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Abstract: In this study, we applied the Laplace residual power series method (LRPSM) to expand the
solution of the nonlinear time-fractional coupled Hirota–Satsuma and KdV equations in the form
of a rapidly convergent series while considering Caputo fractional derivatives. We demonstrate the
applicability and accuracy of the proposed method with some examples. The numerical results and
the graphical representations reveal that the proposed method performs extremely well in terms of
efficiency and simplicity. Therefore, it can be utilized to solve more problems in the field of non-linear
fractional differential equations. To show the validity of the proposed method, we present a numerical
application, compute two kinds of errors, and sketch figures of the obtained results.
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1. Introduction

Fractional differential equations are a generalized form of ordinary and partial differen-
tial equations [1–4]. Recently, various studies in engineering and sciences have confirmed
that the dynamics of numerous systems in nature can be described more precisely via
nonlinear fractional-order differential equations, for instance, in biology, physics, engineer-
ing, chaos theory, diffusion, electromagnetism, etc. [5–11]. Therefore, several approaches
have been established to acquire approximate and analytic solutions of fractional differen-
tial equations, including the variational iteration method [12], the differential transform
method [13–15], Laplace transforms [16,17], the fractional sub-equation method [18,19],
the homotopy perturbation method [20,21], the exponential rational function method [22],
the exponential function method [23], the extended trial equation method [24], the ARA
residual power series method [25], the double ARA–Sumudu transform [26], and the
reproducing kernel method [27], amongst others.

The power series method [28] is one of the most popular and convenient methods used
to establish analytic solutions for linear classes of differential equations. Unfortunately,
obtaining a closed-form solution for the nonlinear case is very difficult or impossible.
Therefore, the residual power series method is introduced to overcome the aforementioned
difficulty of the power series method. The residual power series method [29,30] has been
employed to gain the analytical solution of various linear and nonlinear models in different
engineering and science areas.

This article develops the residual power series method by employing the Laplace
transform (LT) [31] in its methodology. This promotion is known as the Laplace residual
power series method (LRPSM). In contrast with other power series methods, LRPSM
requires less time and simpler computation but has superior accuracy in obtaining the
solution. Moreover, the LRPSM needs no differentiation or linearization: it depends only
on applying the LT and taking the limit at infinity. Due to these advantages, various
researchers have used it to solve nonlinear fractional problems [29,30,32–34].
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In this study, the LRPSM is introduced to solve the coupled Hirota–Satsuma and KdV
(HSC–KdV) equations of the form:

Dα
τδ =

1
2

δξξξ − 3δδξ + 3(φψ)ξ ,(1)Dα
τφ = −φξξξ + 3δφξ ,(2)Dα

τψ = −ψξξξ + 3δψξ ,

where δ(ξ, τ), φ(ξ, τ), and ψ(ξ, τ) are three unknown functions of the independent vari-
ables ξ and τ, and Dα

τ is the time Caputo fractional operator with 0 < α ≤ 1.
The HSC–KdV equations are of great significance due to their numerous applications

in diverse areas. For instance, the HSC–KdV equations are used to represent the dispersive
long waves in shallow water which are employed in many implementations in fluid
mechanics, including shallow-water undulations with weakly non-linear retrieve vigor,
acoustic undulations on a crystal lattice, long inner undulations in a density-stratified
ocean, and ion-acoustic undulations in a plasma [35].

The novelty of this work arises in the chosen model, which is difficult to solve by
traditional numerical methods: some authors have solved this system numerically and
obtained only the first two or three terms of the approximate solution, but not a general
term of the series solution. In contrast, the LRPSM allows us to obtain many terms of
the series solution easily, using Mathematica software. LRPS is a powerful technique for
solving fractional models, and it presents the solution in a form of a rapidly convergent
series with less effort and computation than other numerical methods. It also requires no
differentiation or linearization, only computing the limit at infinity.

The description of this article is as follows: we start in Section 2 by presenting some
fundamental concepts and preliminary results from the fractional calculus theory. In
Section 3, we assemble the algorithm of LRPSM for obtaining the solution of the HSC–KdV.
Section 4 presents some HSC–KdV problems to demonstrate the simplicity, capability, and
potentiality of LRPSM, and Section 5 concludes the paper.

2. Basic Preliminaries

This section introduces some basic notations, definitions, and theorems related to
fractional calculus which are utilized throughout this article.

2.1. Fractional Power Series

Here, we present some definitions of the Caputo fractional derivative and Laplace
transform. We also introduce some theorems related to fractional power series representations.

Definition 1. The Caputo derivative of fractional order α ∈ R+ of the function x(τ) is given by:

Dαx(τ) =

 1
Γ(µ−α)

τ∫
0

x(µ)(t)
(τ−t)α+1−µ dt, µ− 1 < α < µ,

x(µ)(τ) α = µ, µ ∈ N.

