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Abstract: A nonlocal boundary value problem for a couple of two scalar nonlinear differential
equations with several generalized proportional Caputo fractional derivatives and a delay is studied.
The exact solution of the scalar nonlinear differential equation with several generalized proportional
Caputo fractional derivatives with different orders is obtained. A mild solution of the boundary
value problem for the multi-term nonlinear couple of the given fractional equations is defined. The
connection between the mild solution and the solution of the studied problem is discussed. As a
partial case, several results for the nonlocal boundary value problem for the linear and non-linear
multi-term Caputo fractional differential equations are provided. The results generalize several
known results in the literature.

Keywords: generalized proportional Caputo fractional derivatives; boundary value problem; delay;

integral presentation; existence

1. Introduction

The fractional derivatives are intensively applied to model the dynamics of real-
world processes and phenomena when the current state depends on the past behavior.
The main properties of the fractional derivatives connected with their memory as well as
their parameters (the fractional order) give us the opportunity to adjust the the fractional
derivative to the real data and to create more adequate and realistic models. Some real
life models by fractional derivatives in engineering systems are provided in the book [1];
biological systems are given in [2], and epidemiological systems are studied in [3]. In
connection with this, several different types of fractional derivatives have been defined and
studied such as the Hilfer operator [4,5], derivatives depending on another function [6,7],
or involving arbitrary kernels [8,9].

Recently, starting from the definition of tempered fractional derivative, the generalized
proportional derivative has been defined in [10,11]. Despite being a very recent idea,
already several excellent works are available, for example, for some fundamental properties
see [12,13], for stability properties see [14-16], and for stochastic differential equations
see [17].

In this paper, a couple of nonlinear differential equations with a special type of delay
and several generalized proportional Caputo type derivatives is considered. We begin with
the linear scalar differential equation with several generalized proportional Caputo-type
derivatives, and for the nonlocal boundary value problem an integral representation of
the solution is obtained. Based on this representation, the mild solution of the couple
of nonlinear delay multi-term delay equations is defined. Then the connection between
the mild solution and the solution is discussed. Additionally, a partial case of initial
value problems is investigated. The obtained results are generalizations of the recently
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studied works in the literature for multi-term differential equations with Caputo fractional
derivatives. The proved results can be applied for investigating the qualitative properties
such as Ulam-type stability of the couple of nonlinear differential equations with a special
type of delay and several generalized proportional Caputo-type derivatives, and various
types of boundary or initial conditions.

The paper is organized as follows. In Section 2, the basic definitions of generalized
proportional fractional integrals and derivatives are given. Additionally, some basic prop-
erties are provided. The statement of the problem is set in Section 3. Additionally, the mild
solution is defined and its existence, uniqueness and relation with the solution of the
given problem is studied. The explicit solution to the linear problem is also obtained.
In Section 4, the obtained results of the previous sections are extended to the multi-term
Caputo fractional differential equations and compared with the existing results in the
literature. In Section 5, a discussion about the proved results is provided and some possible
future works are mentioned.

2. Notes on Fractional Calculus
We recall that the generalized proportional fractional integral and the generalized Ca-

puto proportional fractional derivative of a function u : [a,00) — R are defined, respectively,
by (as long as all integrals are well defined, see [10,11])

t —
(aZ™Pu)(t) = p“l"l(zx)/ e%(tfs)(t —5)* lu(s)ds, te(ab], >0, pe(0,1],
a
and
1 oot .
(ED%Pu)(t) = m/a At S)(t—s) (Dl'/’u)(s) ds,

for t € (a,b], « € (0,1), p € (0,1],
where (DVYu)(t) = (1 — p)u(t) + pu'(t).

Remark 1. The generalized proportional Caputo fractional derivative is a generalization of the
classical Caputo fractional derivative of order a € (0,1) : $D*u(t) [18] in the case p = 1.

-1
Remark 2. (see Remark 3.2 [10]) Ifa € (0,1) and p € (0, 1] then the relations (gD“'PepT('))(t) =
0 for t > aand ($D¥PK)(t) # 0 for K € R, K # 0 hold.

We introduce the following classes of functions

C*[a,b] = {u € C'([a,b],R) : (§D%u)(t) existsfort € (a,b]},
I“Pla,b] = {u € C([a,b],R) : (4Z%Fu)(t) exists for t € (a,b]}.

Note that if u € C%[a, b] then DPu(.) € I'=%F[a, b].

We recall some results about generalized proportional Caputo fractional derivatives
and their applications in differential equations, which will be applied in the main result in
the paper.

Lemma 1 (Proposition 3.7 [10]). For p € (0,1], &, > 0 we have

iy - TB) e ;
sy 7 P -1y — __ ~\PJ) 75 P x+p 1.
T (=) = e )
-1 -1
Corollary 1. uI""P(eth) = ée%t(t —a)*.

