,q

(
RN
)

:
∫
RN

V(x)(|u|p + |u|q)dx < ∞
}

with its norm
‖u‖X := ‖u‖V,p + ‖u‖V,q.

Definition 1.1. We say that u ∈ X is a weak solution of problem (1) if

∫∫
R2N

|u(x)− u(y)|p−2(u(x)− u(y))(ϕ(x)− ϕ(y))
|x− y|N+sp dxdy

+
∫∫

R2N

|u(x)− u(y)|q−2(u(x)− u(y))(ϕ(x)− ϕ(y))
|x− y|N+sq dxdy

+
∫
RN

V(x)|u|p−2uϕdx +
∫
RN

V(x)|u|q−2uϕdx

= µ
∫
RN

M(x) f (x, u)ϕdx +
∫
RN

M(x)|u|q∗s−2uϕdx

for any ϕ ∈ X.

Our main result can be stated as follows:

Theorem 1. Suppose that f satisfies ( f1) − ( f4). Let (VM1), (VM2) and (VM3) hold. Then
there exists µ∗ > 0 such that for all µ ≥ µ∗, problem (1) possesses a nontrivial nonnegative solution
uµ ∈ X. Moreover, we obtain ‖uµ‖X → 0 as µ→ +∞.

Remark 1. In the case of 1 < q < p < N/s, p < q∗s , f satisfies ( f3) for θ ∈ (p, q∗s ), the
conclusion is also hold.
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When potentials V, M satisfy the conditions (VM1), (VM2) and (VM4), we consider
the following problem:

(−∆)s
pu+(−∆)s

qu+V(x)
(
|u|p−2u + |u|q−2u

)
= M(x)(µ f (x, u)+ |u|m−2u) in RN , (2)

where µ > 0 is a real parameter. Consequently, we obtain the following second main result:

Theorem 2. Suppose that f satisfies ( f1)
′, ( f3) for θ ∈ (q, m), ( f4). Let (VM1), (VM2) and

(VM4) hold. Then there is µ∗ > 0 such that for all µ ≥ µ∗, problem (2) possesses a nontrivial
nonnegative solution uµ ∈ X. Moreover, we obtain ‖uµ‖X → 0 as µ→ +∞.

Remark 2. In the case of 1 < q < p < N/s, p < q∗s , (VM4) hold for m ∈ (p, q∗s ) and f satisfies
( f3) for θ ∈ (p, m), the conclusion is also hold.

The plan of this paper is as follows. In Section 2, we give some technical lemmas. In
Section 3, we deal with the compactness. Our main results are proved in the last section.

2. Preliminary Results

At the beginning of this section, we give the following continuous and compactness result.

Lemma 1. (Lemma 2.2 and Lemma 2.3 in [25]) Suppose (V, M) ∈ M.

(i) If (VM3) holds true, then the embedding Es,q ↪→ Lr
M
(
RN) is continuous for all r ∈ [q, q∗s ],

and compact for all r ∈ (q, q∗s ).
(ii) If (VM4) holds true, then the embedding Es,q ↪→ Lm

M
(
RN) is continuous and compact.

By Lemma 1, there exists a best constant:

Sr = sup
u∈Es,q ,u 6=0

‖u‖Lr
M(RN)

‖u‖V,q
(3)

for any r ∈ [q, q∗s ] if (VM3) holds, and

Sm = sup
u∈Es,q ,u 6=0

‖u‖Lm
M(RN)

‖u‖V,q
(4)

if (VM4) holds. In the following, we will give a result from which we can obtain the
functional of (1) is C1(X,R).

Lemma 2. Let (VM1), (VM2) hold. Suppose that f fulfills ( f1) and ( f2) if (VM3) hold or f
fulfills ( f1)

′ if (VM4) hold. Let

Φ(u) =
∫
RN

M(x)F(x, u)dx, u ∈ X,

then Φ ∈ C1(X,R). Moreover, we obtain〈
Φ′(u), ϕ

〉
=
∫
RN

M(x) f (x, u)ϕdx

for all ϕ ∈ X.

Proof. By ( f1) and ( f2), we see that for all σ > 0, there exists Cσ > 0 such that

| f (x, τ)| ≤ σ|τ|p−1 + Cσ|τ|q
∗
s−1 for all (x, τ) ∈ RN ×R. (5)
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Then
|F(x, τ)| ≤ σ

p
|τ|p + Cσ

q∗s
|τ|q∗s for all (x, τ) ∈ RN ×R. (6)

According to Lemma 1, there exists Sα > 0 such that ‖u‖Lα
M(RN) ≤ Sα‖u‖V,q for all

α ∈ [q, q∗s ]. Recalling that M
V ∈ L∞(RN), for all u ∈ X, we obtain

∫
RN

M(x)|F(x, u)|dx =
∫
RN

(
σ

p
M(x)|u|p + Cσ

q∗s
M(x)|u|q∗s

)
dx

≤ σ

p

∣∣∣∣M
V

∣∣∣∣
∞
‖u‖p

V,p +
Cσ

q∗s
Sq∗s

q∗s
‖u‖q∗s

V,q

≤ σ

p

∣∣∣∣M
V

∣∣∣∣
∞
‖u‖p

X +
Cσ

q∗s
Sq∗s

q∗s
‖u‖q∗s

X < ∞. (7)

So Φ is well defined on X. For any |ι| ∈ [0, 1], it follows from u, ϕ ∈ X, r ∈ [q, q∗s ] that

|u + ιϕ|r−1 ≤ 2r−1
(
|u|r−1 + |ϕ|r−1

)
.

Then we obtain

|u + ιϕ|r−1|ϕ| ≤ 2r−1
(
|u|r−1|ϕ|+ |ϕ|r

)
≤ 2r−1

(
|u|r

r/(r− 1)
+
|ϕ|r

r
+ |ϕ|r

)
≤ D(|u|r + |ϕ|r)

by employing Young’s inequality, where D > 0 is a constant. It implies that

| f (x, u + ιϕ)ϕ| ≤ σD(|u|p + |ϕ|p) + CσD(|u|q∗s + |ϕ|q∗s ). (8)

From (8) and (VM3), for all u, ϕ ∈ X, it follows that∫
RN

M(x)| f (x, u + ιϕ)ϕ|dx

≤ σD
∣∣∣∣M

V

∣∣∣∣
∞

(
‖u‖p

V,p + ‖ϕ‖p
V,p

)
+ CσDSq∗s

q∗s

(
‖u‖q∗s

V,q + ‖ϕ‖q∗s
V,q

)
< +∞,

which implies M(x) f (x, u + ιϕ)ϕ ∈ L1(RN). For any ε > 0, there exists ξ = ε/C such that
|M(x) f (x, u + ιϕ)ϕ| ≤ C a.e. in RN . Consequently, for any measurable set U ⊂ RN such
that |U| < ξ, we have ∫

U
|M(x) f (x, u + ιϕ)ϕ|dx ≤ C|U| < Cξ = ε. (9)

Additionally, since M(x) f (x, u + ιϕ)ϕ ∈ L1(RN), there exists $ > 0 such that∫
RN\B$(0)

|M(x) f (x, u + ιϕ)ϕ|dx < ε. (10)

It follows from (9) and (10) that
∫
RN

M(x)| f (x, u + ιϕ)ϕ|dx is equi-integrable. Please

note that 〈
Φ′(u), ϕ

〉
= lim

ι→0

Φ(u + ιϕ)−Φ(u)
ι

= lim
ι→0

∫
RN

M(x)(F(x, u + ιϕ)− F(x, u))
ι

dx.
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By dominated convergence theorem, the above integrals and limits can be exchanged
in order, and since F is continuous, we can use Lagrange type formulas for the second
variable, then

lim
ι→0

∫
RN

M(x)(F(x, u + ιϕ)− F(x, u))
ι

dx

= lim
ι→0

∫
RN

M(x) f (x, u + κιϕ)ϕdx.

