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Abstract: The fractional oscillator equation with the sinusoidal excitation mx′′(t) + b Dα
t x(t) +

kx(t) = F sin(ωt), m, b, k, ω > 0 and 0 < α < 2 is comparatively considered for the Weyl fractional
derivative and the Caputo fractional derivative. In the sense of Weyl, the fractional oscillator equation
is solved to be a steady periodic oscillation xW(t). In the sense of Caputo, the fractional oscillator
equation is solved and subjected to initial conditions. For the fractional case α ∈ (0, 1) ∪ (1, 2), the
response to excitation, S(t), is a superposition of three parts: the steady periodic oscillation xW(t), an
exponentially decaying oscillation and a monotone recovery term in negative power law. For the
two responses to initial values, S0(t) and S1(t), either of them is a superposition of an exponentially
decaying oscillation and a monotone recovery term in negative power law. The monotone recovery
terms come from the Hankel integrals which make the fractional case different from the integer-order
case. The asymptotic behaviors of the solutions removing the steady periodic response are given
for the four cases of the initial values. The Weyl fractional derivative is suitable for a describing
steady-state problem, and can directly lead to a steady periodic solution. The Caputo fractional
derivative is applied to an initial value problem and the steady component of the solution is just the
solution in the corresponding Weyl sense.

Keywords: fractional calculus; fractional oscillator; Weyl fractional derivative; Caputo fractional
derivative; Laplace transform

1. Introduction

Fractional calculus has been attracting significant attention in recent decades since it
can be used to describe the memory and hereditary properties of various materials and
processes [1–9]. Its application fields are extensive, including viscoelastic a constitutive
relationship [4,7,10], anomalous diffusion [2,4], vibration and relaxation [2,4,7,8], control
theory [2,5], stochastic process [11,12], etc.

Let f (t) be integrable on any finite subinterval of (a,+∞). Then, the Riemann–
Liouville fractional integral of f (t) of order ν is defined as

Jν
a,t f (t) =

∫ t

a

(t− τ)ν−1

Γ(ν)
f (τ)dτ, t > a, (1)

for ν > 0, and J0
a,t f (t) = f (t) for ν = 0, where Γ(·) is the gamma function.

Let α be a real positive number, m− 1 < α ≤ m, m ∈ N, and the function f (t) has an
absolutely continuous (m− 1)st derivative on any finite subinterval of (a,+∞). Then, the
Riemann–Liouville fractional derivative of f (t) of order α is defined as

RLDα
a,t f (t) =

dm

dtm

(
Jm−α
a,t f (t)

)
, t > a, (2)
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while the Caputo fractional derivative of f (t) of order α is defined as

CDα
a,t f (t) = Jm−α

a,t

(
f (m)(t)

)
, t > a. (3)

Usually, a is a finite number and without loss of generality, a is taken as 0. If we
choose a = −∞, then the operator in (1) is known as the Weyl fractional integral, while
the operator in (2) or (3), which are consistent in this case, is known as the Weyl fractional
derivative [13]. Theoretical analyses and experimental simulations have indicated that
the stress–strain relationship of a viscoelastic body can be better described by introducing
the fractional calculus, such as the Scott–Blair model [4], the Kelvin–Voigt, Maxwell and
Zener models [4,10,14], among others [7,15,16]. Thus, vibration problems involving a
viscoelastic medium with a fractional stress–strain relationship lead to fractional oscillator
equations [7,8,17–25].

In [22], fractional oscillator equations in the sense of the Weyl fractional calculus were
clarified and analyzed. In [11], the fractional oscillator was described by a stochastic differ-
ential equation with the Weyl fractional calculus. In [26,27], the Weyl fractional derivative
was used to derive the steady response of a fractional oscillator system. Comparatively,
the Caputo fractional derivative is more commonly used in modeling physical or mechani-
cal problems partly due to the feasible classical initial conditions [4,7,9,19–21,24,28]. The
objective of this paper was to understand the differences and relationship between the
Weyl fractional derivative and the Caputo fractional derivative in modeling the fractional
oscillator equations. By imposing the sinusoidal excitation, we derive the steady periodic
response for the Weyl case, while an initial value problem needs to be solved for the Caputo
case. We will show that the steady component of the response for the Caputo case is just
the response for the corresponding Weyl case.