0T (14a)
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Lemma 2 (Proposition 5.2 [10]). Forp € (0,1], &, > 0, B # 1 we have
Cya,p ¥ _ \B-1y Plxr(‘B) el _ \B—a—1
DY (e P (t—a)P™h) I’(IB—(X)EP (t—a) . 1)
Lemma 3 (Theorem 3.8 [10]). Forp € (0,1], «,p > 0and u € C([a, b], R) the we have
(mrp (azﬁfpu))(t) = (Z*"PPu)(t), t € (a,b)]. 2)

We will use the following result, which is a partial case of Theorem 5.3 [10] for
ae(0,1).

Lemma 4. Forp € (0,1], « € (0,1] and u € C3*[a,b], SD*Pu(.) € I;*[a, b] we have
—1
(7 (ED™u) ) (1) = u(t) — u(@)e ™ 7, t € (a,b]

Corollary 2 ([10]). Leta € (0,1), p € (0,1] and u € I*P[a, b], ,2%Fu(.) € C*P[a,b]. Then

(e DY (I u))(t) = u(t), te€ (a,b].

3. Multi-Term Differential Equations with Generalized Proportional Caputo
Fractional Derivatives

Let the sequences of numbers 1 > ay >ay > - >ay, >0and 1> B > B > -+ >
Bn > 0 be given.

Consider the couple of delay differential equations with several generalized proportional
Caputo fractional derivatives, or so-called multi-term generalized proportional fractional
delay differential equations

n

;Ai(ocD“"'Px)(t) = f(t,x(t),x(At),y(t)), for t € (0,1],

;Bi(ocpﬁ"'py)(f) = 8(ty(t),y(Aat), x(t)), for t € (0,1],

®)

with the nonlocal boundary value conditions

71x(0) +171x(81) + p1x(1) = @1(81),  12y(0) +1m2y(G2) + poy(1) = P2(82),  (4)

where A1,A; € (0,1), &1,82 € (0,1) are arbitrary points, the numbers A;,i = 1,2,...,n,
B, i=12,...,N,vi,ni,4i, i =1,2aresuch that Ay #0, By #0,v;+4+p; #0,i=12,
the functions f,¢:[0,1] x R® = R, ®;: (0,1) = R, i =1,2.

3.1. Explicit Solution of the Multi-Term Linear Problem with Generalized Proportional Caputo
Fractional Derivatives

Consider the following linear multi-term generalized proportional fractional differen-
tial equation:

N
Y- Gi(§DPz) (1) = F(b), for t € (0,1], ©)
i=1

with the nonlocal boundary value condition

72(0) + Bz(8) + pz(1) = ¥(3), (6)
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wherel > py >py>--->pny>0,C;,i=1,2,...,N: C; # 0areconstants, F : [0,1] — R,
¢ € (0,1) is an arbitrary point, y, B, 4 are arbitrary numbers, ¥ € C((0,1),R) and

Cx Ck

e P1—Pk o 7
T4 Z G AT+ p—p° T kzzl P P+ pi—p0 7 7

Lemma 5. Let F € IP1P(0,1], and inequality (7) holds. Then, the boundary value problem for the
linear multi-term generalized proportional fractional differential Equations (5) and (6) has a unique
solution given by

L(@' et 3 Ck P1—Pk
2t = e’ ;Cm”l T 1 i)
N t oo
X e 2 ®)
5 ClpPt™ ’”kF (1 —px) Jo (t—s)t PP

1 /e%a—s)Ls)ids, te0,1],
(t=s)" P

T Cont () o —
where
Kepe'sd i C P”lpkf(clkJr ot
v 2 4 Cph— Pkl"((ikJr p1— Pk) 70
PO =T+ i s Cipht ”kF (p1— i) ﬁ/ e j)(lsg”l*”kds o
+V/ er Ha- S) Z;ls)pﬁpkds)

N 1 el F(s) Vet F(s)
C1pP T (p1) (ﬁ/o ‘ (g—s)l—f’ldHV/O ‘ (1—s)t P ds)'

Proof. Since p; > p;,i =2,3,..., N we take a generalized proportional fractional integral
(0ZP1Pz)(t) from both sides of (5), use Lemma 1 with B = 1,& = p; — pi, Lemmas 3, 4 and

(0 (§9002)) 1) = (e 5900

— (Ozmpklp <z(t) _ z(O)epplt)>

-1
= (0" P2) (1) = 2(0) (o e )

o7t

tP1— Pk
PP =PI (14 p1 — pi)