Since κ|ι| ∈ [0, 1] and for all x ∈ RN , M(x) f (x, u + κιϕ)ϕ → M(x) f (x, u)ϕ as ι → 0,
we obtain 〈

Φ′(u), ϕ
〉
=
∫
RN

M(x) f (x, u)ϕdx.

Therefore, Φ is Gâteaux differentiable. It follows from (5) and the Hölder’s
inequality that∣∣〈Φ′(u), ϕ

〉∣∣ ≤ ∫
RN

M(x)| f (x, u)ϕ|dx

≤ σ
∫
RN

M(x)|u|p−1|ϕ|dx + Cσ

∫
RN

M(x)|u|q∗s−1|ϕ|dx

≤ σ

(∫
RN

M(x)|u|pdx
)(p−1)/p(∫

RN
M(x)|ϕ|pdx

)1/p

+ Cσ

(∫
RN

M(x)|u|q∗s dx
)(q∗s−1)/q∗s(∫

RN
M(x)|ϕ|q∗s dx

)1/q∗s
.

(11)

Combining (11) and the inequality ‖ϕ‖Lα
M(RN) ≤ Sα‖ϕ‖V,q, we obtain

∣∣〈Φ′(u), ϕ
〉∣∣ ≤ (σ

∣∣∣∣M
V

∣∣∣∣
∞
‖u‖p−1

X + CσSq∗s
q∗s
‖u‖q∗s−1

X

)
‖ϕ‖X .

It means that Φ′(u) ∈ X∗.
Next, we will show that Φ′ : X → X∗ is continuous on X. Assume that un → u in X,

then we obtain
un → u in X,

un → u in Lr
M

(
RN
)

, r ∈ [q, q∗s ],

M1/run → M1/ru a.e. in RN .

Since M(x) > 0 on RN , un(x)→ u(x) a.e. in RN . Be aware that∥∥Φ′(un)−Φ′(u)
∥∥ = sup

‖ϕ‖X=1

∣∣〈Φ′(un)−Φ′(u), ϕ
〉∣∣

= sup
‖ϕ‖X=1

∣∣∣∣∫RN
M(x)( f (x, un)ϕ− f (x, u)ϕ)dx

∣∣∣∣.
Set

α := lim
n→∞

sup
‖ϕ‖X=1

∣∣∣∣∫RN
M(x)( f (x, un)ϕ− f (x, u)ϕ)dx

∣∣∣∣ ≥ 0.

If α > 0, then there exists a sequence {ϕn} ⊂ X, ‖ϕn‖X = 1, such that, for n large enough,∣∣∣∣∫RN
M(x)( f (x, un)ϕn − f (x, u)ϕn)dx

∣∣∣∣ > α

2
.
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Because of the boundedness of {ϕn} in X, we have

ϕn ⇀ ϕ in X,

ϕn → ϕ in Lr
M

(
RN
)

, r ∈ (q, q∗s ),

M1/r ϕn → M1/r ϕ a.e. in RN .

Since M(x) > 0 on RN , then ϕn(x)→ ϕ(x) a.e. in RN . Just as with the same arguments
that in (11), we obtain∣∣∣∣∫RN

M(x)( f (x, un)ϕn − f (x, u)ϕn)dx
∣∣∣∣

≤
∫
RN

M(x)(| f (x, un)ϕn|+ | f (x, u)ϕn|)dx

≤ σ
∫
RN

M(x)
(
|un|p−1|ϕn|+ |u|p−1|ϕn|

)
dx

+Cσ

∫
RN

M(x)
(
|un|q

∗
s−1|ϕn|+ |u|q

∗
s−1|ϕn|

)
dx

≤ σ

∣∣∣∣M
V

∣∣∣∣
∞

(
‖un‖p−1

V,p ‖ϕn‖V,p + ‖u‖
p−1
V,p ‖ϕn‖V,p

)
+CσSq∗s

q∗s

(
‖un‖q∗s−1

Lq∗s
M (RN)

‖ϕn‖Lq∗s
M (RN)

+ ‖u‖q∗s−1

Lq∗s
M (RN)

‖ϕn‖Lq∗s
M (RN)

)
< +∞.

(12)

Consequently, M(x)( f (x, un)ϕn− f (x, u)ϕn) ∈ L1(RN), and there is a constant
T > 0, such that |M(x)( f (x, un)ϕn − f (x, u)ϕn)| ≤ T a.e. in RN . For any ε > 0, there is
ζ = ε/T > 0, such that for all E ⊂ RN , |E| < ζ, we obtain∫

E
|M(x)( f (x, un)ϕn − f (x, u)ϕn)|dx ≤ T|E| < Tζ = ε.

It implies that M(x)( f (x, un)ϕn − f (x, u)ϕn) is equi-integrable on RN . Since un → u
in Lq

M
(
RN) and Lq∗s

M
(
RN), the Brézis-Lieb Lemma implies that there is $ > 0 such that∫

RN\B$(0)
M(x)|u|q∗s dx < εq∗s and

∫
RN\B$(0)

M(x)|un|q
∗
s dx < (2ε)q∗s . (13)

Choosing σ sufficiently small in (12), then combining (12) and (13), we obtain∫
RN\B$(0)

|M(x)( f (x, un)ϕn − f (x, u)ϕn)|dx < T∗ε,

where T∗ > 0 is a constant. Since

M(x)( f (x, un)ϕn − f (x, u)ϕn)→ 0 a.e. on RN ,

it follows from the Vitali’s theorem that∫
RN

M(x)( f (x, un)ϕn − f (x, u)ϕn)dx → 0 as n→ ∞,

that is a contradiction. So α = 0, and hence

∥∥Φ′(un)−Φ′(u)
∥∥ = sup

‖ϕ‖X=1

∣∣∣∣∫RN
M(x)( f (x, un)ϕ− f (x, u)ϕ)dx

∣∣∣∣→ 0 as n→ ∞.
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As a result, Φ′ is continuous on X, and therefore Φ ∈ C1(X,R). Similarly, it is simple
to prove the case (VM4). In fact, by ( f1)

′, we see that there exists C such that

| f (x, τ)| ≤ C|τ|m−1 for all (x, τ) ∈ RN ×R.

Hence, one has

|F(x, τ)| ≤ C
m
|τ|m for all (x, τ) ∈ RN ×R.

Just as with the same arguments for the case (VM3), we obtain that this lemma is also
true for the case (VM4).

We take the following energy functional into consideration while we look for solutions
to problem (1):

J (u) =
1
p
‖u‖p

V,p +
1
q
‖u‖q

V,q − µ
∫
RN

M(x)F(x, u)dx− 1
q∗s

∫
RN

M(x)|u+|q∗s dx.