Definition 2 ([36]). The time Caputo derivative of fractional order α ∈ R+ of the function x(ξ, τ)
is given by:

Dα
τ x(ξ, τ) =

∂αx(ξ, τ)

∂τα
=


1

Γ(µ−α)

τ∫
0
(τ − t)µ−α−1 ∂µx(ξ,t)

∂tµ ∂t, µ− 1 < α < µ,

∂µx(ξ,τ)
∂τµ α = µ, µ ∈ N.

Definition 3 ([31]). The Laplace transform of a function x(ξ, τ) regarding the variable τ is
defined as:

L[x(ξ, τ)] = X(ξ, s) =
∞∫

0

x(ξ, τ)e−sτdτ, s > 0,
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and the inverse LT is given by:

x(ξ, τ) = L−1[X(ξ, s)] =
c+i∞∫

c−i∞

X(ξ, s)estds, c = Re(s) > 0.

Further, if L[x1(ξ, τ)] = X1(ξ, s) and L[x2(ξ, τ)] = X2(ξ, s) and considering γ1 and
γ2 are two real constants, we have the following essential properties of Laplace transform,
and its inverse [29,30]:

• L[γ1 x1(ξ, τ) + γ2 x2(ξ, τ)] = γ1X1(ξ, s) + γ2X2(ξ, s).
• L−1[γ1 X1(ξ, s) + γ2 X2(ξ, s)] = γ1x1(ξ, τ) + γ2x2(ξ, τ).

• L
[
τϑ
]
= Γ(ϑ+1)

sϑ+1 , ϑ > −1.

• L[Dα
τ x(ξ, τ)] = sαX(ξ, s)−∑

µ−1
l=0 sα−l−1Dl

τx(ξ, τ), µ− 1 < α < µ, µ ∈ N.

Definition 4 ([29,30]). A fractional power series of two variables around τ0 = 0 is expressed as:

∞

∑
m=0

am(ξ)τ
mα = a0(ξ) + a1(ξ)τ

α + · · · , 0 ≤ µ− 1 < α < µ, τ < 0.

Theorem 1. Suppose that a function x has a FPS expansion at τ0 = 0 of the form:

x(ξ, τ) =
∞

∑
m=0

am(ξ)τ
mα, 0 ≤ τ < T, (1)

where T is the radius of convergence of the fractional power series. If Dα
τ x(ξ, τ) is continuous on

I × [0, R], then the coefficients am(ξ) can be written as:

am(ξ) =
Dmα

τ x(ξ, 0)
Γ(mα + 1)

, m = 0, 1, 2, . . . ,

where Dmα
τ = Dα

τ · Dα
τ . . . Dα

τ (m-times). For the proof, refer to [37].

Using Theorem 1, the fractional power series expansion of the x(ξ, τ) around τ = 0 is
given by:

x(ξ, τ) =
∞

∑
m=0

Dmα
τ x(ξ, 0)

Γ(mα + 1)
τmα, 0 ≤ µ− 1 < α < µ, ξ ∈ I, 0 ≤ τ < T.

2.2. Convergence Analysis of LRPSM

This section covers the conditions of convergence for the new fractional power series
in the Laplace space. It is worth mentioning here that the Laplace residual power series
approach requires the same conditions of convergence as the usual Taylor’s series.

Theorem 2 ([30]). If the function X(ξ, s) = L[x(ξ, τ)] has the fractional power series:

X(ξ, s) =
∞

∑
m=0

am(ξ)

smα+1 , 0 < α ≤ 1, s > 0. (2)

then am(ξ) = Dmα
τ x(ξ, 0), where Dmα

τ = Dα
τ · Dα

τ . . . Dα
τ (m-times). Moreover, the inverse LT of

(2) is defined by:

x(ξ, τ) =
∞

∑
m=0

Dmα
τ x(ξ, 0)

Γ(mα + 1)
τmα, 0 < α ≤ 1, τ ≥ 0.
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Theorem 3 ([30]). Suppose that: ∣∣∣sL[D(m+1)α
τ x(ξ, τ)

]∣∣∣ ≤ H

for δ1 < s ≤ δ2 and ξ ∈ I , where H = H(ξ) and 0 < α ≤ 1. Then, the remainder Rm(ξ, s) in
(2) fulfills:

|Rm(ξ, s)| ≤ H
s(m+1)α+1

, ξ ∈ I and δ1 < s ≤ δ2.

Proof of Theorem 3. First, we suppose that L[Dmα
τ x(ξ, τ)](s) is defined on I × (δ1, δ2] , for

m = 0, 1, 2 . . . , n + 1. As given, we also assume that:∣∣∣sL[D(m+1)α
τ x(ξ, τ)

]∣∣∣ ≤ H(ξ), ξ ∈ I and δ1 < s ≤ δ2. (3)

The definition of the remainder implies:

Rm(ξ, s) = X(ξ, s)−
m

∑
k=0

Dkα
τ x(ξ, 0)
skα+1 ,

thus, one can obtain:

s1+(m+1)αRm(ξ, s) = s1+(m+1)αX(ξ, s)−
m
∑

k=0
s(m+1−k)αDkα

τ x(ξ, 0)

= s
(

s(m+1)αX(ξ, s)−
m
∑

k=0
s(m+1−k)α−1Dkα

τ x(ξ, 0)
)

= sL
[

D(m+1)α
τ x(ξ, τ)

]
.