For short, we used W Dα
t f (t) to denote the Weyl fractional derivative RLDα

−∞,t f (t) or
CDα
−∞,t f (t), and CDα

t f (t) the Caputo fractional derivative CDα
0,t f (t). For the model based

on the Caputo fractional derivative, we will use the Laplace transform

f̃ (s) = L[ f (t)] =
∫ +∞

0
f (t)e−stdt (4)

and its complex inverse integral formula

f (t) = L−1[ f̃ (s)
]
=

1
2πi

∫
Br

f̃ (s)estds, (5)

and the Laplace transform formula of the Caputo fractional derivative

L
[

CDα
t f (t)

]
= sα f̃ (s)−

m−1

∑
k=0

f (k)(0)sα−1−k, m− 1 < α ≤ m. (6)

In this paper, we consider the response of the fractional oscillator to sinusoidal exci-
tation. In the next Section 2, the fractional derivative is in the sense of Weyl and a steady
periodic response is directly obtained by the method of undetermined coefficients. In
Section 3, the fractional derivative is in the sense of Caputo and an initial value problem
needs to be solved. The response is much more complicated than the Weyl case, and is
solved in detail using the Laplace transform and its complex inverse integral formula. A
comparative study of the responses of fractional oscillator in the Weyl and Caputo senses is
conducted. Section 4 summarizes our conclusions.

2. Oscillator Equation with the Weyl Fractional Derivative

Consider the fractional oscillator equation with the Weyl fractional derivative and the
sinusoidal excitation

mx′′(t) + b(W Dα
t x(t)) + kx(t) = F sin(ωt), m, b, k, ω > 0, (7)
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where F is a constant and the order α is limited in the interval 0 < α < 2.
Suppose the response has the amplitude X and phase lag ψ,

x(t) = X sin(ωt− ψ), (8)

then the Weyl fractional derivative is [13]

W Dα
t x(t) = Xωα sin

(
ωt− ψ +

απ

2

)
. (9)

Substituting into (7) and equating the coefficients of sin(ωt) and cos(ωt), respectively,
on both sides, we obtain

X(k−mω2) cos(ψ) + bXωα cos
(απ

2
− ψ

)
= F,

(k−mω2) sin(ψ)− bωα sin
(απ

2
− ψ

)
= 0.

Furthermore, the amplitude and phase lag are solved as

X =
F√(

k−mω2 + bωα cos
(

απ
2
))2

+
(
bωα sin

(
απ
2
))2

, (10)

tan(ψ) =
bωα sin

(
απ
2
)

k−mω2 + bωα cos
(

απ
2
) , (11)

where the phase lag is limited to the interval 0 ≤ ψ < π. Thus, the steady periodic response
is derived as

xW(t) =
F sin(ωt− ψ)√(

k−mω2 + bωα cos
(

απ
2
))2

+
(
bωα sin

(
απ
2
))2

, (12)

where the subscript W denotes the solution for Equation (7) with the Weyl fractional
derivative. The response is a sinusoidal oscillation with same frequency as the excitation
with frequency-dependent amplitude and phase lag.

We look into the amplitude ratio

β(ω) =
X

F/k
=

k√(
k−mω2 + bωα cos

(
απ
2
))2

+
(
bωα sin

(
απ
2
))2

, (13)

and the phase lag ψ(ω) as functions of the excitation frequency ω. It is obvious that
β(ω)→ 1 as ω → 0+. The derivative of amplitude ratio β(ω) satisfies

β′(ω) ∼ −αbk−1 cos
(απ

2

)
ωα−1, ω → 0+.

Thus, the limit as ω → 0+ is

β′(0+) =
{

0, 1 ≤ α < 2,
−∞, 0 < α < 1.

(14)

The amplitude–frequency curves β(ω) vs. ω are plotted in Figure 1 for m = 1, b = 2,
k = 3 and α = 0.3, 0.65, 1, 1.35, 1.7. The plot of the phase lag ψ(ω) vs. ω is shown in Figure 2
for the same parameter values. The amplitude–frequency curve in Figure 1 displays a
decreasing initial passage for the case of 0 < α < 1. For the two limiting cases α = 0 and
α = 2, the undamped natural frequencies are

√
(k + b)/m =

√
5 and

√
k/(m + b) = 1.

The resonant frequency in Figure 1 shifts to them nearby as α is close to the two endpoints
0 and 2. As α approaches to 1, the format becomes low and a large damping is implied. The
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fractional case exhibits a stronger resonance phenomenon than the case of α = 1. Figure 2
displays the transition process of the phase lag ψ(ω) with ω. The transition happens
around the resonant frequency. As α approaches towards 1, the transition becomes gentle.