From Lemma 2, it is simple to obtain that J ∈ C1(X,R) and

〈
J ′(u), ϕ

〉
=

∫∫
R2N

|u(x)− u(y)|p−2(u(x)− u(y))(ϕ(x)− ϕ(y))
|x− y|N+sp dxdy

+
∫∫

R2N

|u(x)− u(y)|q−2(u(x)− u(y))(ϕ(x)− ϕ(y))
|x− y|N+sq dxdy

+
∫
RN

V(x)|u|p−2uϕdx +
∫
RN

V(x)|u|q−2uϕdx

−µ
∫
RN

M(x) f (x, u)ϕdx−
∫
RN

M(x)|u+|q∗s−1 ϕdx

for all ϕ ∈ X.
To find solution of problem (2), we similarly take into account the functional

Jm(u) =
1
p
‖u‖p

V,p +
1
q
‖u‖q

V,q − µ
∫
RN

M(x)F(x, u)dx− 1
m

∫
RN

M(x)|u+|mdx

instead of J (u).

3. Compactness

The Palais-Smale condition provides the compactness assumption needed by the
mountain pass theorem (see [28,29] and references therein), so we first give the definition
of Palais-Smale condition.

Definition 3.1. Let J be a functional in C1(X,R). We say J satisfies the (PS)d condition if
any sequence {un} in X, such that J (un) → d and sup

‖φ‖X=1
| 〈J ′(un), φ〉 |→ 0, possesses a

convergent subsequence in X.

Here the sequence {un} in X such that J (un) → d and sup
‖φ‖X=1

〈J ′(un), φ〉 → 0 is

called the (PS) sequence at level d ∈ R.

Lemma 3. Let ( f1)− ( f3) and (VM1), (VM2), (VM3) hold. Then, for all µ > 0, the following
properties are fulfilled for the functional J :

(i) there exist positive constants ρ0, δ0, such that J (u) ≥ δ0 for all u ∈ X with ‖u‖X = ρ0.
(ii) there exists u0 ∈ X with ‖u0‖X > ρ0 such that J (u0) < 0, where ρ0 > 0 is given in (i).
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Proof. (i) Using ( f1)− ( f2) for all σ > 0, we can take Cσ > 0 such that

J (u) =
1
p
‖u‖p

V,p +
1
q
‖u‖q

V,q − µ
∫
RN

M(x)F(x, u)dx− 1
q∗s

∫
RN

M(x)|u+|q∗s dx

≥ 1
p
‖u‖p

V,p +
1
q
‖u‖q

V,q −
µσ

p

∫
RN

M(x)|u|pdx− µCσ + 1
q∗s

∫
RN

M(x)|u|q∗s dx

≥ 1
p
‖u‖p

V,p +
1
q
‖u‖q

V,q −
µσ

p

∣∣∣∣M
V

∣∣∣∣
∞

∫
RN

V(x)|u|pdx− µCσ + 1
q∗s

∫
RN

M(x)|u|q∗s dx.

Taking σ = q−p
µ| K

V |∞q
, choosing ‖u‖X = ρ0 small, applying Lemma 1, we obtain

J (u) ≥ 1
q

(
‖u‖p

V,p + ‖u‖
q
V,q

)
−

(µCσ + 1)Sq∗s
q∗s

q∗s
‖u‖q∗s

V,q

≥ 1
q

(
‖u‖q

V,p + ‖u‖
q
V,q

)
−

(µCσ + 1)Sq∗s
q∗s

q∗s
‖u‖q∗s

X

≥ 1
2q−1q

‖u‖q
X −

(µCσ + 1)Sq∗s
q∗s

q∗s
‖u‖q∗s

X .

Since 1 < q < q∗s , (i) is fulfilled.
(ii) For any u ∈ C∞

0
(
RN) with u ≥ 0 in RN , u 6≡ 0, we obtain

J (tu) ≤ tp

p
‖u‖p

V,p +
tq

q
‖u‖q

V,q −
tq∗s

q∗s

∫
supp u

M(x)|u+|q∗s dx

for any t > 0. Since p < q < q∗s , we obtain J (tu)→ −∞ as t→ +∞. Therefore, property
(ii) also holds true.

Fix µ > 0 and set
cµ = inf

χ∈Γ
max

τ∈[0,1]
J (χ(τ)), (14)

where
Γ = {χ ∈ C([0, 1], X) : χ(0) = 0,J (χ(1)) < 0}.

Undoubtedly, cµ > 0 according to Lemma 3. Furthermore, we obtain the following lemma:

Lemma 4. Let ( f1)− ( f3), and (VM1), (VM2), (VM3) hold. Then, cµ → 0 as µ→ ∞.

Proof. From (ii) in Lemma 3, we obtain J (tu0) = −∞ as t→ +∞, then, there exists tµ > 0
such that J

(
tµu0

)
= max

t≥0
J (tu0). Hence,

〈
J ′
(
tµu0

)
, tµu0

〉
= 0. It implies that

∥∥tµu0
∥∥p

V,p +
∥∥tµu0

∥∥q
V,q = µtµ

∫
RN

M(x) f
(
x, tµu0

)
u0dx + tq∗s

µ

∫
RN

M(x)|u+
0 |

q∗s dx. (15)

We now prove the boundedness of the sequence
{

tµ

}
. From (15) and ( f3), we have∥∥tµu0

∥∥p
X +

∥∥tµu0
∥∥q

X ≥
∥∥tµu0

∥∥p
V,p +

∥∥tµu0
∥∥q

V,q

= µtµ

∫
RN

M(x) f
(

x, tµu0
)
vdx + tq∗s

µ

∫
RN

M(x)|u+
0 |

q∗s dx

≥ tq∗s
µ

∫
RN

M(x)|u+
0 |

q∗s dx.

(16)

Due to p < q < q∗s and 0 <
∫
RN

M(x)|u+
0 |

q∗s dx < +∞, we can infer that
{

tµ

}
is

bounded. Fix any sequence {µn} such that µn → ∞. Then, up to a subsequence, there
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exists t0 ≥ 0 such that tµn → t0. We claim that t0 = 0. If t0 > 0, the dominated convergence
theorem leads to

µntµn

∫
RN

M(x) f
(
x, tµn u0

)
u0 dx + tq∗s

µn

∫
RN

M(x)|u+
0 |

q∗s dx → +∞ as n→ ∞,

which contradicts (16). Hence, t0 = 0. That is to say, tµ → 0 as µ→ ∞. Put χ̄(t) = tu0, we
have χ̄ ∈ Γ, and thus

0 < cµ ≤ max
t≥0
J (χ̄(t)) = J

(
tµu0

)
≤ 1

p
∥∥tµu0

∥∥p
V,p +

1
q
∥∥tµu0

∥∥q
V,q.

Letting µ→ +∞, we obtain cµ → 0.

Lemma 5. For each µ > 0. The (PS) sequence {un} ⊂ X for J at the level c ∈ R is bounded.

Proof. By a simple computation, for n ∈ N large enough we observe that

C(1 + ‖un‖X) ≥ J (un)−
1
θ

〈
J ′(un), un

〉
=

(
1
p
− 1

θ

)
‖un‖p

V,p +

(
1
q
− 1

θ

)
‖un‖q

V,q

+
µ

θ

∫
RN

M(x)( f (x, un)un − θF(x, un))dx (17)

+

(
1
θ
− 1

q∗s

) ∫
RN

M(x)|u+
n |q

∗
s dx

≥
(

1
q
− 1

θ

)(
‖un‖p

V,p + ‖un‖q
V,q

)
,

thanks to µ > 0, p < q < θ < q∗s , ( f3) and ( f4). With this in mind, we deduce that
the sequence {un} ⊂ X is bounded, and we omit the details here. Thus, the proof
is completed.