(4)

Equations (3) and (4) imply that
∣∣∣s1+(m+1)αRm(ξ, s)

∣∣∣ ≤ H(ξ).

Hence −H(x) ≤ s1+(m+1)αRm(ξ, s) ≤ H(ξ), ξ ∈ I, δ1 < s ≤ δ2.
Thus, reformulating the above equation, we can obtain the result. �

Theorem 4 ([33]). Assume that ‖xn+1(ξ, τ)‖ ≤ ε‖xn(ξ, τ)‖, ∀n ∈ N for some ε ∈ (0, 1), and
0 < τ < T < 1; then, the obtained approximate series solution converges to the exact one, where:

xn(ξ, τ) =
n

∑
m=0

Dmα
τ x(ξ, 0)

Γ(mα + 1)
τmα.

Proof of Theorem 4. Notice that, if 0 < τ < T < 1, then:

‖x(ξ, τ)− xn(ξ, τ)‖ ≤ ‖
∞
∑

m=n+1
xm(ξ, τ)‖ ≤

∞
∑

m=n+1
‖xm(ξ, τ)‖, ∀ 0 < τ < T < 1.

‖x(ξ, τ)− xn(ξ, τ)‖ ≤ ‖g(y)‖‖
∞
∑

m=n+1
εm‖ = εm+1

1−ε ‖g(y)‖ →n→∞
0.

�

3. LRPSM Methodology

In this section, we apply the LRPSM to solve HSC–KdV equations. The main idea of
the LRPSM is to first apply the Laplace transform on the target equation and then define
the so-called Laplace residual function. Then, using some facts of the residual power
series method and taking the limit at infinity allows us to obtain the coefficients of the
series solutions.
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Now, we consider the system:

Dα
τδ = 1

2 δξξξ − 3δδξ + 3(φψ)ξ ,

Dα
τφ = −φξξξ + 3δφξ ,

Dα
τψ = −ψξξξ + 3δψξ ,

 (5)

subject to the initial conditions (ICs):

δ(ξ, 0) = a(ξ), φ(ξ, 0) = b(ξ), ψ(ξ, 0) = c(ξ). (6)

We illustrate the steps of the LRPSM on system (5) and (6) as follows.
Step 1. Apply the Laplace transform with respect to τ to each equation in (5) to obtain

sαG(ξ, s)− sα−1δ(ξ, 0)

= 1
2

∂3

∂ξ3G(ξ, s)− 3L
[
L−1[G(ξ, s)] ∂

∂ξL
−1[G(ξ, s)]

]
+3 ∂

∂ξ

[
L−1[Φ(ξ, s)] L−1[Ψ(ξ, s)]

]
,

sαΦ(ξ, s)− sα−1φ(ξ, 0) = − ∂3

∂ξ3 Φ(ξ, s) + 3L
[
L−1[G(ξ, s)] · ∂

∂ξL
−1[Φ(ξ, s)]

]
,

sαΨ(ξ, s)− sα−1ψ(ξ, 0) = − ∂3

∂ξ3 Ψ(ξ, s) + 3L
[
L−1[G(ξ, s)] · ∂

∂ξL
−1[Ψ(ξ, s)]

]
,

(7)

where G(ξ, s) = L[δ(ξ, τ)], Φ(ξ, s) = L[φ(ξ, τ)], and Ψ(ξ, s) = L[ψ(ξ, τ)].

Simplifying each Equation in (7) and employing the ICs yields:

G(ξ, s) = a(ξ)
s + 1

2sα
∂3

∂ξ3G(ξ, s)− 3
sαL
[
L−1[G(ξ, s)] · ∂

∂ξL
−1[G(ξ, s)]

]
+ 3

sα
∂

∂ξ

[
L−1[Φ(ξ, s)] · L−1[Ψ(ξ, s)]

]
,

Φ(ξ, s) = b(ξ)
s −

1
sα

∂3

∂ξ3 Φ(ξ, s) + 3
sαL
[
L−1[G(ξ, s)] · ∂

∂ξL
−1[Φ(ξ, s)]

]
,

Ψ(ξ, s) = c(ξ)
s −

1
sα

∂3

∂ξ3 Ψ(ξ, s) + 3
sαL
[
L−1[G(ξ, s)] · ∂

∂ξL
−1[Ψ(ξ, s)]

]
.

(8)

Step 2. Define the series solution of (8), as follows:

G(ξ, s) =
∞
∑

n=0

δn(ξ)
snα+1 ,

Φ(ξ, s) =
∞
∑

n=0

φn(ξ)
snα+1 ,

and:

Ψ(ξ, s) =
∞

∑
n=0

ψn(ξ)

snα+1 .