0 1 2 3 4 5
ω

0.5

1.0

1.5

2.0

2.5

3.0

3.5
β(ω)

Figure 1. Curves of amplitude ratio β(ω) = Xk/F for m = 1, b = 2, k = 3 and α = 0.3 (solid line),
α = 0.65 (dot line), α = 1 (dash line), α = 1.35 (dot–dash line), α = 1.7 (dot–dot–dash line).

1 2 3 4 5
ω

π

2

π

ψ(ω)

Figure 2. Curves of phase lag ψ(ω) for m = 1, b = 2, k = 3 and α = 0.3 (solid line), α = 0.65 (dot
line), α = 1 (dash line), α = 1.35 (dot–dash line), α = 1.7 (dot–dot–dash line).

3. Oscillator Equation with the Caputo Fractional Derivative

Consider the fractional oscillator equation with the Caputo fractional derivative and
the sinusoidal excitation

mx′′(t) + b(CDα
t x(t)) + kx(t) = F sin(ωt), m, b, k, ω > 0, (15)

x(0) = x0, x′(0) = x1, (16)

where F is a constant, x0 and x1 are specified initial values and the order α satisfies 0 < α < 2.
Operating the Laplace transform to Equation (15) with the initial condition (16) gives

m(s2 x̃(s)− sx0 − x1) + b(sα x̃(s)− sα−1x0 − dα− 1esα−2x1) + kx̃(s) =
Fω

s2 + ω2 .
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where x̃(s) = L[x(t)] is the Laplace transform of x(t), for α 6= 1, the one-valued branch
sα = eα(ln |s|+i arg s), −π < arg s < π, is taken, and dα− 1e denotes the least integer no less
than α− 1. Thus, if 0 < α ≤ 1, then dα− 1e = 0, and if 1 < α < 2, then dα− 1e = 1. Like
an integer-order equation, refer to the trinomial

C(s) = ms2 + bsα + k, (17)

as the characteristic polynomial with a fractional power. As such, the Laplace image
function has the expression

x̃(s) =
Fω

(s2 + ω2)C(s)
+ x0

ms + bsα−1

C(s)
+ x1

m + dα− 1ebsα−2

C(s)
.

We introduce three special responses, i.e., the response to excitation and the two
responses to initial values,

S(t) = FωL−1
[

1
(s2 + ω2)C(s)

]
, (18)

S0(t) = x0L−1
[

ms + bsα−1

C(s)

]
, (19)

S1(t) = x1L−1
[

m + dα− 1ebsα−2

C(s)

]
. (20)

Thus, the solution is a superposition of them

x(t) = S(t) + S0(t) + S1(t). (21)

In order to obtain results that are convenient to compare with those in last section,
we consider the inverses in (18)–(20) by using the complex inverse integral formula, e.g.,
for (18), the formula reads

S(t) =
Fω

2πi

∫
Br

est

(s2 + ω2)C(s)
ds, (22)

where Br denotes the Bromwich path, i.e., a straight-line Re(s) = γ > 0. The poles of the
integrand from the sinusoidal excitation are two purely imaginary numbers and denoted by

s1,2 = ±iω.

If α = 1, then the power function sα is a single-valued holomorphic function on the
whole complex plane, while if α ∈ (0, 1) ∪ (1, 2), the function sα has a branch cut, which is
taken as the nonpositive real axis here. Moreover, for a distribution of zeros of C(s), the
fractional case is different from the integer-order case. Accordingly, we solve the problem
separately in the two following subsections in a contrasting way.

3.1. The Integer-Order Case α = 1

The integral in (22) can be reduced from the loop integral on the contour shown in
Figure 3. By the residue theorem and Jordan’s lemma, Equation (22) is expressed as a
sum of residues of the integrand. The singularities comprise the poles from the sinusoidal
excitation, s1,2 = ±iω and the poles from the characteristic polynomial

C(s) = ms2 + bs + k.