Lemma 6. Fix u ∈ X, define, for all ϕ ∈ X,

Gu(ϕ) :=
∫∫

R2N

|u(x)− u(y)|p−2(u(x)− u(y))(ϕ(x)− ϕ(y))
|x− y|N+sp dxdy +

∫
RN

V(x)|u|p−2uϕdx (18)

and

G̃u(ϕ) =
∫∫

R2N

|u(x)− u(y)|q−2(u(x)− u(y))(ϕ(x)− ϕ(y))
|x− y|N+sq dxdy +

∫
RN

V(x)|u|q−2uϕdx. (19)

If un ⇀ uµ in X, then,

(i) lim
n→∞

Guµ

(
un − uµ

)
= 0 and lim

n→∞
G̃uµ

(
un − uµ

)
= 0.

(ii) lim
n→∞

Gun(ϕ) = Guµ(ϕ) and lim
n→∞

G̃un(ϕ) = G̃uµ(ϕ) for all ϕ ∈ X.

Proof. (i) By the Hölder inequality, it is obvious that Gu is continuous and linear, and

|Gu(ϕ)| ≤ 2‖u‖p−1
V,p ‖ϕ‖V,p ≤ 2‖u‖p−1

X ‖ϕ‖X for all ϕ ∈ X.

Similarly, G̃u is also a continuous linear mapping on X. From un ⇀ uµ in X, then we have

lim
n→∞

Guµ

(
un − uµ

)
= 0 and lim

n→∞
G̃uµ

(
un − uµ

)
= 0.
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(ii) Set t ∈ {p, q}. Since the sequence{
|un(x)− un(y)|t−2(un(x)− un(y))

|x− y|(N+st)(1− 1
t )

}
n∈N

is bounded in L
t

t−1

(
R2N

)
and

|un(x)− un(y)|t−2(un(x)− un(y))

|x− y|(N+st)(1− 1
t )

→
|uµ(x)− uµ(y)|t−2(uµ(x)− uµ(y))

|x− y|(N+st)(1− 1
t )

a.e. in R2N ,

up to a subsequence, we may suppose that for any h ∈ Lt(R2N) it holds

∫∫
R2N

|un(x)− un(y)|t−2(un(x)− un(y))

|x− y|(N+st)(1− 1
t )

h(x, y)dxdy

→
∫∫

R2N

|uµ(x)− uµ(y)|t−2(uµ(x)− uµ(y))

|x− y|(N+st)(1− 1
t )

h(x, y)dxdy. (20)

Let ϕ ∈ X and

h(x, y) :=
ϕ(x)− ϕ(y)

|x− y| N+st
t

. (21)

Thus, h ∈ Lt(R2N), and using (21) in (20) we obtain that

∫∫
R2N

|un(x)− un(y)|t−2(un(x)− un(y))(ϕ(x)− ϕ(y))
|x− y|N+st dxdy

→
∫∫

R2N

|uµ(x)− uµ(y)|t−2(uµ(x)− uµ(y))(ϕ(x)− ϕ(y))
|x− y|N+st dxdy.

Please note that∫
RN

V(x)|un|t−2un ϕdx →
∫
RN

V(x)|uµ|t−2uµ ϕdx,

thus, we obtain

lim
n→∞

Gun(ϕ) = Guµ(ϕ) and lim
n→∞

G̃un(ϕ) = G̃uµ(ϕ) for all ϕ ∈ X.

Lemma 7. Let ( f1)− ( f3), and (VM1), (VM2), (VM3) hold. Then, there exists µ∗ > 0, for all
µ ≥ µ∗, J satisfies the (PS)cµ condition on X.

Proof. Let {un} ⊂ X be the (PS)cµ sequence for J , then there exists C > 0, such that
|〈J ′(un), un〉| ≤ C‖un‖X and |J (un)| ≤ C. From Lemma 5 it follows that {un} is bounded.
Thus, up to a subsequence (still denoted by itself), there exists uµ ∈ X and δµ ≥ 0,
ξµ ≥ 0, ζµ ≥ 0 such that

un ⇀ uµ in X ∩ Lq∗s
M

(
RN
)

,

un → uµ a.e. in RN ,

‖un‖V,p → ξµ, ‖un‖V,q → ζµ,
∥∥(un − uµ)

+
∥∥

Lq∗s
M (RN)

→ δµ,

|un|q
∗
s−2un ⇀

∣∣uµ

∣∣q∗s−2uµ in L(q∗s )
′

M

(
RN
)

.

(22)
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Notice that
‖un‖p

V,p + ‖un‖q
V,q → ξ

p
µ + ζ

q
µ := βµ ≥ 0.

Next, we prove that
lim

µ→+∞
βµ = 0. (23)

If there is a sequence λk → ∞ such that βλk → β > 0 as k→ ∞. Like (17), we have

cµk ≥
(

1
q
− 1

θ

)(
‖un‖p

V,p + ‖un‖q
V,q

)
.

When we use Lemma 4 and take k → ∞ into consideration on both sides of the
inequality above, there is a contradiction. So (23) is proved. It is easy to see that

lim
µ→+∞

ξµ = 0 and lim
µ→+∞

ζµ = 0.

Moreover, we can deduce that
∥∥uµ

∥∥
X ≤ lim

n→∞
‖un‖X = ξµ + ζµ since un ⇀ uµ in X.

From ‖un‖Lq∗s
M (RN)

≤ Sq∗s ‖un‖V,q, we obtain

lim
µ→∞

∥∥uµ

∥∥
Lq∗s

M (RN)
= lim

µ→∞

∥∥uµ

∥∥
X = 0. (24)

Combining Lemma 6 and (22), we obtain

on(1) =
〈
J ′(un)−J ′

(
uµ

)
, un − uµ

〉
= Gun

(
un − uµ

)
+ G̃un

(
un − uµ

)
− Guµ

(
un − uµ

)
− G̃uµ

(
un − uµ

)
−µ

∫
RN

M(x)
[

f (x, un)− f
(
x, uµ

)](
un − uµ

)
dx (25)

−
∫
RN

M(x)
(∣∣u+

n
∣∣q∗s−1 −

∣∣∣u+
µ

∣∣∣q∗s−1
)(

un − uµ

)
dx

= Gun

(
un − uµ

)
− Guµ

(
un − uµ

)
+ G̃un

(
un − uµ

)
− G̃uµ

(
un − uµ

)
−
∥∥(un − uµ)

+
∥∥q∗s

Lq∗s
M (RN)

+ on(1).