= (0I"~P¥Pz)(t) — 2(0)

to obtain
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-1
Ciz(t) = Ci2(0 z Ce((ezr o) - =(0) T e )
+ (6ZPPF)(t)
[»771 N Ck
=2z(0)e Cy + $P1— Pk
( ) < 1 — pPl—Pkr(l +p1— pk) )
N
= Y G(oZ"Pfz)(t) + (o™ FF)(t)
p—1, N Cr _
=2z(0)e ° tP1— Pk
=(0)e = P PE(1+ p1— p) (10)
N
_ Z Ck(OIpl_pk'pz)(t) + (OzperF)(t)
k=2
1y N Cr _
=z(0)e ¢ P17 Pk
(©) kzzl PP Pk (1 + p1 — py)
- 1 l(es)__ z(5)
_kgc"pm PiT (py )/0 e’ (t_s)lflerPkds
1 Pty gy F(s)
L Ny o R
pP T (p1) (t—s)t P
Then
1z N C
_ 4 k P1—Pk
{e) ==(0)er 2 Clp’“*”kr(l A
G et
5= (8—s) Z(S) 11
2 4 Crpbi— pkr (p1 — Pk)/o ¢’ (g_s)l—PH-Pkds an
1 ¢ o1z  F(s)
Pl Fen RO,
C10P1T(p1) Jo (g_s)l—m
and
-1 N Cr
z(1) =z(0)e ¢
1) =2(0) = G PRI (1+ p1 — pr)
N
Gk /1 el-s)  2(s)
_ e r ds (12)
k:zé C1pP1= Pk (p1 — pi) Jo (1- 5)1*P1+Pk
1 L e e1(1-s) F(s)
P Sy U
C1pP1T(p1) Jo (1— S)l—m
From (11), (12) and boundary condition (6), we find
0) = 2] %@
Tk
Cr el z(s)
i 2 5 CupP P (p1 — pi) ﬁ/ p (C—S)l_p1+pk : (13)

21 (1-s) z(s)
T V/ s>1*P1+Pk ds)

S e1(g-s)_ F(s) 1) F(s)
C10P1T(p1) (ﬁ/o ¢ (&—s)~ Plds+y/ S)lmdS)}'
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Substitute equality (13) in (10) and obtain (8). O

Remark 3. In the partial case N = 1,C; = 1,7y =1, = u = 0, ¥(s) = a = constant the
boundary value problem (5) and (6) is reduced to the initial value problem for scalar linear generalized
proportional Caputo fractional differential equation of order p € (0,1) and the Formula (8) is

reduced to ) . Lo E(s)
p=1y P;(tfs) S
z(t) =ae ¢ "+ 7/ er — s
) pPT(p) Jo (t—s)l7P
(see, Example 5.7 [10] with A = 0).

3.2. Mild Solution of the Boundary Value Problem for the Couple of Nonlinear Equations

We introduce the following condition:
A1l. The following hold

el ! Ak n—
Ky = yq 4+ e 0 o1 1%
1=T1 TN ,;Alpal_akr(l‘F“l—“k) 1
p-t 2 A
+per Y, k #0,

= AT (1 4w — )

P—lg N B B1—p (14)
Ko =2+ e P o2 k 1= Pk
SAEE k_; BB =BT (1+ By — By) 2
oot N By
+ pge P # 0.
b L B R 1 = )

Following the integral representation (8), we will define a mild solution of the bound-
ary value problem for the nonlinear delay differential equation with several generalized
proportional Caputo fractional derivatives (3) and (4).

Definition 1. The couple of functions (x(t),y(t)) : x € I""%F[0,1],k = 2,3,...,n, y €
1B1=Per[0,1],k = 2,3,...,N, is called a mild solution of the boundary value problem for multi-
term generalized proportional Caputo fractional differential Equations (3) and (4) if they satisfy the
integral equations

P(¢1,%,y) 1 v Ag
)= —~—~—"Z¢ 0
x( ) K1 ¢ kZ-:l Alpﬂ‘l—"‘kr(l + a1 — Dék)

ttX] —Q

_y A P el x(s)
k:Zz A= (g — o) /o ¢’ st
t _
1 /e%t*s)f(er(S)rx(MS)fy(S))ds, teo1],
(@1) Jo

T AT (t—s)l 5)
y(p) = Lexw) Loy By i
K5 = Blpﬁlfﬁkr(l + ,Bl _ ﬁk)

N _
. Bk t &(t_s) y(S)
> BypPPiT (B _5k)/() R P ds

k=2
1 et 8(5,y(s), y(A2s), X(5))
T BipPT(By) /o ‘ (t—s)t™h 4

where Ky and K; are defined by (14), and

s, t€10,1],
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Ay

&1 elig s x(s
P(¢1,x,y) = P1(C1) +ZA Py P (,71/0 e o (&1 )(gl()ds

. 5)17“1+0‘k

+ /l - s)—x(s) ds)

(1 _ )17061“1’0(}(
_ 1 G L9 f(5,x(5), x(M9),y(5))
Alp"‘lr(ﬂcl) (171/0 (C1 o s)l—ocl d
b et £l x(5), x(Mis) y(s)
+ 11 /0 (1- S)ll—le ds),

_ S By @ @) y(s)
Q(§2/ x/]/) = q)2(§2) +]<:Z:2 B1pﬁ17ﬁkr(ﬁ1 — ﬁk) (772/ er

21 (1-5) y(s)
+V2/ ( )1 51+ﬁkds)
1

1 & e, 8(5,y(5), y(s), x(5)
" BioPI(p ﬁmﬁ S

o )

—
(& —s)! PP

(16)

Theorem 1. Let the condition Al be satisfied and the couple (x(t),y(t)), t € [0,1], be a mild
solution of the boundary value problem for multi-term generalized proportional Caputo fractional
differential Equations (3) and (4) such that x € C*F([0,1],R) fork = 1,2,...,nand y €
CPer([0,1],R) fork = 1,2,...,N. Then, the couple (x(t),y(t)) is a solution of the same problem.