We denote the residue contributions from the two types of poles by SRE(t) and SRC(t),
respectively. Thus, we have
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S(t) = SRE(t) + SRC(t)

= Fω
2

∑
i=1

Res
(

est

(s2 + ω2)C(s)
, si

)
+ Fω ∑

i
Res
(

est

(s2 + ω2)C(s)
, si

)
, (23)

where the si in the second sum are poles from the characteristic polynomial C(s) and have
negative real parts. By calculating the residues at the two simple poles s1,2 we obtain SRE(t)
as follows and it is just the special case of xW(t) as α = 1 in Section 2,

SRE(t) = Fω

(
es1t

2s1C(s1)
+

es2t

2s2C(s2)

)
=

F
((

k−mω2) sin(ωt)− bω cos(ωt)
)

(k−mω2)2 + (bω)2 = xW(t; α = 1). (24)

For S0(t) and S1(t) in (19) and (20), we derive in a similar manner that

S0(t) = x0L−1
[

ms + b
C(s)

]
= x0 ∑

i
Res

(
(ms + b)est

C(s)
, si

)
, (25)

S1(t) = x1L−1
[

m
C(s)

]
= x1m ∑

i
Res

(
est

C(s)
, si

)
, (26)

where, like SRC(t), only the poles from the characteristic polynomial C(s) are involved.
Such poles are clarified to the three cases as shown in Figure 3. Thus, we calculate SRC(t),
S0(t) and S1(t) according to the following three cases.

Case i. b2 − 4mk < 0
The poles are a pair of conjugated complex numbers s3,4 = −λ± iµ, where λ = b

2m

and µ =
√

4mk−b2

2m . By calculating the residues at the two simple poles s3,4, we obtain

SRC(t) =
Fω
(

b
√

4mk− b2 cos(µt) +
(
b2 − 2mk + 2m2ω2) sin(µt)

)
m2
√

4mk− b2
(

λ4 + 2λ2(µ2 + ω2) + (µ2 −ω2)
2
) e−λt, (27)

S0(t) = x0

(
cos(µt) +

b√
4mk− b2

sin(µt)
)

e−λt, (28)

S1(t) =
2x1m sin(µt)√

4mk− b2
e−λt. (29)

Case ii. b2 − 4mk > 0
The poles are two negative real numbers s3,4 = −λ± ν, where λ = b

2m and ν =
√

b2−4mk
2m .

By calculating the residues at the two simple poles s3,4, we obtain

SRC(t) =
Fω√

b2 − 4mk

(
e−(λ−ν)t

(λ− ν)2 + ω2 −
e−(λ+ν)t

(λ + ν)2 + ω2

)
, (30)

S0(t) =
x0

2

((
1 +

b√
b2 − 4mk

)
e−(λ−ν)t +

(
1− b√

b2 − 4mk

)
e−(λ+ν)t

)
, (31)

S1(t) =
x1m√

b2 − 4mk

(
e−(λ−ν)t − e−(λ+ν)t

)
. (32)

Case iii. b2 − 4mk = 0
There is one second-ordered pole s3 = −λ = − b

2m . By calculating the residues at the
second-ordered pole s3, we obtain
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SRC(t) =
4Fmω

(
4bm + b2t + 4m2ω2t

)
(b2 + 4m2ω2)

2 e−λt, (33)

S0(t) = x0(1 + λt)e−λt, (34)

S1(t) = x1te−λt. (35)

In summary, the residue contribution from the sinusoidal excitation is a periodic
oscillation in (24), whereas other solution components in Equations (27)–(35) all decay in
negative exponential rates. We notice that the response to excitation, S(t), is divided into
two parts, SRE(t) and SRC(t). The former represents a steady periodic oscillation; the latter
exhibits a negative exponential decay, respectively, in three patterns (27), (30), and (33).

O

CR

*

*

⨯ ⨯++

s1

s2

s3

s4

s3s3 s4

F

E

Figure 3. Contour in the integer-order case.

3.2. The Fractional Case α ∈ (0, 1) ∪ (1, 2)

In this case, the integral in (22) needs to be derived from a loop integral on the contour
shown in Figure 4. Thus, in addition to the residue contribution, the Hankel integral
contribution is added to the fractional case. For S(t) in (22), the poles from the sinusoidal
excitation are still s1,2 = ±iω. For the fractional case, the poles from the characteristic
polynomial C(s) = ms2 + bsα + k only have one case compared with the integer-order
case α = 1, that is, a pair of conjugated complex numbers with a negative real part on the
principal Riemann sheet −π < arg s < π as shown in Figure 4 [19,29]. Denote the pair of
simple poles by

s3,4 = −λ± iµ = ηe±iφ, (36)

where λ, µ > 0, η =
√

λ2 + µ2 and φ = π − arctan µ
λ .