Here, we make use of the following estimations:

(i) lim
n→∞

∫
RN

M(x)|un|q
∗
s−2unuµdx =

∫
RN

M(x)
∣∣uµ

∣∣q∗s dx since |un|q
∗
s−2un ⇀

∣∣uµ

∣∣q∗s−2uµ

in L(q∗s )
′

M
(
RN);

(ii) lim
n→∞

∫
RN

M(x)
∣∣uµ

∣∣q∗s−2uµundx =
∫
RN

M(x)
∣∣uµ

∣∣q∗s dx, since un ⇀ uµ in Lq∗s
M
(
RN)

and
∣∣uµ

∣∣q∗s−2uµ ∈ L(q∗s )
′

M
(
RN);

(iii) By the Brézis-Lieb Lemma, we obtain:∥∥un − uµ

∥∥q∗s
Lq∗s

M (RN)
= ‖un‖q∗s

Lq∗s
M (RN)

−
∥∥uµ

∥∥q∗s
Lq∗s

M (RN)
+ o(1),∥∥un − uµ

∥∥p
V,p = ‖un‖p

V,p − ‖uµ‖p
V,p + o(1),∥∥un − uµ

∥∥q
V,q = ‖un‖q

V,q − ‖uµ‖q
V,q + o(1).

(iv) lim
n→∞

∫
RN

M(x)
[

f (x, un)− f
(
x, uµ

)](
un − uµ

)
dx = 0.

Now, we show (iv). It follows from the Hölder’s inequality that∣∣∣∣∫RN
M(x) f (x, un)

(
un − uµ

)
dx
∣∣∣∣
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≤ σ
∫
RN

M(x)|un|p−1∣∣un − uµ

∣∣dx + Cσ

∫
RN

M(x)|un|ν−1∣∣un − uµ

∣∣dx

≤ σ

(∫
RN

M(x)|un|pdx
) p−1

p
(∫

RN
M(x)

∣∣un − uµ

∣∣pdx
) 1

p

+Cσ

(∫
RN

M(x)|un|νdx
) ν−1

ν
(∫

RN
M(x)

∣∣un − uµ

∣∣νdx
) 1

ν

. (26)

By means of (VM3), we have∫
RN

M(x)|un|pdx ≤
∣∣∣∣M

V

∣∣∣∣
∞

∫
RN

V(x)|un|pdx < ∞. (27)

Since ν ∈ (q, q∗s ), from (3), we have

‖un‖Lν
M(RN) ≤ Sν‖un‖V,q ≤ Sν‖un‖X < ∞. (28)

According to Lemma 1, the embedding Es,q ↪→ Lν
M
(
RN) is compact. Then we have

lim
n→∞

∫
RN

M(x)
∣∣un − uµ

∣∣νdx = 0. (29)

Next, we claim that

lim
n→∞

∫
RN

M(x)
∣∣un − uµ

∣∣pdx = 0. (30)

By (VM3), we obtain∫
RN

M(x)
∣∣un − uµ

∣∣pdx ≤
∣∣∣∣M

V

∣∣∣∣
∞

∫
RN

V(x)|un − uµ|pdx < ∞,

that is to say, un − uµ ∈ Lp
M(RN), then for any ε > 0, there exists R0 > 0, such that∫

RN\BR

M(x)
∣∣un − uµ

∣∣pdx < ε for all R ≥ R0. (31)

According to the embedding theorem on bounded domain BR, up to a subsequence,
we may assume that un → uµ in Lp(BR). Since M(x) ∈ L∞(RN), we have∫

BR

M(x)
∣∣un − uµ

∣∣pdx ≤ |M(x)|∞
∫

BR

∣∣un − uµ

∣∣pdx = 0,

then, ∣∣∣∣∫RN
M(x)

∣∣un − uµ

∣∣pdx
∣∣∣∣

≤
∣∣∣∣∫BR

M(x)
∣∣un − uµ

∣∣pdx
∣∣∣∣+ ∣∣∣∣∫RN\BR

M(x)
∣∣un − uµ

∣∣pdx
∣∣∣∣→ 0. (32)

Therefore, we obtain (30). According to (26)–(30), we obtain

lim
n→∞

∫
RN

M(x) f (x, un)
(
un − uµ

)
dx = 0.

Similarly,

lim
n→∞

∫
RN

M(x) f
(
x, uµ

)(
un − uµ

)
dx = 0.
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Hence, (iv) follows. From (25) it follows that

lim
n→∞

Gun

(
un − uµ

)
− Guµ

(
un − uµ

)
+ G̃un

(
un − uµ

)
− G̃uµ

(
un − uµ

)
= lim

n→∞

∥∥(un − uµ)
+
∥∥q∗s

Lq∗s
M (RN)

. (33)

Using the Brézis-Lieb Lemma and (22), we obtain

cµ + on(1) = J (un)−
1
θ

〈
J ′(un), un

〉
≥

(
1
θ
− 1

q∗s

)∥∥u+
n
∥∥q∗s

Lq∗s
M (RN)

=

(
1
θ
− 1

q∗s

)(
δ

q∗s
µ +

∥∥∥u+
µ

∥∥∥q∗s

Lq∗s
M (RN)

)
+ o(1). (34)

Combining Lemma 4 and (24), we have

lim
µ→+∞

δµ = 0. (35)

Next, we divide the proof into two cases.
First, we study the case q ≥ 2. Using the well-known Simon inequality:

|a− b|t ≤ ct

(
|a|t−2a− |b|t−2b

)
(a− b), for t ≥ 2,

we obtain

Gun

(
un − uµ

)
− Guµ

(
un − uµ

)
+ G̃un

(
un − uµ

)
− G̃uµ

(
un − uµ

)
≥ c−1

q ‖un − uµ‖q
V,q ≥ c−1

q S−q
q∗s
‖un − uµ‖q

Lq∗s
M (RN)

≥ c−1
q S−q

q∗s
‖(un − uµ)

+‖q

Lq∗s
M (RN)

. (36)

Combining (22), (33), and (36), we obtain

δ
q∗s
µ ≥ S−q

q∗s
c−1

q δ
q
µ. (37)

If δµk > 0 for some sequence {µk} : µk → +∞ as k → ∞, then from (33), and
note that Guµ

(
un − uµ

)
→ 0, G̃uµ

(
un − uµ

)
→ 0 as n → ∞, Gun(un) = ‖un‖p

V,p → ξ
p
µ,

G̃un(un) = ‖un‖q
V,q → ζ

q
µ as n→ ∞ and Gun

(
uµ

)
→ Guµ

(
uµ

)
≥ 0, G̃un

(
uµ

)
→ Guµ

(
uµ

)
≥ 0,

we have
βµk − Guµk

(
uµk

)
− G̃uµk

(
uµk

)
= δ

q∗s
µk . (38)

By (37) and (38), we obtain(
δ

q∗s
µk

)(q∗s−q)/q∗s
=
(

βµk − Guµk

(
uµk

)
− G̃uµk

(
uµk

))(q∗s−q)/q∗s ≥ S−q
q∗s

c−1
q .

This implies that

β
(q∗s−q)/q∗s
µk ≥

(
βµk − Guµk

(
uµk

)
− G̃uµk

(
uµk

))(q∗s−q)/q∗s ≥ S−q
q∗s

c−1
q .

Thus, we obtain

β
q∗s−q
µk ≥

(
S−q

q∗s
c−1

q

)q∗s
. (39)
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Combining (23) and (39), we obtain a contradiction. So δµ = 0 for some µ∗ > 0 if
µ ≥ µ∗. That is

lim
n→∞

∥∥(un − uµ)
+
∥∥q∗s

Lq∗s
M (RN)

= 0 (40)

for all µ ≥ µ∗. Appealing to the Brézis-Lieb Lemma and combining (25), (33), (40),
we obtain

lim
n→∞

(∥∥un − uµ

∥∥p
V,p +

∥∥un − uµ

∥∥q
V,q

)
= 0.