Proof. From Equation (15) it follows

712(0) + 112(G1) + p1x(1)

’hP(@l xY) { (@1 xy) Lt i Ak
1 Arpt (14 g — ag)

glﬂélfﬂék

o PPl(‘:l ”&
Z AlP'Xl “kr(m — ) / ¢ (& — )17“1+“k ds
G el (@) f(s,x(5), x(A15), y(5))
Alp"‘lr zx1) / (&1 — )1 a ds }

Y G

k:l ’Xl ”‘kl" 14 aq *Dék)

p1

+V1{

1 p 1
(-s)_ x(s)
2 Alpocl axT 0‘1_D¢k)/ € (1 )1—a1+akds

1t ey fls,x(s),x(Ms), v ()
Alp"‘lr (aq) / (1—s)t™™ }

(gl) el . Ay o=
(11 +me ; g

Ag
+Hle ” Z Al‘o"‘l “kl"( +Dc1—ak)]

G1 p-1
GO B O
E 4 Appt1 “kr(“l — ag) [’71 /0 . (&1 —s)! ot *

1 p 1
(1-s) x(s)
+tm / 7(1 ~ s)lﬂxﬁﬂk ds]

1 G1 E@l,s)f(s,x(S),x(/\ls)/y(s))
+ ApnT(@) [m/o er ds

(& —s)'™
Ve a-s) f(s,x(s), x(M1s), y(5))
+m /0 e (1- s)llﬂh ds]

=d(&).

(17)
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Equalities (17) show that the function x(t) of the mild solution satisfies the boundary
condition (4). Similarly, it can be proved about the function y(t).

Forany k = 2,3,...,n, we consider w(t) = (¢Z“1~*x)(t). According to Corollary 2,
the equalities (§D* ((Ozwak'px)(t)) = (§DMPw)(t) = (§D™ (g:mw (Ozﬂck'ﬂw)» ()

hold. Applying Lemma 2, we obtain

§Dm (T ox) (1)) = (§D* (SDW (owm)) () = D). (8)

-1

I

. . 1 St —a

— _ — P S— N ) 1 k =
In view of Lemma 1 with « = a; — ay, B = 1 we have PRy E— t

p—1 p—1
oI ~%Pe 7 ' and according to Lemma 4 with & = ay, u = x we obtain x(f) — x(0)e 7 =
YA (gD"‘k'P x) (t). Then, using (15) for t = 0, we obtain x(0) = P%) and the first equation
in (15) could be written in the form

n
x(t)=-Y Ak A (Ozaw (gD”‘krPx>) (t)

= A

) (19)
+ g o TS x(), x(Mah), y (1), t € 0]

We take the generalized proportional Caputo fractional derivative § D*1* of both sides
of (19), apply Lemma 3 and Corollary 2 and obtain

A (FDMFx)(1) = — i A (§D"Px) (1) + f(t,x(8), x(A18), y (1)) (20)
k=2

Equality (20) proves the function x(t) satisfies the first equation of (3). Similarly, we
can prove the function y(f) satisfies the second equation of (3). O

Theorem 2. Let the condition Al be satisfied and the couple (x(t),y(t)) be a solution of the
boundary value problem for multi-term generalized proportional Caputo fractional differential
Equations (3) and (4) and the functions F € I)'*[0,1], G € Ig 10,1]  where

F(t) = f(t,x(t), x(A1t),y(t), G(t) = g(t,y(t),y(Aat),x(t). Then, the couple (x(t),y(t)) is
a mild solution of the same problem.

The proof of Theorem 2 is similar to the one of Lemma 5, and we omit it.

Now, we will study the existence of the mild solutions of (3) and (4) for p € (0,1).
There are several approaches for studying the existence of a solution. Here, we use fixed
point theorems and some results from functional analysis. Basically, we will prove the
existence of a mild solution by the application of an appropriate operator equation.

Theorem 3. Let the following conditions be satisfied:
1. a;,Bre(0,1),i=12...,n,k=1,2...,N,p € (0,1) and condition Al be satisfied.
2. There exist constants L;, M;, i = 1,2,3, such that for t € [0,1],x;,z;,y; € R, i = 1,2,
the inequalities
|f(t,x1,21,y1) — f(t,x2,20,y2)| < Li|x1 — x2) + La|z1 — 22| + L3|y1 — v2|,
1g(t, x1,21,y1) — §(t, x2,22,¥2)| < My|x1 — x2) + Ma|z1 — 22| + M3|y1 — y2|

hold.
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3. The inequalities
(Il + [mal) ¥ | Al
P =L|1+
! [ |K1| = A1l 4% (1 + aq — “k)]
o n AR (T (1 — o) = T(ay — a, S5E)) , D) —r(»q,l;*’)) _
= A1 —p)* %D (ag — a) |A1](1 — p)aiT (1) ’ o

_ (72| + [p2l) 5 | By
P =M+ TG L meata s )
y ( N |Be|(T(B1 — Bi) = T(B1 — B 52)) N T'(B1) —r(ﬁLl;p)) -
i BT = p)P AT (By — Br) |B1|(1 = p)PT(B1) '

hold where £ = max{1, L1 + Lp, L3}, M = max{1, My + My, M3}.