Using the fact that L[s G(ξ, s)] = δ(ξ, 0), one can identify the kth truncated solution of
(8) as:

Gk(ξ, s) = a(ξ)
s +

k
∑

n=1

δn(ξ)
snα+1 ,

Φk(ξ, s) = b(ξ)
s +

k
∑

n=1

φn(ξ)
snα+1 ,

Ψk(ξ, s) = c(ξ)
s +

k
∑

n=1

ψn(ξ)
snα+1 .

(9)
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Step 3. Define the kth Laplace residual functions of (8) as:

LReskG(ξ, s) = Gk(ξ, s)− a(ξ)
s −

1
2sα

∂3

∂ξ3G(ξ, s)

+ 3
sαL
[
L−1[Gk(ξ, s)] · ∂

∂ξL
−1[Gk(ξ, s)]

]
− 3

sα
∂

∂ξ

[
L−1[Φk(ξ, s)] · L−1[Ψk(ξ, s)]

]
,

LReskΦ(ξ, s) = Φk(ξ, s)− b(ξ)
s + 1

sα
∂3

∂ξ3 Φk(ξ, s)

− 3
sαL
[
L−1[Gk(ξ, s)] · ∂

∂ξL
−1[Φk(ξ, s)]

]
,

LReskΨ(ξ, s) = Ψk(ξ, s)− c(ξ)
s + 3

sα
∂3

∂ξ3 Ψk(ξ, s)

− 3
sαL
[
L−1[Gk(ξ, s)] · ∂

∂ξL
−1[Ψk(ξ, s)]

]
.

(10)

Step 4. To find the first coefficients of the truncated series solution (9), we define the
first truncated solution and substitute it in the first truncated Laplace residual functions as:

LRes1G(ξ, s) = δ1(ξ)
sα+1 − 1

2sα
∂3

∂ξ3

[
a(ξ)

s + δ1(ξ)
sα+1

]
+ 3

sαL
[
L−1

[
a(ξ)

s + δ1(ξ)
sα+1

]
∂

∂ξL
−1
[

a(ξ)
s + δ1(ξ)

sα+1

]]
− 3

sα
∂

∂ξ

[
L−1

[
b(ξ)

s + φ1(ξ)
sα+1

]
L−1

[
c(ξ)

s + ψ1(ξ)
sα+1

]]
= 0,

LRes1Φ(ξ, s) = φ1(ξ)
sα+1 + 1

sα
∂3

∂ξ3

[
b(ξ)

s + φ1(ξ)
sα+1

]
− 3

sαL
[
L−1

[
a(ξ)

s + δ1(ξ)
sα+1

]
∂

∂ξL
−1
[

b(ξ)
s + φ1(ξ)

sα+1

]]
,

LRes1Ψ(ξ, s) = ψ1(ξ)
sα+1 + 1

sα
∂3

∂ξ3

[
c(ξ)

s + ψ1(ξ)
sα+1

]
− 3

sαL
[
L−1

[
a(ξ)

s + δ1(ξ)
sα+1

]
∂

∂ξL
−1
[

c(ξ)
s + ψ1(ξ)

sα+1

]]
.

(11)

Step 5. Recall the succeeding facts that appear in the LRPSM [29], as follows:

• LRes(ξ, s) = 0 and lim
k→∞
LResk(ξ, s) = LRes(ξ, s), for all s > 0.

• lim
s→∞

sLRes(ξ, s) = 0 implies that lim
s→∞

sLResk(ξ, s) = 0.

• lim
s→∞

skα+1LRes(ξ, s) = lim
s→∞

skα+1LResk(ξ, s) = 0, 0 < α ≤ 1, k = 1, 2, · · · .

Now, by multiplying each equation in (11) by sα+1 and taking the limit as s→ ∞, we
obtain the first unknowns of the series solutions (9) as:

δ1(ξ) =
1
2 (δ

′′′ (ξ)− 6δ(ξ)δ′(ξ) + 6ψ(ξ)φ′(ξ) + 6φ(ξ)ψ′(ξ))

φ1(ξ) = 3δ(ξ)φ′(ξ)− φ′′′ (ξ)

ψ1(ξ) = 3δ(ξ)ψ′(ξ)− ψ′′′ (ξ)
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Repeating the previous steps, one can obtain the second series coefficients recursively,
as follows:

δ2(ξ) =
1
4 δ(6)(ξ) + 9δ(ξ)2(δ′′ (ξ) + 3ψ′(ξ)φ′′ (ξ) + 3ψ′′ (ξ)φ′(ξ))− 9

2 δ′′ (ξ)2

−9φ′′′ (ξ)δ′(ξ)ψ′(ξ)− 9ψ′′′ (ξ)δ′(ξ)φ′(ξ)

+φ(ξ)
(

3
2 ψ(4)(ξ)− 9δ′(ξ)ψ′(ξ)

)
+3δ(ξ)

(
−δ(4)(ξ) + 18δ′(ξ)ψ′(ξ)φ′(ξ) + 6δ′(ξ)2 − 3φ(4)(ξ)ψ′(ξ)