Thus,
lim

n→∞

∥∥un − uµ

∥∥
X = 0,

which implies un → uµ in X for all µ ≥ µ∗.
For the case 1 < q < 2. Since un is bounded in X and un ⇀ u in X, then ‖uµ‖X ≤ L

for some L > 0. Thus

‖un − u‖q
V,q (41)

≤
[
un − uµ

]q
s,q +

∣∣un − uµ

∣∣q
q,V

=
∫∫

R2N

∣∣un(x)− un(y)−
(
uµ(x)− uµ(y)

)∣∣q|x− y|−(N+sq)dxdy

+
∫
RN

V(x)
∣∣un − uµ

∣∣qdx. (42)

The Simon’s inequality:

|a− b|t ≤ Ct

[(
|a|t−2a− |b|t−2b

)
(a− b)

]t/2(
|a|t + |b|t

)(2−t)/2, for 1 < t < 2,

implies that

[
un − uµ

]q
s,q ≤ Cq

∫∫
R2N

[(
|un(x)− un(y)|q−2(un(x)− un(y))

−
∣∣uµ(x)− uµ(y)

∣∣q−2(uµ(x)− uµ(y)
))

(un(x)− un(y)

−uµ(x) + uµ(y)
)
|x− y|−(N+sq)

]q/2

×
[(
|un(x)− un(y)|q +

∣∣uµ(x)− uµ(y)
∣∣q)|x− y|−(N+sq)

](2−q)/2
dxdy

≤ Cq

( ∫∫
R2N

[
|un(x)− un(y)|q−2(un(x)− un(y))

−
∣∣uµ(x)− uµ(y)

∣∣q−2
(uµ(x)

−uµ(y))
](

un(x)− un(y)− uµ(x) + uµ(y)
)
|x− y|−(N+sq)dxdy

)q/2

×
(∫∫

R2N

(
|un(x)− un(y)|q

+
∣∣uµ(x)− uµ(y)

∣∣q)|x− y|−(N+sq)dxdy
)(2−q)/2

. (43)

Similarly, we have∣∣un − uµ

∣∣q
q,V (44)

=
∫
RN

V(x)
∣∣un(x)− uµ(x)

∣∣qdx
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≤ Cq

∫
RN

[
V(x)

(
|un(x)|q−2un(x)−

∣∣uµ(x)
∣∣q−2uµ(x)

)(
un(x)− uµ(x)

)]q/2

×
[
V(x)

(
|un(x)|q +

∣∣uµ(x)
∣∣q)](2−q)/2

dx

≤
(∫

RN

[
V(x)

(
|un(x)|q−2un(x)−

∣∣uµ(x)
∣∣q−2uµ(x)

)](
un(x)− uµ(x)

)
dx
)q/2

×
(∫

RN
V(x)

(
|un(x)|q +

∣∣uµ(x)
∣∣q)dx

)(2−q)/2
. (45)

By (41)–(44), we get

‖un − u‖q
V,q ≤ 2Cq(2L)(2−q)/2

(
G̃un

(
un − uµ

)
− G̃uµ

(
un − uµ

))q/2
.

It implies that

G̃un

(
un − uµ

)
− G̃uµ

(
un − uµ

)
≥
(
(2L)(q−2)/2

2Cq

)2/q∥∥un − uµ

∥∥2
V,q

≥ S−2
q∗s

(
(2L)(q−2)/2

2Cq

)2/q∥∥un − uµ

∥∥2
Lq∗s

M (RN)

≥ S−2
q∗s

(
(2L)(q−2)/2

2Cq

)2/q∥∥(un − uµ)
+
∥∥2

Lq∗s
M (RN)

.

(46)

Combining (22), (33) and (46), we obtain

δ
q∗s
µ ≥ S−2

q∗s

(
(2L)(q−2)/2

2Cq

)2/q

δ2
µ. (47)

If δµk > 0 for some sequence {µk} : µk → +∞ as k → ∞, then from (33), note that
Guµ

(
un − uµ

)
→ 0, G̃uµ

(
un − uµ

)
→ 0 as n → ∞, Gun(un) = ‖un‖p

V,p → ξ
p
µ,

G̃un(un) = ‖un‖q
V,q → ζ

q
µ as n→ ∞ and Gun

(
uµ

)
→ Guµ

(
uµ

)
≥ 0, G̃un

(
uµ

)
→ Guµ

(
uµ

)
≥ 0,

we have
βµk − Guµk

(
uµk

)
− G̃uµk

(
uµk

)
= δ

q∗s
µk . (48)

For the similar case q ≥ 2, from (47) and (48), we obtain

β
q∗s−2
µk ≥

S−q
q∗s

2Cq
(2L)(q−2)/2

2q∗s /q

. (49)

It contradicts (23). Then, δµ = 0 for µ∗ > 0 if µ ≥ µ∗.

4. Proof of Theorem 1

Proof. From Lemmas 3–5, Lemma 7 and the mountain pass theorem, there exists µ∗ > 0
such that for all µ ≥ µ∗, problem (1) possesses a solution uµ ∈ X. Indeed, J

(
uµ

)
= cµ and

J ′
(
uµ

)
= 0 in X∗.

Let u−µ := min{uµ, 0}. Since

|x− y|t−2(x− y)
(
x− − y−

)
≥
∣∣x− − y−

∣∣t, x, y ∈ R and t > 1
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and
〈
J ′
(
uµ

)
, u−µ

〉
= 0, we obtain

∥∥∥u−µ
∥∥∥p

V,p
+
∥∥∥u−µ

∥∥∥q

V,q
≤
∫∫

R6

∣∣uµ(x)− uµ(y)
∣∣p−2(uµ(x)− uµ(y)

)(
u−µ (x)− u−µ (y)

)
|x− y|N+sp dxdy

+
∫∫

R6

∣∣uµ(x)− uµ(y)
∣∣q−2(uµ(x)− uµ(y)

)(
u−µ (x)− u−µ (y)

)
|x− y|N+sq dxdy

+
∫
RN

V(x)
∣∣uµ

∣∣p−2uµu−µ dx +
∫
RN

V(x)
∣∣uµ

∣∣q−2uµu−µ dx

− µ
∫
RN

M(x) f
(
x, uµ

)
u−µ dx−

∫
RN

M(x)
∣∣∣u+

µ

∣∣∣q∗s−1
u−µ dx

=0,

which implies that u−µ = 0. So uµ ≥ 0 in RN and uµ 6≡ 0.
Next, we claim that ‖uµ‖X → 0 as µ→ +∞. From J

(
uµ

)
= cµ and J ′

(
uµ

)
= 0 in X∗,

it follows that
cµ = J

(
uµ

)
− 1

θ

〈
J ′
(
uµ

)
, uµ

〉
≥
(

1
q
− 1

θ

)(∥∥uµ

∥∥p
V,p +

∥∥uµ

∥∥q
V,q

)
.

(50)

If lim
µ→+∞

(∥∥uµ

∥∥p
V,p +

∥∥uµ

∥∥q
V,q

)
= a0 > 0, let µ→ +∞ in both sides of (50), we deduce

0 ≥
(

1
q
− 1

θ

)
a0 > 0.

This is a contradiction. Hence, we obtain ‖uµ‖X → 0 as µ → +∞. This ends
the proof.