Then, the boundary value problem for multi-term generalized proportional Caputo fractional
differential Equations (3) and (4) has a unique mild solution.

Proof. Denote ||x|| = max,c[q |x(t)| for any x € C([0,1],R) and define the set W =
C([0,1],R) x C([0,1],R). The set W is a Banach space with the norm ||u||yy = max{||u1]],
[lua]|} : u = (ug,up) € W. Letx,y € C([0,1],R) and define the operator Q = (Q1, () :
W — R? by the equalities

PGy o g A -
Ky k=1 Alptxlilxkr(l +ag— D‘k)

n Ak Foecliis) x(s)
k:zz Alplxlfakr([xl — lxk) A e r (t_s)mds

bt s f(s,x(s), x(A15), y(s))
+ Ao (aq) ,/0 ¢ (t— 5)1*“1 ds

Q(éZr xry) ﬂt N Bk ﬁ —IB (22)
Ooy(t) = =222 97,7 1B1-By
2y(t) K> ¢ 1<:Z1 Blpﬁl—ﬁkru + B1 — Br)
N —
Bx / belies)  y(s)
N er — s
kzzz BipPr=PeT(B1 — Bx) Jo (t—s) Pripr

1 Eootir6)8(s,y(s),y(A2s), x(s))
+ e e’ ds
BypP1T(B1) /0 (t—s)l7P1
for t €[0,1], x,y € C[0,1],

4

7

where Ky, Ky, P(¢1,x,y), and Q(&2, x, y) are defined by (14) and (16).
The fixed point of the operator () (if any) is a mild solution of (3) and (4).

E(—s) «
Let x;,y; € C([0,1],R), i = 1,2. Then, we have fot e(tis)tl,,x s = (1£p)“ (T(a) —

I'(a, 1%’)0), where I'(a,z) = [ t"le~!dt is the incomplete gamma function, I'(, ct) is
a decreasing function for t € [0,1],a € (0,1) and ¢ > 0. From the first equality of (16),
we obtain
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|P1 (81, x1,¥1) — P1(&1, X2, 2|

| Akl |[x1 — x2| 1-p
Z  TAL(1— )" (a1 — ) (Im] + |V1|)(r(“1 —ay) — (g —a, Cl))
(L1+L2)||x1—x2||+L3||y1—y2|| _ 1-p
|A1](1 —p)T (&) (I + [pal) <r(“1) I (a1, C1))> 23
< Lmax{||x; — x2[|, [[y1 — vl [} (] + [pl])
- | A _ B o 1-p
(L TATa g iy gy (70— )~ Tl = )
1 1-p
+ |A1|(1 —p)"‘ll’(oq) (r(al) B r(‘xlr gl)))/
and
|Ak| N —a
|le1(t) - leZ(t)| < |q)1(‘:lrxlryl) - q)l(gllx%yz ‘ ‘K | Z |A1|p“1 "‘kr(l +aq —Dék)t T
- | Akl /t =1 (1—s) |x1(5) — x2(5))|
+k:22 Ao (w —ag) Jo © (t—s) ot *
1 Eee 7 (t=9)
AT b g (bae) — )
+ Lalx1 (M) = x2(A1s)] + Lalya (5) = a(s)] ) ds
B B (Il + [pal) | Al
SﬁInaX{Hxl xZH/Hyl y2||} |K ‘ Z |A1|p“1 akr(1+“1_“k)
) ( 2 A (T(o — ) ~T(oa — o 55%)  Tlan) T, 1;’51)) @4)
= JA|(1—p) 4T (g — ay) |A1[(1 —p)*1T (a)
| Al 1—p
+||x X 'y —ay) — Ty — g, ——
|21 — ZHZ . TAL T “1_%)(1_@“1,%( (@1 —ag) — Ty — ay 5 )
(L1+L2)||x1—x2||+L3||y1—J/2|| 1—p
T —TI'(aq,
AT =g ) T o)
(Il +1ml) ¢ | Ag|
< _ _
< Lmax{| 1 = xall o — el 1 SR Y e
o n ARl (T(ag — ) — T(aq — g, 52)) G —rmf;ﬁ)
= A1 —p)a T (ag — ) |A1[(1 —p)T(ar)/
Similarly, we get
|y (t) — Qoya ()| < Mmax{|[|x; — x2||, [[y1 — y2l[}
(Il + [ml) & | By |
X |14+
(K2l = [BalpPr= AT (1 + 1 — Br) (25)