−3φ′′′ (ξ)ψ′′ (ξ)− 3ψ′′′ (ξ)φ′′ (ξ)− 3
(

ψ(4)(ξ) + ψ′(ξ)
)

φ′(ξ)

−3φ(ξ)ψ′′ (ξ))− 15
2 δ′′′ (ξ)δ′(ξ) + 3ψ′′′ (ξ)φ(4)(ξ)− 3

2 ψ(ξ)φ(4)(ξ)

+3ψ(4)(ξ)φ′′′ (ξ) + 3φ′′′ (ξ)ψ′(ξ) + 9ψ′′ (ξ)φ′′ (ξ) + 6ψ′′′ (ξ)φ′(ξ),
φ2(ξ) = − 3

2 δ′′′ (ξ)φ′(ξ)− 9δ′′ (ξ)φ′′ (ξ)− 9φ′′′ (ξ)δ′(ξ)− 6δ(ξ)φ(4)(ξ) + 9δ(ξ)2φ′′ (ξ)

+φ(6)(ξ) + 9φ(ξ)ψ′(ξ)φ′(ξ) + 9ψ(ξ)φ′(ξ)2,

ψ2(ξ) = − 3
2 δ′′′ (ξ)ψ′(ξ)− 9δ′′ (ξ)ψ′′ (ξ)− 9ψ′′′ (ξ)δ′(ξ)− 6δ(ξ)ψ(4)(ξ) + 9δ(ξ)2ψ′′ (ξ)

+ψ(6)(ξ) + 9ψ(ξ)ψ′(ξ)φ′(ξ) + 9φ(ξ)ψ′(ξ)2.

Continuing in the same manner, we can conclude the following general kth terms of
the series coefficients as:

δk(ξ) =
1
2 δ
′′′
k−1(ξ)− 3

k−1
∑

i=0

δi(ξ)δ
′
k−i−1(ξ)Γ((k−1)α+1)

Γ(i α+1)Γ((k−i−1)α+1)

+3
(

k−1
∑

i=0

φi(ξ)ψk−i(ξ)Γ((k−1)α+1)
Γ(i α+1)Γ((k−i−1)α+1)

)′
,

φk(ξ) = −φ
′′′
k−1(ξ) + 3

k−1
∑

i=0

δi(ξ)φ
′
k−i−1(ξ)Γ((k−1)α+1)

Γ(i α+1)Γ((k−i−1)α+1) ,

ψk(ξ) = −ψ
′′′
k−1(ξ) + 3

k−1
∑

i=0

δi(ξ)ψ
′
k−i−1(ξ)Γ((k−1)α+1)

Γ(i α+1)Γ((k−i−1)α+1) .

where k = 1, 2, . . . .
Thus, the kth series solution of (10) can be written as:

Gk(ξ, s) = a(ξ)
s +

k
∑

m=1

δm(ξ)
smα+1 , k = 1, 2, . . .

Φk(ξ, s) = b(ξ)
s +

k
∑

m=1

φm(ξ)
smα+1 , k = 1, 2, . . .

Ψk(ξ, s) = c(ξ)
s +

k
∑

m=1

ψm(ξ)
smα+1 . k = 1, 2, . . .

Therefore, the solution of (5) and (6) in the original space can be expressed as

δ(ξ, τ) = δ0 +
δ1(ξ)τ

α

Γ(α+1) +
δ2(ξ)τ

2α

Γ(2α+1) + · · · ,

φ(ξ, τ) = φ0 +
φ1(ξ)τ

α

Γ(α+1) +
φ2(ξ)τ

2α

Γ(2α+1) + · · · ,

ψ(ξ, τ) = ψ0 +
ψ1(ξ)τ

α

Γ(α+1) +
ψ2(ξ)τ

2α

Γ(2α+1) + · · · .

4. Numerical Application

Consider the time-fractional HSC–KdV equations:

Dα
τδ(ξ, τ) = 1

2 δξξξ(ξ, τ)− 3δ(ξ, τ)δξ(ξ, τ) + 3(φ(ξ, τ)ψ(ξ, τ))ξ ,

Dα
τφ(ξ, τ) = −φξξξ(ξ, τ) + 3δ(ξ, τ)φξ(ξ, τ),

Dα
τψ(ξ, τ) = −ψξξξ(ξ, τ) + 3δ(ξ, τ)ψξ(ξ, τ),

(12)
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subject to the ICs:
δ(ξ, 0) = 0.4933 + 0.02 tanh2(0.1 ξ),

φ(ξ, 0) = −0.0134 + 0.0134 tanh(0.1 ξ),

ψ(ξ, 0) = 1.5 + 1.5 tanh(0.1 ξ).