O

Cε

CR

CR

*

*

s1

s2

s3

s4

A B

C D

F

E

Figure 4. Contour in the fractional case.
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By the residue theorem and Jordan’s lemma, S(t) in (22) is deformed to a sum of the
residue contribution and the Hankel integral,

S(t) = SR(t) + SH(t), (37)

where the residue contribution is further classified according to the origins of poles,

SR(t) = SRE(t) + SRC(t)

= Fω
2

∑
i=1

Res
[

est

(s2 + ω2)C(s)
, si

]
+ Fω

4

∑
i=3

Res
[

est

(s2 + ω2)C(s)
, si

]
, (38)

and the Hankel integral is

SH(t) =
Fω

2πi

∫
Ha

est

(s2 + ω2)C(s)
ds, (39)

where Ha denotes the Hankel loop encompassing the nonpositive real axis.
For (38), the residue contribution from the sinusoidal excitation is computed to be

exactly the solution in Section 2 by using the Weyl fractional derivative

SRE(t) = xW(t), (40)

while the residue contribution from the characteristic polynomial is computed as

SRC(t) = Fω

(
es3t

(s2
3 + ω2)C′(s3)

+
es4t

(s2
4 + ω2)C′(s4)

)

= 2Fω Re

(
e(−λ+iµ)t

((−λ + iµ)2 + ω2)
(
2m(−λ + iµ) + bαηα−1ei(α−1)φ

))

=
2FωP e−λt(

λ4 + 2λ2(µ2 + ω2) + (µ2 −ω2)
2
)

Q
, (41)

where Re(·) denotes the real part and

P = 2η2µm
(

3λ2 − µ2 + ω2
)

sin(µt) + 2η2λm
(
−λ2 + 3µ2 −ω2

)
cos(µt)

−2αbλµηα+1 sin(µt− αφ + φ) + αbηα+1
(

λ2 − µ2 + ω2
)

cos(µt− αφ + φ),

Q = α2b2η2α − 4αbλmηα+1 cos(αφ− φ) + 4αbµmηα+1 sin(αφ− φ)

+4η2λ2m2 + 4η2µ2m2. (42)

The Hankel integral in (39) is derived from the limit of an integral on the path CD +
Cε + BA in Figure 4. The integral on the small circle Cε approaches zero as follows

lim
ε→0+

Fω

2πi

∫
Cε

est

(s2 + ω2)C(s)
ds = lim

ε→0+

Fω

2π

∫ π

−π

eεt(cos θ+i sin θ)εeiθ

(ε2ei2θ + ω2)(mε2ei2θ + bεαeiαθ + k)
dθ = 0.

Thus, the Hankel integral in (39) becomes

SH(t) = − Fω

2πi

∫ +∞

0

e−rt

r2 + ω2

(
1

C(reiπ)
− 1

C(re−iπ)

)
dr

= − Fω

π

∫ +∞

0

e−rt

r2 + ω2 Im
(

1
mr2 + brαeiαπ + k

)
dr

=
Fωb sin(πα)

π

∫ ∞

0

rαe−rt

(r2 + ω2)V(r)
dr, (43)
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where Im(·) denotes the imaginary part and

V(r) = b2r2α + 2b cos(πα)
(

k + mr2
)

rα + k2 + 2kmr2 + m2r4. (44)

We checked whether α is taken as 1, the Hankel integral in (43) vanishes and S(t) of
the fractional case is simplified to that in Case i of Section 3.1. In Figure 5, the response
S(t) is shown for m = 1, b = 2, k = 3, F = 1, ω = 2 and for different values of α. After
excluding the steady periodic component xW(t), the curves of S(t)− xW(t) are shown in
Figure 6. Under the zero initial value conditions, the transitions of responses to the steady
state are displayed in Figure 5. From Figure 6, it can be observed that the decay in the case
of α = 1 is more rapid than the fractional cases.

2 4 6 8 10 12 14
t

-0.6

-0.4

-0.2

0.2

0.4

0.6

S(t)

Figure 5. Response S(t) for α = 0.3 (solid line), α = 0.65 (dot line), α = 1 (dash line), α = 1.35
(dot–dash line), α = 1.7 (dot–dot–dash line).

2 4 6 8 10 12 14
t

-0.4

-0.2

0.2

0.4

S(t) - xW (t)

Figure 6. Curves of S(t) − xW(t) for α = 0.3 (solid line), α = 0.65 (dot line), α = 1 (dash line),
α = 1.35 (dot–dash line), α = 1.7 (dot–dot–dash line).