« N |Be|(T(B1 — Br) —T(B1 — B 5E)) +F(ﬁ1)—F(ﬁ1,1pp)>
= [Bil(1—p)Pr BT (B — Br) |B1|(1—p)PT (1))

From inequalities (24) and (25) and condition 3 it follows that

[1Q[lw < max{Py, Py} max{||x1 — xa, [[y1 — yal[},
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i.e., the operator Q is a contraction operator. According to the Banach contraction principle
the operator () has a unique fixed point (x*,y*) € W, which is a mild solution of (3)
and (4). O

3.3. Mild Solution of the Initial Value Problem for the Couple of Nonlinear Equations

In the partialcase 1 =12 =1, =2 = 1 = pp = 0and P(s) = a,Py(s) = b, a,b
are real constants, the boundary value problem for the coupled nonlinear delay differential
equation with several generalized proportional Caputo fractional derivatives (3) and (4)
is reduced to the coupled nonlinear delay differential equation with several generalized
proportional Caputo fractional derivatives (3) with the initial value conditions x(0) = g,

y(0) =b.

Definition 2. The couple of functions (x(t),y(t)) is called a mild solution of the coupled multi-
term generalized proportional Caputo fractional delay differential Equation (3) with the initial
conditions x(0) = a, y(0) = b if they satisfy the integral equations

%t Ay
1 Arp (14 g — a)

x(t) = ae £ %

k=

L Ak t ﬂ(t—s) X(S)
- L Ayt~ T (o — ) /0 ¢ (t—s)t *

k=2
1 Eoot_g f(s,x(s), x(M1s),y(s))

Ao (a) : ds, te€0,1],
+ Alp“lf(wl) /0 ¢ (t _ S)l—le 5 [ ]
Ty B #B1— B
= BipP1=AT (1 + B1 — Br)

N —

By / Eoediesy  y(s)

N er — s

k:ZZ BipP1=FeT (1 — Bx) Jo (t— ) PIHhe

Tt e 8(5,y(s), y(A2s), X(5))
* B1pP1T(B1) /o ¢ (i s P ds, t€[0,1].

(26)

As a corollary of Theorem 1 the following result follows:

Theorem 4. Let the couple (x(t),y(t)), t € [0,1], be a mild solution of the initial value problem
for coupled multi-term generalized proportional Caputo fractional differential Equation (3) with
the initial conditions x(0) = a, y(0) = b such that x € C**[0,1] for k = 1,2,...,n and
y € CPr[0,1] fork = 1,2,...,N. Then, the couple (x(t),y(t)) is a solution of (3) with the initial
conditions x(0) = a, y(0) = b.

As a partial case of Theorem 2, we have

Theorem 5. Let the couple (x(t),y(t)) be a solution of the initial value problem for coupled multi-
term generalized proportional Caputo fractional differential Equation (3) with the initial conditions
x(0) = a, y(0) = b and the functions F(t) = f(t,x(t),x(Mt),y(t)), F € I;'°[0,1] and
G(t) = g(t,y(t),y(Aat), x(t)), G € Igl'p [0,1]. Then, the couple (x(t),y(t)) is a mild solution of
the same problem.

The existence result for the initial value problem for coupled multi-term generalized
proportional Caputo fractional differential Equation (3) with the initial conditions x(0) = g,
y(0) = b is a partial case of Theorem 3.

Theorem 6. Let the following conditions be satisfied:
1. Let the conditions A1 and and 2 of Theorem 3 be satisfied.
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2. The inequalities

| ARl (T (o — @) = T(ar — o, 52))  Tlar) = T, 228

)
AP ey A peten) <
1Y

c(y
k=2
N [Be|(T(B1— Br) —T(B1 — B 52))  T(B1) —T(B1, 52)

M@z Bi(1—p)P PT(Bi— o) 1Bl (1—p)PL(pr >> <

k

hold where £ = max{1, L1 + Ly, L3}, M = max{1, M1 + My, M3}.

Then, the initial value problem for coupled multi-term generalized proportional Caputo frac-
tional differential Equation (3) has a unique mild solution.

Remark 4. In the partial case Ay = 0, k = 2,3,...,n,f(t,x,z,y) = f(t,x), and by = 0,
k=1,2,..., N, the coupled multi-term generalized proportional Caputo fractional delay differential
Equation (3) with the initial conditions x(0) = a, y(0) = b is reduced to a scalar generalized
proportional Caputo fractional differential equation with the initial condition x(0) = a, and the
integral Equation (26) is reduced to the integral Equation (2) [19].

4. Multi-Term Caputo Fractional Differential Equations

According to Remark 1, the Caputo fractional derivative is a partial case of a general-
ized proportional Caputo fractional derivative with p = 1. Thus, from the previous sections,
we obtain the results for Caputo fractional differential equations—linear and nonlinear
coupled multi-terms.

Now, we introduce the following classes of functions:

C*a,b] = {u € C'([a,b],R) : ($D*u)(t) existson (a,b]},

and
I*a,b] = {u € C([a,b],R) : (4I"u)(t) existson (a,b]},

where (§D%u)(t) is the Caputo fractional derivative and (,1*u)(t) is the Riemann-Liouville
fractional integral of order a € (0,1) with the lower limit a.