5. Proof of Theorem 2

Similar to the proof of Theorem 1, we can obtain the proof of Theorem 2. In fact, we
take into account the energy functional

Jm(u) =
1
p
‖u‖p

V,p +
1
q
‖u‖q

V,q − µ
∫
RN

M(x)F(x, u)dx− 1
m

∫
RN

M(x)|u|m dx

instead of J (u). Now, we proof lemmas 3–5 and lemma 7 under corresponding conditions
for Jm(u).

Lemma 8. Let ( f1)
′, ( f3) for θ ∈ (q, m), ( f4) and (VM1), (VM2), (VM4) hold. Then, for all

µ > 0, the following properties are fulfilled for the functional Jm(u):

(i) there exist positive constants ρ0, δ0, such that Jm(u) ≥ δ0 for all u ∈ X with ‖u‖X = ρ0.
(ii) there exists u0 ∈ X with ‖u0‖X > ρ0 such that Jm(u0) < 0, where ρ0 > 0 is given in (i).

Proof. (i) Using ( f1)
′, we have

Jm(u) ≥
1
p
‖u‖p

V,p +
1
q
‖u‖q

V,q −
µC + 1

m

∫
RN

M(x)|u|mdx.
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Choosing ‖u‖X = ρ0 small, applying Lemma 1, we get

Jm(u) ≥
1
q

(
‖u‖p

V,p + ‖u‖
q
V,q

)
− (µC + 1)Sm

m
m

‖u‖m
V,q

≥ 1
q

(
‖u‖q

V,p + ‖u‖
q
V,q

)
− (µC + 1)Sm

m
m

‖u‖m
X

≥ 1
2q−1q

‖u‖q
X −

(µC + 1)Sm
m

m
‖u‖m

X .

Since 1 < q < m, (i) is fulfilled.
(ii) For any u ∈ C∞

0
(
RN) with u ≥ 0 in RN , u 6≡ 0, we obtain

Jm(tu) ≤
tp

p
‖u‖p

V,p +
tq

q
‖u‖q

V,q −
tm

m

∫
supp u

M(x)|u+|mdx

for any t > 0. Since p < q < m, we obtain Jm(tu)→ −∞ as t→ +∞. Therefore, property
(ii) also holds true.

Fix µ > 0 and set
cµ = inf

χ∈Γ
max

τ∈[0,1]
Jm(χ(τ)), (51)

where
Γ = {χ ∈ C([0, 1], X) : χ(0) = 0,Jm(χ(1)) < 0}.

Undoubtedly, cµ > 0 according to Lemma 8. Furthermore, we also obtain the
following lemma:

Lemma 9. Let ( f1)
′, ( f3) for θ ∈ (q, m), ( f4), and (VM1), (VM2), (VM4) hold. Then, cµ → 0

as µ→ ∞.

Proof. From (ii) in Lemma 8, we obtain Jm(tu0) = −∞ as t → +∞, then, there exists
tµ > 0 such that Jm

(
tµu0

)
= max

t≥0
J (tu0). Hence,

〈
J ′m
(
tµu0

)
, tµu0

〉
= 0. It implies that

∥∥tµu0
∥∥p

V,p +
∥∥tµu0

∥∥q
V,q = µtµ

∫
RN

M(x) f
(
x, tµu0

)
u0dx + tm

µ

∫
RN

M(x)|u+
0 |

mdx. (52)

We now prove the boundedness of the sequence
{

tµ

}
. From (52) and ( f3), we have∥∥tµu0

∥∥p
X +

∥∥tµu0
∥∥q

X ≥
∥∥tµu0

∥∥p
V,p +

∥∥tµu0
∥∥q

V,q

= µtµ

∫
RN

M(x) f
(
x, tµu0

)
vdx + tm

µ

∫
RN

M(x)|u+
0 |

mdx

≥ tm
µ

∫
RN

M(x)|u+
0 |

mdx.

(53)

Due to p < q < m and 0 <
∫
RN

M(x)|u+
0 |

mdx < +∞, we can infer that
{

tµ

}
is

bounded. Fix any sequence {µn} such that µn → ∞. Then, up to a subsequence, there
exists t0 ≥ 0 such that tµn → t0. We claim that t0 = 0. If t0 > 0, the dominated convergence
theorem leads to

µntµn

∫
RN

M(x) f
(
x, tµn u0

)
u0dx + tm

µn

∫
RN

M(x)|u+
0 |

mdx → +∞ as n→ ∞,

which contradicts (53). Hence, t0 = 0. That is to say, tµ → 0 as µ→ ∞. Put χ̄(t) = tu0, we
have χ̄ ∈ Γ, and thus

0 < cµ ≤ max
t≥0
Jm(χ̄(t)) = Jm

(
tµu0

)
≤ 1

p
∥∥tµu0

∥∥p
V,p +

1
q
∥∥tµu0

∥∥q
V,q.
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Letting µ→ +∞, we obtain cµ → 0.

Lemma 10. For each µ > 0. The (PS) sequence {un} ⊂ X for Jm at the level c ∈ R is bounded.

Proof. By a simple computation, for n ∈ N large enough we observe that

C(1 + ‖un‖X) ≥ Jm(un)−
1
θ

〈
J ′m(un), un

〉
=

(
1
p
− 1

θ

)
‖un‖p

V,p +

(
1
q
− 1

θ

)
‖un‖q

V,q

+
µ

θ

∫
RN

M(x)( f (x, un)un − θF(x, un))dx (54)

+

(
1
θ
− 1

m

) ∫
RN

M(x)|u+
n |mdx

≥
(

1
q
− 1

θ

)(
‖un‖p

V,p + ‖un‖q
V,q

)
,

thanks to µ > 0, p < q < θ, ( f3) for θ ∈ (q, m) and ( f4). With this in mind, we deduce
that the sequence {un} ⊂ X is bounded, and we omit the details here. Thus, the proof
is completed.

Lemma 11. Let ( f1)
′, ( f3) for θ ∈ (q, m), ( f4), and (VM1), (VM2), (VM4) hold. Then, there

exists µ∗ > 0, for all µ ≥ µ∗, Jm satisfies the (PS)cµ condition on X.

Proof. Let {un} ⊂ X be the (PS)cµ sequence for Jm, then there exists C > 0, such that
|〈J ′m(un), un〉| ≤ C‖un‖X and |Jm(un)| ≤ C. From Lemma 10 it follows that {un} is
bounded. Thus, up to a subsequence (still denoted by itself), there exists uµ ∈ X and
δµ ≥ 0, ξµ ≥ 0, ζµ ≥ 0 such that

un ⇀ uµ in X ∩ Lm
M

(
RN
)

,

un → uµ a.e. in RN ,

‖un‖V,p → ξµ, ‖un‖V,q → ζµ,
∥∥(un − uµ)

+
∥∥

Lm
M(RN) → δµ,

|un|m−2un ⇀
∣∣uµ

∣∣m−2uµ in L(m)′

M

(
RN
)

.

(55)

Notice that
‖un‖p

V,p + ‖un‖q
V,q → ξ

p
µ + ζ

q
µ := βµ ≥ 0.

Next, we prove that
lim

µ→+∞
βµ = 0. (56)

If there is a sequence λk → ∞ such that βλk → β > 0 as k→ ∞. Like (54), we have

cµk ≥
(

1
q
− 1

θ

)(
‖un‖p

V,p + ‖un‖q
V,q

)
.