(13)

To obtain the solution by the LRPSM in the series form about t = 0, we first apply the
LT on both sides of Equation (12) to obtain:

L[Dα
τδ(ξ, τ)] = 1

2L
[
δξξξ(ξ, τ)

]
− 3L

[
δ(ξ, τ)δξ(ξ, τ)

]
+ 3L

[
(φ(ξ, τ)ψ(ξ, τ))ξ

]
,

L[Dα
τφ(ξ, τ)] = −L

[
φξξξ(ξ, τ)

]
+ 3L

[
δ(ξ, τ)φξ(ξ, τ)

]
,

L[Dα
t f (x, t)] = −L

[
ψξξξ(ξ, τ)

]
+ 3L

[
3δ(ξ, τ)ψξ(ξ, τ)

]
.

Using the ICs (11), we have:

G(ξ, s) = 0.4933 + 0.02 tanh2(0.1 ξ)
s + 1

2sα
∂3

∂ξ3G(ξ, s)

− 3
sαL
[
L−1[G(ξ, s)] · ∂

∂ξL
−1[G(ξ, s)]

]
+ 3

sα
∂

∂ξ

[
L−1[Φ(ξ, s)] · L−1[Ψ(ξ, s)]

]
,

Φ(ξ, s) = −0.0134 + 0.0134 tanh(0.1ξ)
s − 1

sα
∂3

∂ξ3 Φ(ξ, s)

+ 3
sαL
[
L−1[G(ξ, s)] · ∂

∂ξL
−1[Φ(ξ, s)]

]
,

Ψ(ξ, s) = 1.5 + 1.5 tanh(0.1 ξ)
s − 1

sα
∂3

∂ξ3 Ψ(ξ, s)

+ 3
sαL
[
L−1[G(ξ, s)] · ∂

∂ξL
−1[Ψ(ξ, s)]

]
.

(14)

Define the kth-truncated series of Equation (14) as:

Gk(ξ, s) = 0.4933 + 0.02 tanh2(0.1 ξ)
s +

k
∑

m=1

δm(x)
smα+1 , k = 1, 2, · · ·

Φk(ξ, s) = −0.0134 + 0.0134 tanh(0.1ξ)
s +

k
∑

m=1

φm(x)
smα+1 , k = 1, 2, · · ·

Ψk(ξ, s) = 1.5 + 1.5 tanh(0.1 ξ)
s +

k
∑

m=1

ψm(x)
smα+1 , k = 1, 2, · · · .

(15)

The kth Laplace residual function of Equation (14) is defined as:

LReskGk(ξ, s) = Gk(ξ, s)− 0.4933 + 0.02 tanh2(0.1 ξ)
s − 1

2sα
∂3

∂ξ3G(ξ, s)

+ 3
sαL
[
L−1[G(ξ, s)] · ∂

∂ξL
−1[G(ξ, s)]

]
− 3

sα
∂

∂ξ

[
L−1[Φ(ξ, s)] · L−1[Ψ(ξ, s)]

]
,

LReskΦk(ξ, s) = Φk(ξ, s) + 0.0134 + 0.0134 tanh(0.1ξ)
s + 1

sα
∂3

∂ξ3 Φ(ξ, s)

− 3
sαL
[
L−1[G(ξ, s)] · ∂

∂ξL
−1[Φ(ξ, s)]

]
,

LReskΨk(ξ, s) = Ψk(ξ, s)− 1.5 + 1.5 tanh(0.1 ξ)
s + 1

sα
∂3

∂ξ3 Ψ(ξ, s)

− 3
sαL
[
L−1[G(ξ, s)] · ∂

∂ξL
−1[Ψ(ξ, s)]

]
.

(16)

Hence, to obtain the values of the coefficients functions δk(x), φk(x) and
ψk(x), k = 1, 2, · · · , we substitute the kth truncated series Gk(ξ, s), Φk(ξ, s) and Ψk(ξ, s)
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in (15) into the kth Laplace residual function (14), and then multiply the obtained equation
by skα+1 and solve the recurrence relations:

lim
s→∞

skα+1LReskGk(ξ, s) = 0,

lim
s→∞

skα+1LReskΦk(ξ, s) = 0,

lim
s→∞

skα+1LReskΨk(ξ, s) = 0,

for the unknown coefficients δk(x), φk(x) and ψk(x), where k = 1, 2, · · · .
Now, following a few terms of the sequence {δk(x)}, {φk(x)} and {ψk(x)}, we obtain:

δ1(ξ) =
(
0.00598tanh(0.1ξ)− 1.30104× 10−18)sech2(0.1ξ),

φ1(ξ) =0.00201sech2(0.1ξ),

ψ1(ξ) =0.22499sech2(0.1ξ).

δ2(ξ) = −3.53226

×10−6 sech9(0.1ξ)(59.21054sinh(0.1ξ) + 100.8182sinh(0.3ξ)

+49.60926sinh(0.5ξ) + 8.0016sinh(0.7ξ) + 1 cosh(0.1ξ)

+0.36 cosh(0.3ξ)− 0.04 cosh(0.5ξ)− 0.04 cosh(0.7ξ)),

φ2(ξ) =− 7.53842

×10−5(sinh(0.1ξ) + 1.49987sinh(0.3ξ)

+ 0.49987sinh(0.5ξ)) sech7(0.1ξ),

ψ2(ξ) =− 0.00844(sinh(0.1ξ) + 1.49987sinh(0.3ξ) + 0.49987sinh(0.5ξ))sech7(0.1ξ).