The two responses to initial values in (19) and (20) are computed in a similar manner.
We list the results as follows

S0(t) = S0R(t) + S0H(t), (45)

S0R(t) = x0
2P0e−λt

Q
, (46)

S0H(t) =
x0bk sin(πα)

π

∫ ∞

0

rα−1e−rt

V(r)
dr, (47)
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S1(t) = S1R(t) + S1H(t), (48)

S1R(t) = x1
2P1 e−λt

Q
, (49)

S1H(t) =
x1b sin(πα)

π

∫ ∞

0

rα−2(mr2 − dα− 1e(mr2 + k)
)

V(r)
e−rtdr, (50)

where

P0 =
(

αb2η2α + 2η2m2λ2 + 2η2m2µ2
)

cos(µt)− 2bmηα+1λ cos(µt + αφ− φ)

−αbmηα+1λ cos(µt− αφ + φ) + 2bmηα+1µ sin(µt + αφ− φ)− αbmηα+1µ sin(µt− αφ + φ),

P1 = 2η2µm2 sin(µt)− 2η2λm2 cos(µt) + dα− 1eαb2η2α−1 cos(µt− φ) + αbmηα+1 cos(µt− αφ + φ)

−2dα− 1ebλmηα cos(µt + (α− 2)φ) + 2dα− 1ebµmηα sin(µt + (α− 2)φ),

Q and V(r) are the same as in (42) and (44).
We checked that if α is taken as 1, the Hankel integrals in (47) and (50) vanish and the

results of the fractional case for S0(t) and S1(t) are simplified to that in Case i of Section 3.1.
Taking m = 1, b = 2 and k = 3, the responses S0(t) in Figure 7 and the responses S1(t)
in Figure 8 are shown for x0 = 1 and x1 = 1, respectively, and for different values of α.
From the two figures, more rapid decays in the case of α = 1 are observed than that in the
fractional cases.

2 4 6 8 10 12 14
t

-0.5

0.5

1.0

S0(t)

Figure 7. Response S0(t) for α = 0.3 (solid line), α = 0.65 (dot line), α = 1 (dash line), α = 1.35
(dot–dash line), α = 1.7 (dot–dot–dash line).

2 4 6 8 10 12 14
t

-0.5

0.5

1.0
S1(t)

Figure 8. Response S1(t) for α = 0.3 (solid line), α = 0.65 (dot line), α = 1 (dash line), α = 1.35
(dot–dash line), α = 1.7 (dot–dot–dash line).
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In Figure 8, there is an abnormal jump between the curves of α = 1 and α = 1.35.
In fact, S1(t; α) is not right continuous with respect to the order α at the integer α = 1.
Specifically, S1(t; α) at α = 1 is

S1(t; α = 1) = x1L−1
[

m
ms2 + bs + k

]
,

however, the right limit of S1(t; α) as α→ 1+ is

S1(t; 1+) = x1L−1
[

m + bs−1

ms2 + bs + k

]
,

from (20). Compared with (25), the right limit can be calculated as

S1(t; 1+) = x1

∫ t

0

S0(t; α = 1)
x0

dt,

where S0(t; α = 1) is given in Equations (28), (31) and (34) in Section 3.1. In Figure 9, a
more detailed demonstration of S1(t) for 1 < α < 2 is shown, where α is taken as 1.2, 1.4,
1.6, and 1.8, and the right limit S1(t; 1+) is plotted by dot–dot–dash line.

2 4 6 8 10 12 14
t

-0.5

0.5

1.0
S1(t)

Figure 9. Response S1(t) for α = 1.2 (solid line), α = 1.4 (dot line), α = 1.6 (dash line), α = 1.8
(dot–dash line); the dot–dot–dash line is for the limit S1(t; 1+).

The curves in Figures 6–8 exhibit declines over time t. This can be made clear by
looking into the asymptotic behaviors. First, we consider the Hankel integral contribution
SH(t) in (43). Let r = u/t, and the integral in (43) is substituted as

SH(t) =
Fωb sin(πα)

πt

∫ ∞

0

(u/t)αe−u

((u/t)2 + ω2)V(u/t)
du. (51)

As t → +∞, we have V(u/t) → k2, and hence the denominator of the integrand in
(51) approaches to k2ω2. Thus, we obtain the asymptotic representation for SH(t),

SH(t) ∼
Fb sin(πα)

πk2ω
t−α−1

∫ ∞

0
uαe−udu =

Fb sin(πα)Γ(α + 1)
πk2ω

t−α−1, t→ +∞.