4.1. Explicit Solution of the Multi-Term Linear Problem with Caputo Fractional Derivatives
Consider the following linear multi-term Caputo fractional differential equation

Zc SDPiz(t) = F(t), for t € (0,1], (27)

with the nonlocal boundary value conditions
712(0) + pz(¢) + pz(1) = ¥(5), (28)

wherel > py >py>--->pny>0,C;,i=1,2,...,N: C; #0are constants, F : [0,1] —
R), ¢ € (0,1) is an arbitrary point, v, B, 4 are arbitrary numbers, ¥ € C((0,1),R) and

Cr Ck
=+ P1=Pr
7 ﬁk; CipPr= AT (14 p1 — Pk)g yk; CroPr=PT (1 + p1 — px)

£0.  (29)

As a particular case of Lemma 5 with p = 1, we obtain:
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Lemma 6. Let F € IP1[0,1], and inequality (29) holds. Then, the boundary value problem for
the linear multi-term Caputo fractional differential Equations (27) and (28) has a unique solution
given by

P

N N
Z I /f 2(s)
1r 1 + Pl pk) k=2 C]r(pl — pk) 0 (t _ S)l*}?]‘l’pk

B Fs) (30)

S
+C1F(p1)/o (t—s)l"’lds' te[01],
where

_ N Ck 1~ Pk N Ck
1<_7+/BZ CGI(1+pi—p )gp p *”Z CI(1+p1—pr) o
B N Cr (s)
P(g) =Y¥(¢) + chr(PlPk<'B/ wds (31)

—l—y/ 1 P1+Pk ds)

1 5 E(s)
_Clr(Pl)('B/o (@—s 1 pd ;l/ (1—s)1- P1d5>

Remark 5. Note the boundary value problems for the multi-term linear Caputo fractional differ-
ential equation of the type (27) and (28) were studied in [20-22], but their integral representa-
tions seem to have inaccuracies (see Theorem 3.1 [20], Theorem 3 [21], and Theorem 3.1 [22]).
For example, in the proof of Theorem 3 [21], the second line of Equation (5) is not correct be-

cause DMV () = [M-8H6DRY; () = [=% (D% (1)) = 1975 (V(F) - G ) =
[TV (t) — 784Gy # [~ % V) (t) for i = 2,...,n where C; are constants.

Remark 6. It the particular case N =1,y =1, =u =0, ‘I’( )=a= const, we obtain from
E(s)

Lemma 6 and Equation (30) the classical formula z(t) = a + Clr ) fo = )1 5o ds for the solution

of the initial value problem of the scalar linear Caputo fractional differential equation.

4.2. Mild Solution of the Boundary Value Problem for the Couple of Nonlinear Equations

In the particular case p = 1, i.e., the case where Caputo fractional derivatives are
applied, we obtain the following couple of multi-term Caputo fractional delay differen-
tial equations

A; §D%x(t) = f(t,x(t), x(At),y(t)), for t € (0,1],

M-

Il
—_

(32)
B; §DPiy(t) = g(t,y(t),y(Aat), x(t)), for t € (0,1].

M

I
—

Now we will define mild solutions of the nonlocal boundary value problem for the
couple of nonlinear multi-term Caputo fractional delay differential equations.

For this we need to introduce the following condition:

A2. The following hold
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Ak ] —0g
_ 1
+ay —ay)

p=1x N
=&
Ky = I
1= 71+ 1e EAll"(l

p=1 Ak
thet 2 All"(l + 0y — D(k) 7& 0.
_ ele B1—Br
Ky = 72 +12e .
2ok ZBlr 1+/31 Bi) 2
p—1 N Bk

+ poge ° ,;B1F(1+ﬁ1—ﬂk) £ 0.

(33)

Following the integral representation (30), we will define a mild solution of the bound-
ary value problem for the nonlinear delay differential equation with several Caputo frac-
tional derivatives (4) and (32).

Definition 3. The couple of functions (x(t),y(t)) :
y € IA=Px[0,1],

k=23...

x € I%[0,1],k = 2,3,...,n,
,m, is called a mild solution of the boundary value problem for

multi-term Caputo fractional differential Equations (4) and (32) if they satisfy the integral equations

1 t8(s,y(s), y(A2s), x(s))
PRI ot
where Ky and K; are defined by (33),
_ - Ak & x(s) s
P(¢1,x,y) = P1(61) +k;2 AT () (’71/0 @ 75)1_a1+akd
1
oy (1_:)(15)0%0&1/15)
1 & f(s,x(s), x(Ms),y f(s,x(s), x(M1s), y(s))
© AT () ( /0 (& —s)t™™ At / )l &

x(t) — P(éll'x’y) 3 Ak tlxlfﬂék
K1 S AT+ —ag)