δ3(ξ) = 4.68229× 10−6sech15(0.1ξ)(−5.77628sinh(0.1ξ)− 11.98959sinh(0.3ξ)

− 9.23265sinh(0.5ξ)− 3.59499sinh(0.7ξ)− 0.52051sinh(0.9ξ)

+ 0.08358sinh(1.1ξ) + 0.02844sinh(1.3ξ) + cosh(0.1ξ)

+ 0.43738 cosh(0.3ξ)− 0.005159 cosh(0.5ξ)− 0.070707 cosh(0.7ξ)

− 0.01788 cosh(0.9ξ)− 0.000801 cosh(1.1ξ)− 0.000378 cosh(1.3ξ)),

φ3(ξ) =− 6.22028

× 10−5sech11(0.1ξ)(0.01352sinh(0.1ξ) + 0.02301sinh(0.3ξ)

+ 0.01132sinh(0.5ξ) + 0.00183sinh(0.7ξ) + cosh(0.1ξ)

+ 0.4935 cosh(0.3ξ) + 0.06625 cosh(0.5ξ)− 0.03592 cosh(0.7ξ)

− 0.011358 cosh(0.9ξ)),

ψ3(ξ) =− 0.00696sech11(0.1ξ)(0.01352sinh(0.1ξ) + 0.02301sinh(0.3ξ)

+ 0.01132sinh(0.5ξ) + 0.00183sinh(0.7ξ) + cosh(0.1ξ)

+ 0.4935 cosh(0.3ξ) + 0.06625 cosh(0.5ξ)− 0.03592 cosh(0.7ξ)

−0.01136 cosh(0.9ξ)).
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Repeating the previous steps, one can obtain the general terms of the coefficients of
the series solution of (10) as:

δ(ξ, τ) = 0.4933 + 0.02 tanh2(0.1 ξ)

+
((0.00598tanh(0.1ξ) − 1.30104 × 10−18)sech2(0.1ξ))τα

Γ(α+1)

+ τ2α

Γ(2α+1) (−3.53226

× 10−6 sech9(0.1ξ)(59.21054sinh(0.1ξ) + 100.8182sinh(0.3ξ)

+ 49.60926sinh(0.5ξ) + 8.0016sinh(0.7ξ) + 1 cosh(0.1ξ)

+ 0.36 cosh(0.3ξ)− 0.04 cosh(0.5ξ)− 0.04 cosh(0.7ξ))) + . . . ,

φ(ξ, τ) = −0.0134 + 0.0134 tanh(0.1ξ) +
0.00201sech2(0.1ξ)τα

Γ(α+1)

+ τ2α

Γ(2α+1) (−6.22028× 10−5sech11(0.1ξ)(0.01352sinh(0.1ξ)

+ 0.02301sinh(0.3ξ) + 0.01132sinh(0.5ξ) + 0.00183sinh(0.7ξ)

+ cosh(0.1ξ) + 0.4935 cosh(0.3ξ) + 0.06625 cosh(0.5ξ)

−0.03592 cosh(0.7ξ)− 0.011358 cosh(0.9ξ))) + . . . ,

ψ(ξ, τ) = 1.5 + 1.5 tanh(0.1 ξ) + 0.22499sech2(ξ)τα

Γ(α+1)

+ τ2α

Γ(2α+1) (−0.00844(sinh(0.1ξ) + 1.49987sinh(0.3ξ)

+ 0.49987sinh(0.5ξ))sech7(0.1ξ)) + . . . .

In Table 1, we choose some selected grid points numerically utilizing absolute and
relative errors between the accurate solution and fifth order approximation LRPSM solution
to present the correctness of the method; it is obvious that that the current work is an
uncomplicated and potent tool, and we note that as τ decreases, the error becomes smaller.

Figure 1 below, shows the graph of the exact solution and the fifth LRPSM approximate
solution of the HSC–KdV equations. The effectiveness of the proposed method is evident in
Figure 1 below, which shows the graph of the LRPSM solution that concludes with the exact
solution when α = 1. The contour plot of the fifth approximation series solution to HSC–
KdV equations is shown in Figure 2 below. Figure 3 shows the graph of the corresponding
fifth approximation LRPSM and the exact solution in a wide space. However, in Figure 4,
we have examined the effect and effect of time. Here, it is clear that when we increase
time δ(ξ, τ), the LRPSM results show a different behavior and move from the positive to
negative x-axis; in addition, φ(ξ, τ) and ψ(ξ, τ) show different behaviors at different times
and are stable in a wide space, but as we increase the time, the solution also increases. The
5th truncated series of equations, (ξ, τ), φ(ξ, τ), and ψ(ξ, τ), is plotted in Figure 5a–c for
α = 0.6, α = 0.8 and α = 1, respectively, whereas the exact solution at α = 1 is plotted in
(d). The graphics indicate consistency in the behavior of the solution at various values of α,
as well as the agreement of the exact solution with the approximate solution in Figure 5c,d.
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Table 1. The values of and and the values of the 6th approximate of the LRPSM solution for HSC–KdV
equations α = 1 at and ξ = 0.1.