Considering the relationship S(t) = xW(t) + SRC(t) + SH(t), where SRC(t) decays
in an oscillatory manner at a negative exponential rate, as a consequence, we obtain the
asymptotic representation for the response to excitation

S(t)− xW(t) ∼ Fb sin(πα)Γ(α + 1)
πk2ω

t−α−1, t→ +∞. (52)
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By a similar method, the two responses to the initial values have the asymptotic
representations

S0(t) ∼
x0b sin(πα)Γ(α)

πk
t−α, t→ +∞, (53)

S1(t) ∼
{

x1bm sin(πα)Γ(α+1)
πk2 t−α−1, t→ +∞, 0 < α < 1,

− x1b sin(πα)Γ(α−1)
πk t−(α−1), t→ +∞, 1 < α < 2.

(54)

By combining the above results in Equations (52)–(54), the asymptotic behavior of the
solution of the initial value problem, (15) and (16), depends on the four cases of the initial
values as follows.

Case A. x0 = 0, x1 = 0

x(t)− xW(t) ∼ Fb sin(πα)Γ(α + 1)
πk2ω

t−α−1, t→ +∞,

Case B. x0 6= 0, x1 = 0

x(t)− xW(t) ∼ x0b sin(πα)Γ(α)
πk

t−α, t→ +∞,

Case C. x0 = 0, x1 6= 0

x(t)− xW(t) ∼
{

b sin(πα)Γ(α+1)
πk2 ( F

ω + x1m)t−α−1, t→ +∞, 0 < α < 1,

− x1b sin(πα)Γ(α−1)
πk t−(α−1), t→ +∞, 1 < α < 2,

Case D. x0 6= 0, x1 6= 0

x(t)− xW(t) ∼
{

x0b sin(πα)Γ(α)
πk t−α, t→ +∞, 0 < α < 1,

− x1b sin(πα)Γ(α−1)
πk t−(α−1), t→ +∞, 1 < α < 2.

In summary, for the initial problem, (15) and (16), in the fractional case, we derive the
response to excitation, S(t), and the two responses to initial values, S0(t) and S1(t), and
find that S(t) is a superposition of a periodic oscillation xW(t), an exponentially decaying
oscillation and a monotone recovery term in negative power law, and either S0(t) or S1(t)
is a superposition of an exponentially decaying oscillation and a monotone recovery term
in negative power law. The monotone recovery terms come from the Hankel integrals, and
their attenuations in negative power laws dominate the exponential decays, which makes
the fractional case different from the integer-order case. The steady periodic component
xW(t) is just the response of the Weyl fractional oscillator in Section 2.

4. Conclusions

We consider the fractional oscillator equation with the fractional order 0 < α < 2
and the sinusoidal excitation, and conduct a comparative study of responses for the Weyl
fractional derivative and the Caputo fractional derivative.

In Section 2, the fractional oscillator equation in the sense of Weyl is solved to be a
steady periodic oscillation. The amplitude–frequency and the phase–frequency relations
are analyzed with the variation of the order α. In Section 3, the fractional oscillator equation
in the sense of Caputo subject to initial conditions is solved. For comparison, we first
consider the integer-order case of α = 1, and except for the steady periodic response,
other solution components all decay in negative exponential rates. For the fractional case
α ∈ (0, 1) ∪ (1, 2), the response to excitation, S(t), is a superposition of three parts: a
steady periodic response in the sense of Weyl, an exponentially decaying oscillation, and a
monotone recovery term in negative power law. For the two responses to initial values,
S0(t) and S1(t), either of them is a superposition of an exponentially decaying oscillation
and a monotone recovery term in negative power law. The monotone recovery terms come
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from Hankel integrals, and their attenuations in negative power laws dominate over the
exponential decays, which makes the fractional case different from the integer-order case.
Finally, the asymptotic behaviors of the solutions removing the steady periodic response
are given for the four cases of the initial values.

The Weyl fractional derivative is suitable for describing the steady-state problem, and
can directly lead to a steady periodic solution. The Caputo fractional derivative is applied
to an initial value problem, the method of the Laplace transform yields results and the
steady component of the solution is just the solution of the corresponding Weyl fractional
differential equation.
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