L A t x(s)
- Z Alf(alk— Dék) / (t _ )1—061+ack ds

Alr ap) / e ());15&)1 21 ))dS, te[0,1],

_ Q(§21x1y) Bk 1—Br
ylt) = K, L BiT(1+ B1 — ﬁk)yS '

N B,

oy
- k;z BiI'(B1 — Br) /o (t—s)Piihe ds

N B &2 s
Q(G2,x,y) = ®2(G2) + Z Wk—ﬁk)(m/o (gz—zgl)ﬁﬁﬁkds

(34)

)

T / 1 51+/5de)
%2 o(s, 3 s
W(’”/ s gt sy [ SEY LY S,

Remark 7. The equivalence between the integral presentation (26) giving us the mild solution and
the solution of (4) and (32) does not follow immediately from Lemma 6, as it is done in some papers

(see [20,21]) since the linear case (27) is a partial case of the nonlinear (32) not conversely.
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As a particular case of Theorem 1 with p = 1, we obtain:

Theorem 7. Let the condition A2 be satisfied and the couple (x(t),y(t)) : x € ["17%]|0,1],
k=23,...,n,y€ 1P1—Pr [0,1],k =2,3,..., N, be a mild solution of the boundary value problem
for multi-term Caputo fractional differential Equations (4) and (32) such that x € C*([0,1],R)
fork=1,2,...,nand y € CP([0,1],R) fork = 1,2,...,N. Then, the couple (x(t),y(t)) isa
solution of the same problem.

As a particular case of Theorem 2 with p = 1, we obtain the following result:

Theorem 8. Let the condition A2 be satisfied and the couple (x(t),y(t)) be a solution of the
boundary value problem for multi-term Caputo fractional differential Equations (4) and (32) and
the functions F(t) = f(t,x(t),x(A1t),y(t)), F € I;'[0,1] and G(t) = g(t,y(t),y(Aat), x(t)),
G ¢ 1651 [0,1]. Then, the couple (x(t),y(t)) is a mild solution of the same problem.

The existence result for (4) and (32) is similar to Theorem 3.

Theorem 9. Let the following conditions be satisfied:

1. Condition A2 is satisfied.
2. There exist constants L;, M;, i = 1,2,3, such that for t € [0,1],x;,z;,y; € R, i = 1,2,
the inequalities

|f(t,x1,2z1,y1) — f(t,x2,20,y2)| < Li|x1 — x2| 4+ La|z1 — 22| + La|y1 — v2|,

(35)
|g(t, x1,21,y1) — 8(t, x2,22,¥2)| < My|x1 — x2| + Mp|z1 — 22| + M3|y1 — 12|
hold.
3. The inequalities
(Iml +1ml) & | Al
L1+
[ |K1| = AT (T4 aq —ak)}
y | Al 1
X + <1,
(k;z |A1IT(14+aq —ag)  |A|T(1 +0¢1))
N (36)
M1+ (2] + |pl) |B| ]
|Ka| = IB1T(1+ B1 — B)

N | B| 1
8 (k=2 [BLT(1+ B1 — Br) |Bl|r<1+ﬁ1>> <1

hold where £ = max{1, L1 + Ly, L3}, M = max{1, M1 + My, M3}.

Then, the boundary value problem for the coupled multi-term Caputo fractional differential
Equations (4) and (32) has a unique mild solution.

The proof is similar to the one of Theorem 3, where we apply fot # =
a € (0,1), al'(«) = I'(1 + a) and the inequality (24) is replaced by
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[P(G1,x1,51) = P(G1, %2, 42)] ¢ | Ayl -
Qqixq(t) — Vx ()] < P
|Qx1 () — Qo ()| < K1 | L AT + o — )
3 | Akl |x1(5) — x2(5)]
d
+kg§ |Ap|T (&g — ag) / 1 ay+ag 5

1 t
+ ‘Al‘r(al)/o (t—S)l_"‘l (L1|X1( s) — x2(s)]

+ Lafx1 (M) = x2(A1s)| + Lalya (s) = a(s)] ) ds

+ A
< Cmax{ =l 1y —sally 1+ LD 3 ]

(% Akl n 1 )
o AT (T +ag —ag)  [A[T(T+aq)/

Remark 8. The unlocal boundary value problem for the coupled system of Caputo fractional
differential Equation (32) is studied in [21], but the study is based on a integral presentation with
inaccuracies (see Remark 5).

5. Conclusions

In this paper, an explicit solution of the linear fractional differential equation with
several generalized proportional Caputo fractional derivatives and nonlocal boundary
value condition is obtained. This explicit solution could be applied in the study of various
qualitative properties, and in algorithms for construction approximate solutions such as
monotone-iterative technique. The mild solution of the couple of nonlinear fractional
differential equation with several generalized proportional Caputo fractional derivatives
and delays is defined. The new formulas for the mild solutions of the boundary value
problem for the nonlinear couple multi-term generalized proportional Caputo fractional
differential equations could be used to study several qualitative properties such as Ulam-
type stability of the given problem. Additionally, as a partial case, they could provide
sufficient conditions for stability properties of fractional multi-term equations with Caputo
fractional derivatives.
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