τ δ(ξ,τ) δ5(ξ,τ) |δ(ξ,τ)−δ5(ξ,τ)|
∣∣∣δ(ξ,τ)−δ(ξ,τ)

δ(ξ,τ)

∣∣∣
0.0 0.504901 0.504901 0.00 0.00

0.02 0.504862 0.5049 3.80723× 10−5 7.54112× 10−5

0.04 0.504824 0.5049 7.62487× 10−5 1.5114× 10−4

0.06 0.504785 0.504899 1.14529× 10−4 2.26886× 10−4

0.08 0.504746 0.504899 1.52912× 10−4 3.12948× 10−4

0.1 0.504707 0.504899 1.91398× 10−4 3.79225× 10−4

τ φ(ξ,τ) φ5(ξ,τ) |φ(ξ,τ)−φ5(ξ,τ)|
∣∣∣φ(ξ,τ)−φ5(ξ,τ)

φ(ξ,τ)

∣∣∣
0.0 −0.00319464

−3.19464
−0.00319464
−3.19464

0.00 0.00

0.02 −0.00321156 −0.00321156 1.67897× 10−5 5.22791× 10−3

0.04 −0.00322856 −0.00322856 3.36542× 10−5 1.04239× 10−2

0.06 −0.00324564 −0.00324564 5.05935× 10−5 1.55882× 10−2

0.08 −0.00326279 −0.00326279 6.76079× 10−5 2.07209× 10−2

0.1 −0.00328002 −0.00328002 8.46975× 10−5 2.58222× 10−2

τ ψ(ξ,τ) ψ5(ξ,τ) |ψ(ξ,τ)−ψ5(ξ,τ)|
∣∣∣ψ(ξ,τ)−ψ5(ξ,τ)

ψ(ξ,τ)

∣∣∣
0.0 2.64239 2.64239 0.00 0.00

0.02 2.6435 2.64238 1.87945× 10−3 7.33778× 10−4

0.04 2.63859 2.64236 3.76726× 10−3 3.42775× 10−3

0.06 2.63668 2.64235 5.66345× 10−3 2.34795× 10−3

0.08 2.63476 2.64233 7.56835× 10−3 2.87238× 10−3

0.1 2.63283 2.64233 9.48336× 10−3 3.63339× 10−3

Figure 1. Cont.



Fractal Fract. 2022, 6, 694 12 of 17

Figure 1. The exact solution and the fifth approximate LRPSM solution of HSC–KdV equations for
the functions δ(ξ, τ), φ(ξ, τ), and ψ(ξ, τ) at τ ∈ [0, 2], ξ ∈ [−40, 40], and α = 1.

Figure 2. Cont.
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Figure 2. The contour graph of the approximate solutions (a) δ(ξ, τ), (b) φ(ξ, τ), and (c) ψ(ξ, τ) for
HSC–KdV equation at τ ∈ [0, 4], ξ ∈ [0, 1], and α = 1.

Figure 3. The graph of the 5th LRPSM solutions δ(ξ, τ), φ(ξ, τ), and ψ(ξ, τ) for HSC–KdV equations
at τ = 0.1, τ = 1, τ = 0.1, τ = 3, ξ ∈ [−30, 30], and α = 1.
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Figure 4. The graph of the 5th LRPSM solutions δ(ξ, τ), φ(ξ, τ), and ψ(ξ, τ) for HSC–KdV equation
at τ = 0.1, τ = 1, τ = 2, τ = 3, ξ ∈ [−30, 30], and α = 1.

Figure 5. Cont.
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Figure 5. The 3D surface plot of the 10th approximate solutions of u1, u2, and u3 at various values of
α and t = 0.5 and ζ = 3 for the problem in Example 4.3; (a) α = 0.6, (b) α = 0.8, (c) α = 1, (d) α = 1
(exact solutions).

5. Conclusions

This paper introduces a new series solution of the coupled Hirota–Satsuma and KdV
equations and provides a general term of the solution. We applied the LRPSM to investigate
the solution and obtained a general formula of the series solution for the target equations.
We showed the efficiency and applicability of the method by introducing a numerical
application and compared our results to the exact ones in the integer case. We analyzed
the outcomes and sketched the solutions with different values for the variables and the
fractional order. In the future, we intend to solve more physical problems with the LRPSM
and compare the outcomes to those obtained by other numerical methods.

As a result of our research, we conclude the following:

• LRPSM is a powerful method for solving systems of fractional partial differential equations.
• LRPSM is a simple technique that could provide many terms of the obtained series solution.
• In comparison to other numerical methods, LRPSM needs less computation, without

requiring linearization, discretization, or differentiation.
• The only disadvantage of the presented method is the Laplace transform step in the

event that one the functions in the discussed problem is not of exponential order.
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