When we use Lemma 9 and take k → ∞ into consideration on both sides of the
inequality above, there is a contradiction. So (56) is proved. It is easy to see that

lim
µ→+∞

ξµ = 0 and lim
µ→+∞

ζµ = 0.
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Moreover, we can deduce that
∥∥uµ

∥∥
X ≤ lim

n→∞
‖un‖X = ξµ + ζµ since un ⇀ uµ in X.

From ‖un‖Lm
M(RN) ≤ Sm‖un‖V,q, we obtain

lim
µ→∞

∥∥uµ

∥∥
Lm

M(RN) = lim
µ→∞

∥∥uµ

∥∥
X = 0. (57)

Like (25), we have

on(1) =
〈
J ′m(un)−J ′m

(
uµ

)
, un − uµ

〉
= Gun

(
un − uµ

)
+ G̃un

(
un − uµ

)
− Guµ

(
un − uµ

)
− G̃uµ

(
un − uµ

)
−µ

∫
RN

M(x)
[

f (x, un)− f
(

x, uµ

)](
un − uµ

)
dx (58)

−
∫
RN

M(x)
(∣∣u+

n
∣∣m−1 −

∣∣∣u+
µ

∣∣∣m−1
)(

un − uµ

)
dx

= Gun

(
un − uµ

)
− Guµ

(
un − uµ

)
+ G̃un

(
un − uµ

)
− G̃uµ

(
un − uµ

)
−
∥∥(un − uµ)

+
∥∥m

Lm
M(RN) + on(1).

where G and G̃ are defined by (18) and (19), respectively. Here, we also make use of the
following estimations:

(i) lim
n→∞

∫
RN

M(x)|un|m−2unuµdx =
∫
RN

M(x)
∣∣uµ

∣∣mdx since |un|m−2un ⇀
∣∣uµ

∣∣m−2uµ

in L(m)′

M
(
RN);

(ii) lim
n→∞

∫
RN

M(x)
∣∣uµ

∣∣m−2uµundx =
∫
RN

M(x)
∣∣uµ

∣∣mdx, since un ⇀ uµ in Lm
M
(
RN)

and
∣∣uµ

∣∣m−2uµ ∈ L(m)′

M
(
RN);

(iii) By the Brézis-Lieb Lemma, we obtain:∥∥un − uµ

∥∥m
Lm

M(RN) = ‖un‖m
Lm

M(RN) −
∥∥uµ

∥∥m
Lm

M(RN) + o(1),∥∥un − uµ

∥∥p
V,p = ‖un‖p

V,p − ‖uµ‖p
V,p + o(1),∥∥un − uµ

∥∥q
V,q = ‖un‖q

V,q − ‖uµ‖q
V,q + o(1).

(iv) lim
n→∞

∫
RN

M(x)
[

f (x, un)− f
(
x, uµ

)](
un − uµ

)
dx = 0.

Now, we show (iv). It follows from the Hölder’s inequality that∣∣∣∣∫RN
M(x) f (x, un)

(
un − uµ

)
dx
∣∣∣∣

≤ C
∫
RN

M(x)|un|m−1∣∣un − uµ

∣∣dx (59)

≤ C
(∫

RN
M(x)|un|mdx

)m−1
m
(∫

RN
M(x)

∣∣un − uµ

∣∣mdx
) 1

m

From (4), we have

‖un‖Lm
M(RN) ≤ Sm‖un‖V,q ≤ Sm‖un‖X < ∞. (60)

According to Lemma 1, the embedding Es,q ↪→ Lm
M
(
RN) is compact. Then we have

lim
n→∞

∫
RN

M(x)
∣∣un − uµ

∣∣mdx = 0. (61)
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According to (59)–(61), we obtain

lim
n→∞

∫
RN

M(x) f (x, un)
(
un − uµ

)
dx = 0.

Similarly,

lim
n→∞

∫
RN

M(x) f
(
x, uµ

)(
un − uµ

)
dx = 0.

Hence, (iv) follows. From (58) it follows that

lim
n→∞

Gun

(
un − uµ

)
− Guµ

(
un − uµ

)
+ G̃un

(
un − uµ

)
− G̃uµ

(
un − uµ

)
= lim

n→∞

∥∥(un − uµ)
+
∥∥m

Lm
M(RN). (62)

Using the Brézis-Lieb Lemma and (55), we obtain

cµ + on(1) = Jm(un)−
1
θ

〈
J ′m(un), un

〉
≥

(
1
θ
− 1

m

)∥∥u+
n
∥∥m

Lm
M(RN)

=

(
1
θ
− 1

m

)(
δm

µ +
∥∥∥u+

µ

∥∥∥m

Lm
M(RN)

)
+ o(1). (63)

Combining Lemma 9 and (57), we have

lim
µ→+∞

δµ = 0. (64)

As the proof of Lemma 7, we may deduce that there exists µ∗ > 0 such that, for all
µ ≥ µ∗, un → uµ in X.

Proof of Theorem 2. From Lemmas 8–11 and the mountain pass theorem, there exists
µ∗ > 0 such that for all µ ≥ µ∗, problem (2) possesses a solution uµ ∈ X. Indeed,
Jm
(
uµ

)
= cµ and J ′m

(
uµ

)
= 0 in X∗.

Let u−µ := min{uµ, 0}. Since

|x− y|t−2(x− y)
(
x− − y−

)
≥
∣∣x− − y−

∣∣t, x, y ∈ R and t > 1

and
〈
J ′
(
uµ

)
, u−µ

〉
= 0, we obtain

∥∥∥u−µ
∥∥∥p

V,p
+
∥∥∥u−µ

∥∥∥q

V,q
≤
∫∫

R6

∣∣uµ(x)− uµ(y)
∣∣p−2(uµ(x)− uµ(y)

)(
u−µ (x)− u−µ (y)

)
|x− y|N+sp dxdy

+
∫∫

R6

∣∣uµ(x)− uµ(y)
∣∣q−2(uµ(x)− uµ(y)

)(
u−µ (x)− u−µ (y)

)
|x− y|N+sq dxdy

+
∫
RN

V(x)
∣∣uµ

∣∣p−2uµu−µ dx +
∫
RN

V(x)
∣∣uµ

∣∣q−2uµu−µ dx

− µ
∫
RN

M(x) f
(
x, uµ

)
u−µ dx−

∫
RN

M(x)
∣∣∣u+

µ

∣∣∣m−1
u−µ dx

=0,

which implies that u−µ = 0. So uµ ≥ 0 in RN and uµ 6≡ 0.
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Next, we claim that ‖uµ‖X → 0 as µ → +∞. From Jm
(
uµ

)
= cµ and J ′m

(
uµ

)
= 0 in

X∗, it follows that

cµ = Jm
(
uµ

)
− 1

θ

〈
J ′m
(
uµ

)
, uµ

〉
≥
(

1
q
− 1

θ

)(∥∥uµ

∥∥p
V,p +

∥∥uµ

∥∥q
V,q

)
.

(65)

If lim
µ→+∞

(∥∥uµ

∥∥p
V,p +

∥∥uµ

∥∥q
V,q

)
= a0 > 0, let µ→ +∞ in both sides of (65), we deduce

0 ≥
(

1
q
− 1

θ

)
a0 > 0.

This is a contradiction. Hence, we obtain ‖uµ‖X → 0 as µ→ +∞. This ends the proof.
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